Παλαιωκεανογραφικές συνθήκες στο Β Αιγαίο κατά την απόθεση του σαπροπηλού S1 με βάση την κατανομή των πλαγκτονικών τρηματοφόρων

Διπλωματική Εργασία
Διαμαντοπούλου Αντωνία

ΠΑΤΡΑ 2013
Η εργασία αυτή εκπονήθηκε σε ιζήματα πυρήνα που συλλέχθηκε στα πλαίσια του Ευρωπαϊκού ερευνητικού προγράμματος EraNet/MarinERA, MedEcos (Decadal scale variability of the Mediterranean Ecosystem).
Επιβλέπουσα καθηγήτρια
Γεραγά Μ., Επίκ. Καθηγήτρια

Τριμελής εξεταστική επιτροπή
Γεραγά Μ., Επίκ. Καθηγήτρια (Τμήμα Γεωλογίας, Πανεπ. Πατρών)
Pαπαθεοδώρου Γ., Καθηγητής (Τμήμα Γεωλογίας, Πανεπ. Πατρών)
Τριανταφύλλου Μ., Αν. Καθηγήτρια (Τμήμα Γεωλογίας & Γεωπεριβαλλοντικής, ΕΚΠΑ)
Πρόλογος

Όσοι αγαπούν την θάλασσα για την μαγεία που κρύβει μέσα της, δεν μπορούν παρά να νιώθουν ευγνωμοσύνη για αυτούς που τους δίνουν την δυνατότητα να ανακαλύψουν κάποια από τα μυστικά της.

Η παρούσα διπλωματική εργασία εκπονήθηκε στο Εργαστήριο Γενικής Θαλάσσιας Γεωλογίας και Φυσικής Ωκεανογραφίας του τομέα Γενικής Θαλάσσιας Γεωλογίας και Γεωδυναμικής. Καταρχάς, θα ήθελα να ευχαριστήσω θερμά την επίκουρο καθηγήτρια κα Γεραγά Μαρία, που μου εμπιστεύτηκε την ανάθεση της εργασίας αυτής, για την επίκουρη συμπαράστασή, και την καθοδήγησή της καθ’ όλη την διάρκεια εκπόνησής της. Επίσης, θα ήθελα να ευχαριστήσω τον καθηγητή κο Παπαθεοδώρου Γεώργιο και τον ομότιμο καθηγητή κο Φερεντίνο Γέωργιο για το ενδιαφέρον, την εμπιστοσύνη και τις υποδείξεις τους κατά τη διάρκεια του μεταπτυχιακού προγράμματος, για όλα αυτά που με έμαθαν ή που με παρότρυναν να μάθω.

Επιπλέον οφείλω να ευχαριστήσω ιδιαιτέρως την αναπληρώτρια καθηγήτρια κα Τριανταφύλλου Μαρία (Τμήμα Γεωλογίας & Γεωπεριβάλλοντος, ΕΚΠΑ) και την κα Κωστοπούλου Σοφία (Τμήμα Γεωλογίας & Γεωπεριβάλλοντος, ΕΚΠΑ) για την παροχή σημαντικών πρωτογενών δεδομένων, καθώς και τους ερευνητές Δρ. Γ. Ρουσάκη και Δρ. Α. Γώγου του Ελληνικού Κέντρου Θαλάσσιων Ερευνών (ΕΛ.ΚΕ.Θ.Ε.).

Ένα μεγάλο ευχαριστώ στις συναδέλφους Δέσποινα, Σοφία, Μαρία, Τζένη, Φρόσω και Μαριλέτα για την ηθική και όχι μόνο συμπαράστασή τους και γιατί είναι αυτές που είναι. Ευγνωμοσύνη στην βιολογική μου οικογένεια που στάθηκε δίπλα μου, όπως επίσης και στην οικογένειά μου στην Πάτρα (Πέρη, Λίνα, Λευτέρη, Μαριάνθη, Ελίζα, Νίκο). Ιδιαίτερες ευχαριστίες στον Νικόλα που αποτέλεσε κίνητρο για να παρακολουθήσω αυτό το μεταπτυχιακό.
Περιεχόμενα

1. Εισαγωγή ... 5
 1.1 Παλαιοκλιματολογία .. 5
 1.2 Μέθοδοι Παλαιοκλιματολογίας .. 6
 1.2.1 Μικροπαλαιοντολογία .. 6
 1.2.1.α Πλαγκτονικό Τρηματοφόρο ... 7
 1.3 Κλιματικές μεταβολές μικρής και μεγάλης διάρκειας στην Μεσόγειο 11
 1.4 Η περίπτωση του σαπροπηλού S1 στην Αν. Μεσόγειο 12
 1.4.1 Αιτίες σχηματισμού του σαπροπηλού S1 ... 13

2. Σκοπός ... 16

3. Περιοχή μελέτης ... 17
 3.1 Βαθυμετρία/γεωμορφολογία ... 17
 3.2 Υδρογραφία .. 18
 3.2.1 Υδάτινες μάζες ... 18
 3.2.2 Κυκλοφορία υδάτων ... 20
 3.3 Παλαιοωκεανογραφία .. 22

4. Υλικά και μέθοδοι ... 24
 4.1 Συλλογή πυρήνα βαρύτητας Μ-4 .. 24
 4.2 Δειγματοληψία πλαγκτονικών τρηματοφόρων .. 25
 4.3 Μικροπαλαιοντολογική ανάλυση .. 25
 4.4 Επιπρόσθετη ανάλυση ... 26
 4.5 Στατιστική ανάλυση .. 26

5. Αποτελέσματα ... 27
 5.1 Ιζήματα πυρήνα M-4 ... 27
 5.2 Πλαγκτονικά τρηματοφόρα ... 28
 5.2 Στατιστική ανάλυση .. 32

6. Συζήτηση .. 35
 6.1 Μηχανισμοί απόθεσης του σαπροπηλού S1 .. 35
 6.2 Διαφοροποιήσεις στα σαπροπηλικά στρώματα S1a και S1b 36
 6.3 Γεγονότα σύντομης διάρκειας που επηρέασαν την απόθεση του S1 38
 6.4 Σύγκριση δεδομένων πυρήνα M-4 με άλλους πυρήνες του Αιγαίου 41

7. Συμπεράσματα ... 46

8. Βιβλιογραφία .. 47
1. Εισαγωγή

Οι βασικότεροι παράγοντες οι οποίοι επιδρούν στη διαμόρφωση του κλίματος συνοψίζονται α) σε τροχιακές μεταβολές του συστήματος Γη-Ηλίου, β) σε μεταβολές και ανατροφοδοτούμενες διεργασίες (feedback processes) του συστήματος λιθόσφαιρα-υδρόσφαιρα-ατμόσφαιρα, γ) σε μεταβολές του ρυθμού και του τρόπου κυκλοφορίας των υδάτινων μαζών και θαλάσσιων ρευμάτων, δ) σε ποιοτικές και ποσοτικές μεταβολές της εισερχόμενης και εξερχόμενης ακτινοβολίας στο διάστημα, ε) σε μεταβολές της ηφαιστειακής δράσης και σε μεταβολές της δημιουργίας των παγετώνων στη λιθόσφαιρα, στ) σε μεταβολές της συγκέντρωσης του CO2 και άλλων αερίων στην ατμόσφαιρα, και τέλος ζ) σε ανθρώπινες επιδράσεις.

Για την παρακολούθηση και εκτίμηση των επιπτώσεων της ανθρωπογενούς επίδρασης στην σύγχρονη κλιματική αλλαγή, κατά τους τελευταίους δύο αιώνες, σε σχέση με την φυσική διακύμανση του κλίματος η οποία παρατηρείται εδώ και εκατontάδες χιλιάδες χρόνια, είναι απαραίτητη η μελέτη του παλαιοκλίματος. Η γνώση των φυσικών διακυμάνσεων του κλίματος σε διαφορετικές χρονικές κλίμακες, συντελεί σε μια πιο ολοκληρωμένη κατανόηση των μηχανισμών που επιδρούν στην διαμόρφωσή του, και μπορεί να αποτελέσει την βάση για την πρόβλεψη της εξέλιξής του στο μέλλον.
1.2 Μέθοδοι παλαιοκλιματολογίας

Η μελέτη του παλαιοκλίματος στα θαλάσσια ιζήματα βασίζεται στην μελέτη της λιθολογίας, στις μικροπαλαιοντολογικές αναλύσεις, τις αναλύσεις των σταθερών ισοτόπων (κυρίως οξυγόνου και άνθρακα), του ποσοστού οργανικού άνθρακα, των οργανικών βιοδεικτών θαλάσσιας προέλευσης και χερσαίου υλικού και μετρήσεις ραδιοισοτόπων.

Τα παραπάνω έχουν χρησιμοποιηθεί για την αποτύπωση της παλαιοκλιματικής και παλαιοωκεανογραφικής εξέλιξης των Ελληνικών θαλασσών (Anastasakis and Stanley, 1984, Geraga et al., 2000, Triantaphyllou et al., Gogou et al., 2007).

1.2.1 Μικροπαλαιοντολογία

Οι μικροπαλαιοντολογικές αναλύσεις βασίζονται κυρίως στη μελέτη των τρηματοφόρων (πλαγκτονικά και βενθικά), των νανοαπολιθωμάτων και των παλυνολογικών δεδομένων. Τα τρηματοφόρα είναι μονοκύτταροι οργανισμοί που διαβιούν στα θαλάσσια ενδιαιτήματα (βενθικά και πλαγκτονικά) και κατατάσσονται στο Βασίλειο των Πρωτίστων. Προστατεύονται από σκληρό κέλυφος κατασκευασμένο από διάφορα υλικά και είναι μικροσκοπικά σε μέγεθος (0,1 - 1mm).

Τα τρηματοφόρα θεωρούνται ιδανικοί βιολογικοί δείκτες γιατί έχουν την ικανότητα να διατηρούν τις παλαιοωκεανογραφικές συνθήκες του περιβάλλοντος στο οποίο αναπτύχθηκαν, με τη βοήθεια του ασβεστιτικού τους κελύφους (Cita et al., 1977, Thunell et al., 1977). Η παρουσία τους στα ιζήματα μπορεί να βοηθήσει στον καθορισμό των παλαιοκλιματικών μεταβολών αφού αντανακλούν ένα μεγάλο αριθμό διεργασιών, όπως τη ροή θρεπτικών και τις φυσικοχημικές παραμέτρους του θαλασσινού νερού. Η χρησιμότητά τους έγκειται στην ευρεία κατανομή τους στα διάφορα θαλάσσια περιβάλλοντα, στην τεράστια ποικιλία, στην ικανότητα προσδιορισμού και στην υψηλή ευαισθησία που παρουσιάζουν στις περιβαλλοντικές μεταβολές. Επίσης, επειδή χαρακτηρίζονται από σύντομους κύκλους ζωής είναι κατάλληλα για την καταγραφή περιβαλλοντικών μεταβολών μικρής διάρκειας. Τέλος, εξαιτίας του μικρού μεγέθους τους είναι αφθόνα σε μικρά δείγματα και επιδέχονται στατιστικής ανάλυσης.
Εισαγωγή

Στην παρούσα εργασία μελετώνται αποκλειστικά τα πλαγκτονικά τρηματοφόρα τα οποία διαβιούν κυρίως, στα ανώτερα 100m της υδάτινης στήλης, στην ευφωτική ζώνη. Επειδή η γεωγραφική εξάπλωσή τους καθορίζεται, κατά κύριο λόγο, από τη θερμοκρασία και την αλατότητα, έχουν αποδειχθεί άριστοι δείκτες της επιφανειακής θαλάσσιας θερμοκρασίας και αλατότητας, της διαθεσιμότητας των θρεπτικών συστατικών και γενικά αλλαγών στις επικρατούσες υδρογραφικές συνθήκες στην υδάτινη στήλη (Bé and Tolderlund, 1971, Thunell, 1978; Pujol and Vergnaud Grazzini, 1995). Λόγω των παραπάνω, η συστηματική μελέτη των συγκεντρώσεων τους έχει χρησιμοποιηθεί από πολλούς ερευνητές στην ανίχνευση παλαιοκλιματικών και παλαιοωκεανογραφικών μεταβολών στην Μεσόγειο θάλασσα (Aksu et al., 1995, Geraga et al., 2005, 2010, Casford et al., 2001, Triantaphyllou et al., 2009a).

Globigerinoides ruber

Το είδος αυτό διαβιεί σε θερμά περιβάλλοντα της τροπικής-υποτροπικής ζώνης και ρηχά ολιγοτροφικά νερά. Μπορεί να ζήσει κοντά σε ακτές και σε αλατότητες 30,5- 31,0‰. Απαντάται σε δύο χρωματισμούς, λευκό και ροζ (Gs. ruber alba και Gs. ruber rosea αντιστοίχως). Τα Gs. ruber rosea επιδεικνύουν μεγαλύτερη παραγωγή με την αύξηση της θερμοκρασίας και αναπτύσσονται περισσότερο το καλοκαίρι ενώ τα Gs. ruber alba κατά τη διάρκεια του φθινοπώρου. Εντοπίζεται επίσης σε αναβλύσματα και φαίνεται να προτιμά καλά στρωματοποιημένα νερά.
Εισαγωγή

Στην Αν. Μεσόγειο εντοπίζεται με ποσοστό συμμετοχής περίπου 40% εκτός από τις περιοχές σχηματισμού πυθμαίων νερών, όπου μειώνεται περίπου στο 10%. Κυρίως σχετίζεται με θερμοκρασίες 21.5-26.5°C.

Globigerinoides trilobus, *Globigerinoides obliquus*, *Globigerinoides tenellus*.

Τα είδη αυτά θεωρούνται επίσης δείκτες θερμών κλιμάτων. Το *Globigerinoides trilobus* συνδυαστικά με τα *Globigerinoides ruber* επιδεικνύουν καλά στρωματοποιημένη ευφωτική ζώνη και ολιγοτροφικό στρώμα ανάμιξης. Στη Μεσόγειο η συγκέντρωσή τους είναι περιορισμένη και εμφανίζουν υψηλότερα ποσοστά στην Αν. Μεσόγειο (1-5%).

Globigerinoides sacculifer
Είναι είδος το οποίο εξαρτάται έντονα από τη θερμοκρασία. Διαβιεί σε υποτροπικές επιφανειακές ζώνες ανάμειξης και υποτροπικές περιοχές. Ζει σε βάθη 25-50m, ενώ αναπτύσσεται και παράγεται στην άνοιξη και στις αρχές του καλοκαιριού. Κυριαρχεί σε αλατότητες 34,5-36%, ενώ σε υψηλότερες ή χαμηλότερες τιμές αντικαθίσταται από το *Gs.ruber*. Επίσης συνδέεται με την ανάπτυξη ρηχού DCM στρώματος.

Orbulina universa, Globigerinella aequilateralis
Τα είδη αυτά θεωρούνται και κοσμοπολίτικα αλλά και δείκτες θερμών κλιμάτων. Εμφανίζονται καθ’όλη τη διάρκεια του χρόνου αλλά τα *Or. universa* παρουσιάζουν υψηλότερη παραγωγή από άνοιξη-φθινόπωρο, ενώ τα *G. aequilateralis* την άνοιξη. Εντοπίζονται σε βάθη 25-50m, όμως φαίνεται να μεταναστεύουν σε μεγαλύτερα βάθη (75m) σε περιόδους χαμηλής αλατότητας. Στην Αν. Μεσόγειο, το είδος *Or. universa* παρουσιάζεται με ποσοστό συμμετοχής που κυμαίνεται 1-10%, ενώ η συμμετοχή των *G. aequilateralis* είναι ακόμη πιο περιορισμένη και δεν ξεπερνά το 5%.

8
Γlobigerinella calida

Πρόκειται για είδος πολύ περιορισμένης γεωγραφικής διασποράς και χαμηλής συχνότητας στα επιφανειακά ιζήματα της Μεσογείου. Ανατολικά της Κρήτης αποκτά την υψηλότερη συχνότητα εμφάνισής του (1-5% της συνολικής συνάθροισης), ενώ απουσιάζει εντελώς από τα ιζήματα των δυτικών λεκανών και από μεγάλο τμήμα των ανατολικών. Εμφανίζει μια προτίμηση στα θερμά επιφανειακά νερά, με μέγιστο της συχνότητάς του σε περιοχές όπου η καλοκαιρινή επιφανειακή θερμοκρασία κυμαίνεται από 25-26,5 ºC.

Globigerina bulloides

Αρχικά συνδέθηκε με ψυχρά κλίματα (υποαρκτικά-μεταβατικά). Αργότερα η παρουσία του συνδέθηκε κυρίως με ευτροφικά επιφανειακά νερά, όπως είναι τα παράκτια αναβρύσματα (coastal upwelling) και περιοχές ποτάμων απορροών. Το βάθος διαβίωσής της θεωρείται 50-200m. Στη Αν. Μεσόγειο απαντάται σε υψηλή συμμετοχή (5-40%) και παρουσιάζει προτίμηση σε ψυχρότερες περιοχές. Αυτό το είδος φαίνεται να εμφανίζει σε μικρό βαθμό προτίμηση σε περιόδους υψηλής παραγωγικότητας.

Globigerina glutinata

Το είδος αυτό έχει κοσμοπολίτικο χαρακτήρα και η παρουσία του είναι ανεξάρτητη της θερμοκρασίας και αλατότητας. Το βάθος διαβίωσής του είναι το επιφανειακό. Στα επιφανειακά νερά της Αν. Μεσόγειου επιδεικνύει επίσης κοσμοπολίτικο χαρακτήρα.

Turborotalita quinqueloba

Το είδος αυτό είναι ανθεκτικό σε χαμηλές θερμοκρασίες και αλατότητες και προτιμά πλούσια σε θρεπτικά συστατικά επιφανειακά νερά. Το μέγεθος του φαίνεται πως αυξάνει με τη μείωση της επιφανειακής αλατότητας. Στην Αν. Μεσόγειο η μεγαλύτερη ανάπτυξη του παρουσιάζεται σε περιοχές όπου η χειμερινή θερμοκρασία είναι μικρότερη των 15 ºC.
Εισαγωγή

Gr. inflata

Εμφανίζεται κυρίως σε μεταβατικά νερά (10-20°C) πλούσια σε θρεπτικά συστατικά λόγω καλής μίξης. Το βάθος διαβίωσής τους κυμαίνεται από 0-75m ενώ αναπαράγεται το χειμώνα. Άφθονη συμμετοχή παρουσιάζει στα επιφανειακά νερά της Δ. Μεσογείου, ενώ έχει φανεί σχεδόν να απουσιάζει από την Αν. Μεσόγειο.

Neoglohoquadrina spp.

Το γένος αυτό αναπτύσσεται σε μεταβατικά κλίματα και αποτελείται από *N. dutertrei* και *N. pachyderma* καθώς και τις ενδιάμεσες μορφές αυτών των ειδών. Η *N. dutertrei* θεωρήθηκε αρχικά ως δείκτης χαμηλής αλατότητας. Το είδος *N. pachyderma* θεωρείται ότι αντιπροσωπεύει ψυχρές υδάτινες μάζες. Διακρίνεται σε αριστερόστροφο και δεξιόστροφο (dextral), ανάλογα αν τα νερά είναι πολικά ή κρύα υποτροπικά αντίστοιχα Η παρουσία της γενικά συνδέθηκε µε την ανάπτυξη στρώματος μέγιστης χλωροφύλλης (DCM: Deep Chlorophyll Maximum). Η εξαφάνιση της *N. pachyderma* αντιπροσωπεύει τη μετάβαση από ψυχρά προς θερμά νερά. Στο χώρο της Αν. Μεσογείου οι υψηλότερες συγκεντρώσεις *N. dutertrei* εμφανίζονται στο Αιγαίο ενώ η αριστερόστροφη *N. pachyderma* είναι σχεδόν απούσα.
1.3 Κλιματικές μεταβολές μικρής και μεγάλης διάρκειας στην Μεσόγειο

Οι περισσότερες παλαιοκλιματολογικές μελέτες αφορούν κυρίως το Τεταρτογενές, το οποίο αποτελεί την πιο πρόσφατη γεωλογική περίοδο στην ιστορία της Γης (δηλ. τα τελευταία 2 εκατομμύρια χρόνια). Η περίοδος αυτή χαρακτηρίζεται από επαναλαμβανόμενες μικρής και μεγάλης διάρκειας κλιματικές εναλλαγές. Τα μεγάλης διάρκειας χρονικά διαστήματα διακρίνονται σε παγετώδεις (glacials) και μεσοπαγετώδεις περιόδους (interglacials). Οι πρώτες χαρακτηρίζονται από τον σχηματισμό και την επέκταση μεγάλου όγκου παγετώνων σε πολλές περιοχές του πλανήτη και οι δεύτερες από την τήξη των παγετώνων και η επικράτηση ήπιων θερμοκρασιών. Οι κλιματικές μεταβολές μικρότερης διάρκειας (σύντομα ψυχρά γεγονότα, stadials και θερμά, interstadials) έχουν εντοπιστεί μετά από συστηματική μελέτη των χερσαίων και θαλάσσιων ιζημάτων. Έχουν σύντομη διάρκεια που κυμαίνεται από μερικές δεκαετίες έως χιλιετίες και εμφανίζονται ενδιάμεσα των κλιματικών μεταβολών μεγάλης διάρκειας. Πρόκειται για βίαιες μεταβολές μεταξύ θερμού-υγρού και ψυχρού-ήρου κλίματος, οι οποίες χαρακτηρίζονται και ως κλιματικοί κύκλοι Dansgaard-Oeschger (D-O events)(Dansgaard et al., 1993).

Όπως προκύπτει από την μελέτη παλαιοκλιματικών δεδομένων, μία σειρά κλιματικών μεταβολών μεγάλης και μικρής διάρκειας έχουν εντοπιστεί και στην περιοχή της Μεσόγειου.

Μεταβολές μικρής διάρκειας εμφανίστηκαν: a) κατά την τελευταία παγετώδη περίοδο (Last glacial) και έχουν συσχετισθεί με κλιματικές μεταβολές, που έλαβαν χώρα σε υψηλά γεωγραφικά πλάτη του Βορείου Ημισφαιρίου, όπως τα ξαφνικά ψυχρά γεγονότα Heinrich.

β) κατά την μετάβαση από την τελευταία παγετώδη περίοδο στην τελευταία μεσοπαγετώδη (Late glacial), όπου έχουν εντοπιστεί δύο μεταβολές με ήπιες κλιματικές συνθήκες (intersiadials), τα Bolling και Allerod (σημειώνονται μεταξύ των 14,6 και 12,7 ka BP) και δύο σύντομα ψύχρα γεγονότα (stadials) τα Older Dryas και Younger Dryas (σημειώνονται μεταξύ 14,7 και 11,7 ka BP). Οι κλιματικές αυτές μεταβολές αποτυπώθηκαν σε χερσαία και θαλάσσια ιζήματα σε όλη τη Μεσόγειο (Digerfeldt et al., 2000, Geraga et al., 2008, and 2010, ...)
Τriantaphyllou et al., 2009b, Kotthoff et al., 2008). Οι επιφανειακές θαλάσσιες θερμοκρασίες στα πελάγη του Αιγαίου και Ιονίου βάση των αλκενόνων εκτιμώνται μεταξύ 21 και 24 °C κατά τα θερμά γεγονότα και μεταξύ 16 -14°C κατά τα ψυχρά γεγονότα.

γ) κατά την διάρκεια του Ολοκαίνου (11ka BP, τελευταία μεσοπαγετώδης περίοδος), κυρίως με την επικράτηση ενός θερμού και ιδιαίτερα υγρού διαστήματος μεταξύ 9 και 6,5 ka BP. Η αύξηση της θερμοκρασίας (>4-6°C κατά το χειμώνα, στη Βόρειο Ελλάδα) και η αύξηση των βροχοπτώσεων (>270mm κατά τη διάρκεια του χειμώνα στη Βόρειο Ελλάδα), πιστοποιείται κυρίως στα παλυνολογικά δεδομένα χερσαίων και θαλάσσιων ιζημάτων (Rossignol-Strick et al., 1982, Kotthoff et al., 2008, Gogou et al., 2007, Geraga et al., 2010) και συνδέονται με το σχηματισμό του σαπροπηληού S1. Επίσης έχει εντοπιστεί και μια σειρά ψυχρών ή/και ξηρών γεγονότων σύντομης διάρκειας με σημαντικότερο αυτό που συνέβη στα 8,2 ka BP και είχε ως συνέπεια τη σύντομη διακοπή της σαπροπηλικής ιζηματογένεσης. Επιπλέον ένα ψυχρό και ξηρό γεγονός φαίνεται να συνδέεται με τη λήξη του σαπροπηληού S1 περίπου στα 6 ka BP (Geraga et al., 2000, Triantaphyllou et al., 2009b). Κλιματική αστάθεια χαρακτηρίζει επίσης τα τελευταία δκα με την επικράτηση ενός θερμού και υγρού γεγονότος μεταξύ 5,8 and 4ka BP και ψυχρών και ξηρών γεγονότων με ασαφή ηλικία για το επόμενο χρονικό διάστημα (Triantaphyllou et al., 2009b, Geraga et al., 2010). Τα σύντομα Ολοκαίνικα ψυχρά γεγονότα φαίνεται να ακολουθούν μια περιοδικότητα της τάξης των 2300 χρόνων και να συνδέονται με ισχυροποιήσεις των υψηλών βαρομετρικών που αναπτύσσονται στην περιοχή της Σιβηρίας. (Rohling et al., 2002).

1.4 Η περίπτωση του σαπροπηληού S1 στην Αν. Μεσόγειο

Ως σαπροπηλός ορίζεται ένα διακριτό στρώμα ιζήματος με πάχος μεγαλύτερο του 1cm, που αποτίθεται σε ανοιχτά θαλάσσια πελαγικά ιζήματα και με ποσοστό οργανικού άνθρακα μεγαλύτερο του 2% κατά βάρος, Kidd et al., 1978). Ο εντοπισμός των σαπροπηληών (1948, Swedish deep sea expedition) ιδιαίτερα στην Αν. μεσόγειο συγκέντρωσε το ενδιαφέρον πολλών ερευνητών. Ο σαπροπηλός S1 αποτελεί τον νεότερο ανάμεσα σε τουλάχιστον 12 ορίζοντες (S1-
14.1 Αιτίες σχηματισμού του σαπροπηλαιού S1

Εισαγωγή

13

S12), που έχουν αποτεθεί στην Ανατολική Μεσόγειο τα τελευταία 400 ka BP (Vergnaud-Grazzini et al., 1977).

Τα σαπροπηλακικά ιζήματα συνδέονται με την ανάπτυξη δυσοξικών έως και ανοξικών συνθηκών στην λεκάνη απόθεσής τους. Τα μοντέλα σχηματισμού του S1 στην Αν. Μεσόγειο που χρονολογείται περίπου μεταξύ 9,5 έως 6,4 ka BP αναφέρονται μεμονωμένα ή και συνδυαστικά (Rohling et Gieskes, 1989, Rohling et Mayewski, 1991, Rohling, 1994, Aksu et al., 2002, Casford et al., 2002, Geraga et al., 2010):

α) στην ανάπτυξη επιφανειακού υδάτινου στρώματος υψηλής θερμοκρασίας και χαμηλής αλατότητας.

β) στην απομόνωση των βαθύτερων υδάτινων στρωμάτων και μείωση του ρυθμού κυκλοφορίας των υδάτινων μαζών, λόγω δημιουργίας έντονα στρωματοποιημένης υδάτινης στήλης.

γ) στην αύξηση της πρωτογενούς παραγωγικότητας των επιφανειακών υδάτων και την συσσώρευση μη αποικοδομημένης οργανικής ύλης στα ιζήματα με συνέπεια την διατήρηση του οργανικού υλικού.

Αναλυτικά, η έναρξη του Ολοκαίνου στα 11ka BP ακολουθήθηκε από μια ενίσχυση της έντασης της προσπίπτουσας ηλιακής ακτινοβολίας στον εποχικό κύκλο του Βορείου ημισφαιρίου προκαλώντας την περιοδική ενίσχυση του Αφρικανικού θερινού μουσώνα στη Μεσόγειο, με αύξηση των βροχοπτώσεων πάνω από την Ισημερινή Αφρική και πιθανή αύξηση των εκροών του ποταμού Νείλου (Rossignol-Strick et al., 1982, Aksu et al., 1995, Kotthoff et al., 2008). Παράλληλα, την συγκεκριμένη χρονική περίοδο υπάρχει σαφής ατμοσφαιρική σύνδεση μεταξύ της επιφανειακής θαλάσσιας θερμοκρασίας της Αν. Μεσογείου και του κλίματος υψηλών γεωγραφικών πλατών (Rohling et al., 2002). Έτσι, αύξηση των βροχοπτώσεων ενδέχεται να δημιουργήθηκε και στο βόρειο τμήμα της Μεσογείου, ως συνέπεια αυξημένης δραστηριότητας των ατμοσφαιρικών πιέσεων πάνω από την περιοχή. Επομένως η δημιουργία του προαναφερθέντος στρώματος χαμηλής αλατότητας αποδίδεται στην είσοδο των νερών της Μαύρης Θάλασσας στο Αιγαίο, στην αύξηση των απορροφών από τον Νείλο στην Αν.
Μεσόγειο και στις έντονες βροχοπτώσεις. Αυτό με την σειρά του δημιούργησε μεταβολές στην θαλάσσια κυκλοφορία με αποτέλεσμα την απομόνωση των βαθύτερων υδάτων. Η αυξημένη εισροή ποτάμων απορροών, φαίνεται να οδήγησε και στην αύξηση των θρεπτικών συστατικών, που ενισχύσαν με την σειρά τους την παραγωγικότητα των επιφανειακών νερών και ακολούθως στην αύξηση των οργανικών ροών και διατήρηση του οργανικού υλικού, προκαλώντας δυσοξικές έως ανοξικές συνθήκες στον πυθμένα της Αν. Μεσογείου.

Ένα μοντέλο δημιουργίας του σαπροπηλικού ορίζοντα S1 στην Αν. Μεσόγειο, συνδυαστικό της αυξημένης παραγωγικότητας και της μείωσης της παραγωγής βαθιού νερού προτάθηκε από τους Rohling & Gieskes (1989) Σύμφωνα με αυτό, η αύξηση των εισροών νερού χαμηλής επιφανείας οδήγησε στην ανύψωση του πυκνοκλινούς μεταξύ του ενδιάμεσου νερού της Μεσογείου (Mediterranean Intermediate Water, MiW) και του επιφανειακού νερού στο βάθος της ευφωτικής ζώνης. Έτσι, αναπτύχθηκε ένα στρώμα μέγιστης χλωροφύλλης (DCM: Deep Chlorophyll Maximum) στη βάση της ευφωτικής ζώνης. Το παραπάνω μοντέλο πιστοποιείται από την παρουσία των ατόμων του γένους Neogloboquadrina sp. που είναι δείκτης ανάπτυξης του στρώματος μέγιστης χλωροφύλλης (DCM: Deep Chlorophyll Maximum). Επιπλέον, η εγκαθίδρυση του στρώματος υψηλής θερμοκρασίας και χαμηλής αλατότητας και η ανάπτυξη δυσοξικών έως ανοξικών συνθηκών στον πυθμένα της Αν. Μεσογείου κατά τη διάρκεια του S1 διαπιστώνεται με την παρουσία θερμών ειδών στην πλαγκτονική μικροπανίδα του: κυριαρχούν τα θερμά είδη Gs. ruber, Or. universa, Gs. sacculifer καθώς και είδη που συνδέονται με χαμηλής αλατότητας ευτροφικά επιφανειακά νερά: Gg. bulloides και T. quinqueloba (Geraga et al., 2000, 2005).

Το σύντομο ψυχρό γεγονός που συνέβη περίπου στα 8 ka BP, προκάλεσε την διακοπή του σαπροπηλικού S1 σε δύο σαπροπηλικικά στρώματα, S1a και S1b, όπως συνήθως εμφανίζονται στην Αν. Μεσόγειο. Τα δεδομένα από τις παλαιοθερμοκρασίες πιστοποιούν ότι η διακοπή της απόθεσης του S1 συνδέεται με πτώση της επιφανειακής θαλάσσιας θερμοκρασίας κατά 2-2,5 °C (Gogou et al., 2007, Kothoff et al., 2008), που αποδόθηκε στο παγκόσμιο ψυχρό γεγονός.
που τοποθετείται στα 8,2 ka BP (Rohling et al., 1997, Geraga et al., 2000). Επίσης η διακοπή του S1 χαρακτηρίζεται από μείωση των τιμών του ολικού οργανικού άνθρακα, ένδειξη ότι το οργανικό υλικό δεν συνέχισε να διατηρείται, εξαιτίας πιθανότατα μείωσης της στρωματοποίησης και συνεπώς καλύτερης οξυγόνωσης της υδάτινης στήλης.
2. ΣΚΟΠΟΣ

Σκοπός της παρούσας εργασίας είναι η διερεύνηση και εξακρίβωση παλαιοωκεανογραφικών- παλαιοκλιματικών συνθηκών που οδήγησαν στην απόθεση του σαπροπηληθείου S1 στο Β Αιγαίο από ανάλυση της κατανομής των πλαγκτονικών τρηματοφόρων σε ιζήματα από πυρήνα βαρύτητας (M-4, λεκάνη Ν. Λήμνου).

Η υψηλής ανάλυση επεξεργασία των δεδομένων των πλαγκτονικών τρηματοφόρων, επέτρεψε α) τη συσχέτιση της απόθεσης της σαπροπηλικής αλληλουχίας με κλιματικές μεταβολές μικρής διάρκειας που έλαβαν χώρα κατά την διάρκεια του Ολοκαίνου και β) τη σύγκριση της επίδρασης αυτών στο ευρύτερο χώρο του Αιγαίου Πελάγους.
3. Περιοχή μελέτης

Περιοχή μελέτης αποτέλεσε η λεκάνη της Ν. Λήμνου (ΒΑ Αιγαίο). Το Β Αιγαίο επειδή εμφανίζει υδατανθρώπικα χαρακτηριστικά, συνιστά ένα σημαντικότατο πεδίο μελέτης σύγχρονων όλα και παλαιοκεανογραφικών παραμέτρων (Lykousis et al., 2002,, Gogou et al., 2007).

Προς τα βορειοανατολικά συνδέεται μέσω των Στενών των Δαρδανελίων (μήκους 50-60 m βάθος) και του Βοσπόρου (30-45 m βάθος) με την Θάλασσα του Μαρμαρά και τη Μαύρη Θάλασσα. Η λειτουργία του BA Αιγαίου ως υδροδυναμικό σύνδεσμος μεταξύ της Μαύρης Θάλασσας και της ανατολικής λεκάνης της Μεσογείου, σε συνδυασμό με την λοιπή τοπογραφία του, δρουν καθοριστικά στη διαμόρφωση της εν γένει θερμόαλης κυκλοφορίας στο Αιγαίο (Zervakis et al., 2000, Zervakis and Georgopoulos, 2002).

Σημαντικό γεωμορφολογικό γνώρισμα του Β Αιγαίου αποτελεί η έντονη βαθυμετρική ετερογένεια. Το Βόρειο Αιγαίο χαρακτηρίζεται από μια εκτεταμένη υφαλοκρηπίδα (με μέσο πλάτος 60 km στην περιοχή του Θρακικού), που σχηματίζεται από τα ιζήματα, που προσκομίζουν έξι μεγάλα ποτάμια (Αξιός, Αλιάκμονας, Πηνειός, Στρυμόνας, Νέστος και Έβρος). Στο κεντρικό τμήμα της εντοπίζονται δύο βαθιές θαλάσσιες λεκάνες, βορείως της Λήμνου (1550 m) και μεταξύ Λήμνου και Άθου («Χαράδρα του Άθω», 1149 m), τα βαθύτερα στρώματα των οποίων (400 m) δρουν ως περιοχές συγκέντρωσης νερών υψηλής πυκνότητας (Zervakis & Georgopoulos 2002). Αυτά τα ποτάμια, σε συνδυασμό με την εισροή του νερού της Μαύρης Θάλασσας (Black Sea Water) - εκροή υδάτων από τη Μαύρη Θάλασσα, μέσω της θάλασσας του Μαρμαρά, του Βοσπόρου και των στενών των Δαρδανελίων, καθώς και τις διαδικασίες ανταλλαγής μεταξύ αέρα-θάλασσας, δημιουργούν μέσα στο Αιγαίο ένα πολύπλοκο σύστημα, όσον αφορά στην υδρολογία στη βιολογία, στη χημεία και στην ιζηματολογία (Zervakis et al., 2000, Lykousis et al., 2002)
Ο περιοχή μελέτης 18

Γενικά, το ανώτερο στρώμα (Lykousis et al., 2002, Zervakis et al., 2000, Theocharis and Georgopoulos, 1993, Casford et al., 2002): (i) τα υδάτα που εισέρχονται από τη Μαύρη Θάλασσα (BSW: Black Sea Waters), μέσω του στενού των Δαρδανελίων, (ii) τα Επιφανειακά Ύδατα Λεβαντίνης (LSW: Levantine Surface Waters), που σχηματίζονται στην λεκάνη της Λεβαντίνης και εισέρχονται στο Αιγαίο ανατολικά, από το πέρασμα της Καρπάθου (iii) τα Τροποποιημένα Ύδατα του Ατλαντικού (MAW: Mid Atlantic Waters), που προέρχονται από το παρακείμενο Ιόνιο Πέλαγος και εισέρχονται στο νότιο Αιγαίο, μέσω των στενών των Αντικυθήρων και (iv) τα Επιφανειακά Κρητικά Ύδατα (CSW: Cretan Surface Waters), στα βόρεια του νησιού της Κρήτης, που είναι πιο κρύα και ελαφρώς μικρότερης αλατότητας από αυτά της Λεβαντίνης (Εικ. 3.1).

Το Β.Α. Αιγαίο έχει χαρακτηρισθεί ως «λεκάνη αραίωσης» λόγω της μεγάλης εισροής στην περιοχή υδάτων χαμηλής αλατότητας (Lykousis et al., 2002, Zervakis and Georgopoulos, 2002). Η κατακόρυφη κατανομή υδάτινης στήλης αποτελείται γενικά από τρεις θαλάσσιες μάζες κατά βάθος:

1) Η επιφανειακή μάζα (0-100m) αποτελείται κυρίως από τα χαμηλής αλατότητας νερά της Μαύρης Θάλασσας (BSW,Black Sea Water). Η Μαύρη Θάλασσα αποτελεί την κύρια δεξαμενή νερών χαμηλής αλατότητας (υφάλμυρη) και θερμοκρασίας, καθώς δέχεται γλυκά νερά, από πολλούς ποταμούς της Βόρειας Ευρώπης και της Ρωσίας. Ένα επιφανειακό στρώμα νερού εισέρχεται στο Αιγαίο, ενώ ταυτόχρονα, ένα επιφανειακό στρώμα υδάτων του Αιγαίου εισέρχεται από τη Θάλασσα του Μαρμαρά, μέσω των Δαρδανελίων και καταλήγει στην Μαύρη Θάλασσα (Latif et al., 1991, Sperling et al., 2003). Δηλαδή η Μεσόγειος, ανταλλάσσει νερό με την Μαύρη Θάλασσα, μέσω ροής διπλού στρώματος, στα Στενά των Δαρδανελίων. Η εισροή και κυκλοφορία του ψυχρού και χαμηλής αλατότητας νερού της Μαύρης Θάλασσας (BSW), καθορίζει τα φυσικοχημικά χαρακτηριστικά της υδάτινης στήλης στην περιοχή και οδηγεί στην ανάπτυξη σημαντικών υδρολογικών δομών (μέτωπα, κυκλώνες, αντικυκλώνες) (Zervakis and Georgopoulos, 2002). Οι προερχόμενες από την Μαύρη Θάλασσα υδάτινες μάζες (BSW), καταλαμβάνουν το μεγαλύτερο μέρος
Περιοχή μελέτης
tης έκτασης του Β. Αιγαίου. Από την άλλη πλευρά, η επιφανειακή υδάτινη μάζα από την Λεβαντίνη (LSW), που καταλαμβάνει την ΝΑ περιοχή του Αιγαίου και κινείται βόρεια κατά μήκος των τουρκικών ακτών, φτάνει ως το νότιο άκρο του πλατώ της Λήμνου.

Εικόνα 3. 1.: Επιφανειακή κυκλοφορία στο Αιγαίο (Aksu et al, 1995, Lykousis et al, 2002). Τα άσπρα βέλη δείχνουν τα χαμηλής αλατότητας ύδατα της Μαύρης Θάλασσας, ενώ τα μαύρα βέλη δείχνουν τα θερμά και υψηλής αλατότητας ύδατα της Μεσογείου.

2) Κάτω από τις επιφανειακές υδάτινες μάζες, 100-400 m, στο Βόρειο και Κεντρικό Αιγαίο, είναι τα ενδιάμεσα ύδατα Λεβαντίνης (LIW: Levantine Intermediate Waters) (που αρχικά σχηματίζονται στη λεκάνη της Λεβαντίνης). Αυτά τα ύδατα είναι θερμότερα περισσότερο οξυγονωμένα και υψηλότερης αλατότητας (Lykousis et al., 2002). 3) Τα βαθύτερα τμήματα (βάθος νερού>350-400 m) του Βόρειου και Κεντρικού Αιγαίου καταλαμβάνονται από τα υψηλής
πυκνότητας Βαθιά Ύδατα του Βορείου Αιγαίου (NADW: North Aegean Deep Waters) (Εικ. 3.1).

Δορυφορικά, μετεωρολογικά καθώς και in situ υδρογραφικά δεδομένα συχνά ενσωματώμενα σε μοντέλα κυκλοφορίας φανερώνουν έντονες χωροχρονικές υδρογραφικές διακυμάνσεις που ευθύνονται για την υψηλή υδρολογική και βιολογική πολυπλοκότητα στην περιοχή. Η πολύπλοκη κυκλοφορία στο Βόρεο Αιγαίο οφείλεται σε πολλούς παράγοντες, όπως: (1) τη γεωγραφική κατανομή των διαφόρων νησιών του Αιγαίου, (2) την ανώμαλη τοπογραφία του πυθμένα σε όλη την περιοχή, (3) την εισροή των χαμηλότερης θερμοκρασίας και αλατότητας υδάτων της Μαύρης Θάλασσας, (4) το γλυκό νερό που προέρχεται από τους ποταμούς της Ελλάδας και της Τουρκίας και (5) τις εποχικές αλλαγές των μετεωρολογικών συνθηκών.

Η κυκλοφορία των επιφανειακών νερών γενικά στο Αιγαίο θεωρείται κυκλωνική, εξαιτίας της εισόδου νερών από τα νοτιοανατολικά στενά του Αιγαίου, που προέρχονται από την θάλασσα της Λεβαντίνης στην Ανατολική Μεσόγειο. Τα νερά αυτά εισερχόμενα στο Αιγαίο, κινούνται προς τα βόρεια κοντά στα ανατολικά παράλια, μεταφερόμενα από τον κυκλώνα της Ρόδου (Rhodes Gyre). Καθώς προωθείται κατά μήκος των τουρκικών ακτών, οι επικρατώντες παράκτιοι άνεμοι, επιτρέπουν την ανάβλυση του ενδιάμεσου νερού στην επιφάνεια (Skliris and Lascaratos, 2004, Sylaios G., 2011) Σε αυτές τις περιοχές της ανατολικής ηπειρωτικής υφαλοκρηπίδας το AEIW δομεί μία ομοιόμορφης δομής μάζας.
νερού από την επιφάνεια έως την στήλη της υδάτινης στήλης. Καθώς το AEIW προωθείται βορειότερα, η αλατότητα αυξάνεται εξαιτίας της εξάτμισης (Casford et al., 2002). Οι ψυχροί χειμερινοί άνεμοι κατά μήκος της λεκάνης του Άθω επιπλέουν την αλατότητα και συνεπώς την πυκνότητά του, με συνέπεια την δημιουργία του πολύ υψηλής πυκνότητας βαθιού ύδατος του Βόρειου Αιγαίου (NADW: North Aegean Deep Water) το οποίο αποτελεί και το πυκνότερο ύδωρ της λεκάνης της ανατολικής Μεσογείου (Lykousis et al., 2002; Zervakis et al., 2000).

Στο Βόρειο Αιγαίο ειδικότερα, η κυκλοφορία των επιφανειακών νερών επηρεάζεται όπως προανέφερθηκε από την είσοδο νερών, προερχόμενων από την Μαύρη Θάλασσα, δια μέσου των στενών του Βοσπόρου, της Θάλασσας του Μαρμαρά και των Στενών των Δαρδανελίων. Αναλυτικά, το ψυχρότερο (5-15οC) και χαμηλότερης αλατότητας νερό της Μαύρης Θάλασσας κινούμενο επιφανειακά στο στρώμα των 0-20 m, ακολουθεί την πορεία στενά Βοσπόρου-Θάλασσα Μαρμαρά-στενά Δαρδανελίων και εισέρχεται στο Αιγαίο Πέλαγος με παράλληλη σταδιακή μεταβολή των φυσικοχημικών του χαρακτηριστικών. Η ανάμιξη του ψυχρού, αλατότητας νερού της Μαύρης Θάλασσας με τα θερμότερα και υψηλούτερης αλατότητας νερά του Αιγαίου, έχει ως αποτέλεσμα την ανάπτυξη ενός μόνιμου υδρολογικού μετώπου στην περιοχή νοτιοανατολικά της Λήμνου (Lemnos Plateau) (Aksu et al., 2002). Η θέση του μετώπου παρουσιάζει υψηλή αστάθεια ακόμα και σε σύντομες χρονικές κλίμακες (λίγες ημέρες) (Zervakis and Georgopoulos 2002), ενώ σημαντικότερη διαφοροποίηση στη γενική κυκλοφορία έχει αναφερθεί σε εποχιακή βάση. Το χειμώνα, ο κύριος όγκος του νερού της Μαύρης Θάλασσας ακολουθώντας τη γενική κυκλωνική κυκλοφορία στο Αιγαίο, κυνίζεται αρχικά βορειοδυτικά μεταξύ των νησιών Λήμνου και Ίμβρου (Limnos-Imvros Jet, LIJ) (Zervakis and Georgopoulos, 2002). Ακολούθως διχάζεται, και ένα τμήμα του εισέρχεται στη θρακική υφαλοκρηπίδα (Lykousis et al., 2002) και παγιδεύεται στον αντικυκλώνα της Σαμοθράκης (Samothraki gyre) αυξάνοντας έτσι το χρόνο παραμονής του στην περιοχή (Zervakis & Georgopoulos, 2002). Ένα άλλος κλάδος του ακολουθεί δυτική πορεία νοτίως της Θάσου και στη συνεχεία στρέφεται κυκλωνικά. Τη θερμή
περίοδο του έτους υπό την επίδραση βόρειων ανέμων (μελτέμια) το μέτωπο στην περιοχή της Λήμνου μετατοπίζεται νοτιότερα και η ροή του νερού της Μαύρης Θάλασσας ακολουθεί πορεία κυρίως νοτιοδυτικά της Λήμνου προς τις ακτές της Εύβοιας (Εικ.3.2).

Εικόνα 3.2α): Γενικευμένο μοτίβο της επιφανειακής κυκλοφορίας των υδάτων του Βορείου Αιγαίου (Zervakis V. & Georgopoulos D., 2002., Lykousis et al., 2002). α): Δορυφορική απεικόνιση του Βορείου Αιγαίου, όπου φαίνεται και η πορεία των υδάτων από τα Δαρδανέλλια. Όπως εμφανίζεται χαρακτηριστικά, ένα σημαντικό τμήμα της ροής κατευθύνεται βόρεια από τη Λήμνο (λόγω της επίδρασης της δύναμης Coriolis, εξαιτίας της περιστροφής της γης).

Κατά τη διάρκεια του μεγίστου της τελευταίας παγετώδους περιόδου εκτεταμένοι όγκοι πάγου κάλυπταν τα βόρεια τμήματα της Ευρασίας με το επίπεδο της θάλασσας να είναι περίπου 120m χαμηλότερο από το σημερινό. Το κλίμα ήταν ξηρότερο από το σημερινό. Τα επίπεδα της θάλασσας του Αιγαίου Πελάγους και της Μαύρης Θάλασσας ήταν κατώτερα των αντίστοιχων του Βοσπόρου και των Δαρδανελλίων για αυτό και η θάλασσα του Μαρμαρά και η Μαύρη Θάλασσα ήταν λεκάνες πλήρως απομονωμένες (land-locked basins) από την Αν. Μεσόγειο.

Σύμφωνα με τους Aksu et al. (2002), κατά την μετάβαση στην μεσοπαγετώδη περίοδο του Ολοκαίνου όπου το κλίμα έγινε πιο σταδιακά πιο υγρό και εξαιτίας των απορροών μεγάλων ποταμών (Δουναβής, Δνείπερος, Δνείστερος, Bug και Don), τα επίπεδα των νερών της Μαύρης Θάλασσας αυξήθηκαν (10-10,5 ka BP). Το προσλαμβανόμενο νερό προωθήθηκε στην θάλασσα του Μαρμαρά (9,2 ka BP, Hung et al., 2008) και από εκεί στο Αιγαίο Πέλαγος δημιουργώντας ένα στρώμα επιφανειακού νερού χαμηλής αλατότητας, που προκάλεσε κατακόρυφη
περιοχή μελέτης

στρωματοποίηση της υδάτινης στήλης και πιθανολογείται ως ένας παράγοντας δημιουργίας και απόθεσης του σαπροπηλαύν & S1 (Sperling et al., 2003 Rohling et al., 1994, Casford et al., 2002). Στην περιοχή του Αιγαίου η έναρξη της απόθεσης S1 του, καταγράφεται περίπου στα 9,6 - 10 ka BP (Geraga et al., 2010, Aksu et al., 1995; Zachariasse et al., 1997) και διαρκεί μέχρι και τα 6,5- 6 ka BP. Έτσι, η περίοδος του Ολοκαίνου χαρακτηρίζεται από σημαντική αύξηση της στάθμης της θάλασσας, που σε μια κλειστή λεκάνη όπως το Αιγαίο Πέλαγος καταγράφηκε ιδανικά και επέτρεψε την μελέτη των κλιματικών μεταβολών που έλαβαν χώρα στην ευρύτερη περιοχή (Rohling et al., 2000).

Οι αυξημένες εισροές νερού από τα ποτάμια της Βόρειας Ευρώπης, η σύνδεση του Αιγαίου με τη Μαύρη Θάλασσα και η εναπόθεση του σαπροπηλαύν S1, αποτυπώθηκαν σε όλο το Αιγαίο Πέλαγος αναδεικνύοντάς το σε φυσικό εργαστήριο για τη διερεύνηση παλαιώτερων διακυμάνσεων του κλίματος αλλά και σημαντικό εργαλείο στην προσπάθεια της επιστημονικής κοινότητας να δώσει απαντήσεις για το παρόν και να κάνει προβλέψεις για το μέλλον.
4. ΥΛΙΚΑ ΚΑΙ ΜΕΘΟΔΟΙ

4.1 Συλλογή πυρήνα βαρύτητας M-4

Τα αποτελέσματα της παρούσας έρευνας βασίζονται στη μελέτη των πλαγκτονικών τρηματοφόρων στα ιζήματα του πυρήνα βαρύτητας M-4 (39°38.662’Ν, 25°35.165’Δ) που συλλέχθηκε στη λεκάνη νότια της Λήμνου (Β.Α. Αιγαίο) (Εικ. 4.α) με το ωκεανογραφικό σκάφος “ΑΙΓΑΙΟ” (Ιανουάριος 2011) του ΕΛ.ΚΕ.Θ.Ε., στα πλαίσια του Ευρωπαϊκού ερευνητικού προγράμματος EraNet/MarinERA, MedEcos (Decadal scale variability of the Mediterranean Ecosystem). O πυρήνας M-4 συνολικού μήκους 2,53 m προέκυψε από βάθος 216 m (Εικ.4.β). Στα πρώτα στάδια μελέτης του πυρήνα M-4 έγινε λεπτομερής μακροσκοπική περιγραφή, προκειμένου να αναγνωριστούν οι κύριες λιθολογικές ενότητες. Στη συνέχεια ακολούθησε η φωτογράφηση αυτού.
Η δειγματοληψία των ιζημάτων του πυρήνα έγινε με βήμα 0,5cm (από τα 25 cm έως τα 140cm) και συλλέχθηκαν συνολικά 230 δείγματα. Για τους σκοπούς της παρούσας εργασίας μόνο δείγματα από τα ιζήματα του σαπροπηλατού 51 εξετάστηκαν και παρουσιάζονται.

Για την ανάλυση των πλαγκτονικών τρηματοφόρων μελετήθηκαν 46 δείγματα (από τα 27cm έως 117,5 cm) η άποσταση μεταξύ των οποίων είναι 2cm κατά μέσο όρο. Για την παρασκευή δειγμάτων παρατήρησης πλαγκτονικών τρηματοφόρων, ζυγίστηκαν περίπου 2gr ξηρού υλικού από το κάθε δείγμα. Στη συνέχεια τοποθετήθηκαν σε ποτήρια ζέσεως, όπου προστέθηκε αποιονισμένο νερό και μικρή ποσότητα Perhydrol (H₂O₂). Κατόπιν πραγματοποιήθηκε καταμέτρηση με τη συνδρομή στερεοσκοπίου τύπου Leica MZ6, ενώ ταυτόχρονα σε κάθε δείγμα γίνοταν καταμέτρηση των βενθονικών τρηματοφόρων καθώς και καταγραφή άλλων παλαιοντολογικών στοιχείων που υπήρχαν στο δείγμα. Τα αποτελέσματα των πλαγκτονικών τρηματοφόρων αποδίδονται στην παρούσα εργασία ως κατακόρυφες κατανομές του αριθμού ατόμων ανά είδος καθώς και ποσοστοί της αφθονίας ανά είδος σε κάθε δείγμα.
μεθόδου των πλαγκτονικών τρηματοφόρων, ανά δείγμα ανά βάρος του
dείγματος στο οποίο καταμετρήθηκαν (Rohling et al., 2002).

4.4 Επιπρόσθετες αναλύσεις

Στα ιζήματα του ίδιου πυρήνα και ίδιου βάθους πραγματοποιήθηκαν στο Τμήμα
Γεωλογίας και Γεωπεριβάλλοντος, ΕΚΠΑ, επιπλέον οι παρακάτω αναλύσεις
(Κωστοπούλου Σ., 2012):
a) μικροπαλαιοντολογική ανάλυση των βενθικών τρηματοφόρων (ποσοτική
ανάλυση, δείκτης ποικιλότητας και δείκτης χαμηλής οξυγόνωσης) β)
προσδιορισμός του ποσοστού του οργανικού άνθρακα (TOC%) γ)
ραδιοχρονολόγηση με την μέθοδο AMS C^{14} που βασίστηκε σε τρεις
ραδιοχρονολογήσεις σε συγκεντρώσεις πλαγκτονικών τρηματοφόρων
βάρους>10mg.

4.5 Στατιστική ανάλυση

Στα αποτελέσματα των μικροπαλαιοντολογικών αναλύσεων και του οργανικού
υλικού (TOC%), εφαρμόστηκε η πολυδιάστατη στατιστική μέθοδος της
παραγοντικής ανάλυσης R-τύπου (Davis, 1985). Η μέθοδος εφαρμόστηκε στον
λόγο του αριθμού ατόμων επιλεγμένων ταξινομικών βαθμίδων πλαγκτονικών
τρηματοφόρων ανά βάρος (gr) δείγματος στο οποίο καταμετρήθηκαν. Τα άτομα
των ειδών Gs. sacculifer και Gs. trilobus ομαδοποιήθηκαν. Η παραγοντική
ανάλυση πραγματοποιήθηκε με χρήση του λογισμικού στατιστικής ανάλυσης
SPSSv 14.0.
5. ΑΠΟΤΕΛΕΣΜΑΤΑ
Αποτελέσματα
Αποτελέσματα
Αποτελέσματα
Αποτελέσματα
Αποτελέσματα
Αποτελέσματα
6. ΣΥΖΗΤΗΣΗ
Συζήτηση
Συζήτηση
Συζήτηση
Συζήτηση
7. ΣΥΜΠΕΡΑΣΜΑΤΑ
Τα συμπεράσματα που εξάγονται από τη μελέτη των πλαγκτονικών τρηματοφόρων στη σαπροπηλική ακολουθία του S1 στη Λεκάνη της Λήμνου, στο B. Αιγαίο συνοψίζονται ως εξής:

- Η σαπροπηλική αλληλουχία που εντοπίστηκε στη Λεκάνη της Λήμνου ήταν η πιο εκτεταμένη σε σχέση με τις υπόλοιπες λεκάνες του Αιγαίου. Το μήκος της αποδόθηκε στον χαμηλό ρυθμό ιζηματογένεσης.

- Τα σαπροπηλικά στρώματα S1α και S1b στο B. Αιγαίο αποτέθηκαν υποκαθεστώς ύπαρξης χαμηλής αλατότητας, ευτροφικών επιφανειακών νερών.

- Στο σαπροπηλικό στρώμα S1b παρατηρήθηκε εντονότερη αύξηση θερμοκρασίας σε σχέση με το S1a.

- Το σαπροπηλικό στρώμα S1a αποτέθηκε σε συνθήκες εντονότερης δυσοξίας σε σχέση με το υπερκείμενο του S1b.

- Η κυριαρχία του είδους T. quinqueloba στα ιζήματα του πυρήνα M-4 σχετίζεται με την αύξηση ποτάμιων απορροών και ενδεχομένως την είσοδο των νερών της Μαύρης Θάλασσας (BSW).

- Η σύντομη διακοπή και η λήξη της σαπροπηλικής ακολουθίας αποδόθηκε σε σύντομης διάρκειας κλιματικά γεγονότα με μείωση της θερμοκρασίας και αύξηση της ξηρασίας.

- Επιπλέον εντοπίστηκαν σύντομης διάρκειας (<100 χρόνων) παλαιοωκεανογραφικές μεταβολές που έλαβαν χώρα κατά τη διάρκεια απόθεσης των S1α και S1b.

- Όλα τα σύντομα ψυχρά γεγονότα που αναπτύχθηκαν μεταξύ 9 και 6 κα BP στο Αιγαίο φαινεται να εκφράζονται καλύτερα στην πλαγκτονική πανίδα του B. Αιγαίου.

- Οι συνθήκες ευτροφισμού των υδάτων κατά τη διάρκεια απόθεσης του S1 ήταν πιο έντονες στο B. Αιγαίο και παρουσιάζουν τάση μείωσης προς το νότο.

- Το βάθος ανάπτυξης του πυκνοκλινούς ήταν διαφορετικό κατά τη διάρκεια απόθεσης του S1 ανάμεσα στις λεκάνες του Αιγαίου.
8. ΒΙΒΛΙΟΓΡΑΦΙΑ

