Τιμήστε η γραμματοσειρά Arial Narrow 12pt.

Οι τύποι έχουν γραφεί με Math-type®

Χρησιμοποιήθηκε το πρόγραμμα Matlab© για τη δημιουργία αλγορίθμων και γραφικών παραστάσεων.

Χρησιμοποιήθηκε το πρόγραμμα Origin© για τη δημιουργία γραφικών παραστάσεων.

Για τις απεικόνισεις των τομογραμµάτων χρησιμοποιήθηκε το πρόγραμμα Surfer©.
Διδακτορική Διατριβή: «Τρισδιάστατη τομογραφία σε περιοχές τεχνικών έργων με έντονες αντιθέσεις ταχύτητας. Εφαρμογή στο αποστραγγιστικό δίκτυο της Μέκκας – Σαουδική Αραβία»

Επταμελής Εξεταστική Επιτροπή:

1. Καθηγητής Γεράσιμος Τσελέντης (Επιβλέπων)
2. Επικ. Καθηγητής Σαμπατακάκης Νικόλαος
3. Επικ. Καθηγητής Παναγιώτης Σταυρινός
4. Καθηγητής Κων/νος Μακρόπουλος
5. Καθηγητής Γεώργιος Κούκης
6. Διευθυντής Ερευνών Γεώργιος Δρακάτος
7. Επικ. Καθηγητής Παναγιώτης Παπαδημητρίου
Ευχαριστίες

Ευχαριστώ θερμά τον καθηγητή Άκη Τσελέντη για την από αρχής συμπαράσταση, βοήθεια, επιστημονική καθοδήγηση και γιατί υπήρξε από τους λίγους που πίστεψε σε αυτό που ήθελα να κάνω και μου έδωσε τη δυνατότητα να εκπονήσω τη συγκεκριμένη διατριβή. Ειλικρινά, θεωρώ αυτό το έργο και δικό του και του το αφιερώνω. Ευχαριστώ τον καθηγητή Παναγιώτη Σταυρινό, που με το ανοικτό του μυαλό, με υποστήριξε, τον καθηγητή Wolfgang Friederich από το Πανεπιστήμιο του Bochum και τον καθηγητή Colin Zelt, από το Πανεπιστήμιο του Rice, που πρόθυμα απαντούσε στις απορίες μου γύρω από τον αλγόριθμό του. Σημαντική ήταν η βοήθεια του Ανδρέα Σωτηρίου σε όλη τη διάρκεια εργασιών υπαίθρου, του Πάρη Παρασκευόπουλου κατά τη διάρκεια επεξεργασίας των δεδομένων καθώς και του προσωπικού της εταιρείας LandTech Enterprises SA την οποία και ευχαριστώ για την άδεια χρήσης μέρους των δεδομένων. Πολυτιμή ήταν και η βοήθεια των υπόλοιπων μελών της επιτροπής που με τις παρατηρήσεις τους βοήθησαν στην βελτίωση της διατριβής. Τέλος, ευχαριστώ τη Νόρα που ήταν από την αρχή της διατριβής μέχρι το τέλος της κοντά μου, τους γονείς και τον αδερφό μου.
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

Ευχαριστίες .. 3
Εισαγωγή .. 6
Κεφάλαιο 1 .. 14
1. Προλογικά .. 14
 1.1 Είδη τομογραφίας .. 18
 1.2 Ιστορική Εξέλιξη της σεισμικής δρομοχρονικής τομογραφίας ... 23
Κεφάλαιο 2 .. 33
 Μεθοδολογική Οριοθέτηση .. 33
 2.1 Μέθοδος Εργασίας ... 34
 2.2 Τομογραφική αντιστροφή σεισμικών δεδομένων ... 35
 2.3 Σύστημα μελέτης .. 37
Κεφάλαιο 3 .. 41
3. Παραμετροποίηση μοντέλου .. 41
 3.1 Επιλογή συνάρτησης βάσης ... 43
 3.2 Κατασκευή μοντέλου .. 49
Κεφάλαιο 4 .. 51
4. Εισόδες Πρόβλημα ... 51
 4.1 Ray-tracing δύο σημείων .. 57
 4.1.2 Περιορισμοί από το Ray-tracing .. 58
 4.1.3 Θεωρία διαταράχης .. 60
 4.2 Μια τροποποιημένη μέθοδος των πεπερασμένων διαφορών .. 62
 4.3 Ray-tracing σε χώρους Finsler .. 65
 4.3.1 Εφαρμογή της Finsler ray-tracing μεθόδου ... 76
Κεφάλαιο 5 .. 81
5. Το αντιστροφό πρόβλημα ... 81
 5.1 Εισαγωγή ... 81
 5.2 Η λογική πίσω από το αντιστροφό πρόβλημα ... 81
 5.2.1 Η υβριδική νόμιμα Huber ... 86
 5.3 Κατηγορίες αντιστροφών προβλημάτων .. 87
 5.4 Τρόποι αντιστροφής και στόχοι .. 89
 5.4.1 Ομοιόμορφο τέλη κανάλια και μοντέλο ελάχιστης δομής ... 89
 5.4.2 Μοντέλο ελάχιστων παραμέτρων και πρωταρχικής δομής .. 90
 5.4.3 Μοντέλο παραμετροποίησης σε ομοιόμορφο κάναβα και πρωταρχική δομή 92
 5.4.4 Μοντέλο ελάχιστης παραμέτρου ελάχιστης δομής ... 92
 5.5 Μέθοδοι αντιστροφής .. 93
 5.5.1 Η μέθοδος των ελάχιστων τετραγώνων ... 94
 5.5.2 Η damped μέθοδος των ελάχιστων τετραγώνων ... 97
 5.5.3 Μέθοδος backprojection .. 99
 5.5.4 Τροποποιημένη backprojection .. 101
 5.5.5 Κλιμακούμενη backprojection (scaled) ... 103
 5.5.6 Η κανονικοποιημένη αντιστροφή .. 105
 5.5.7 Μέθοδος με νόμιμα Huber .. 109
 5.5.8 Η μέθοδος BFGS περιορισμένης μνήμης με νόμιμα Huber ... 111
κεφάλαιο 6

6. Διακυβέρνηση και ανάλυση αβεβαιοτήτων στα δεδομένα και το μοντέλο

6.1 Ειδή διακυβέρνησης στη σεισμική τομογραφία ... 117
6.2 Διακυβέρνηση στο Αντίστροφο πρόβλημα .. 119
6.3 Η Μετάδοση προαγώγηση ... 122
6.4 Απόδοση Εκτίμηση και Διακυβέρνηση ... 123
6.5 Σύγκριση εκτιμήσεων .. 124
6.6 Εφαρμογή σε ένα τυπικό σεισμικό προφίλ 125
6.7 Επιλογή κελιών και κόμβων ... 128
6.8 Επιλογή παραμέτρων .. 130
6.9 Επιλογή αρχικού μοντέλου ... 138
6.10 Συνθετικά δεδομένα ... 139

κεφάλαιο 7

7. Δίκτυα Kohonen στη σεισμική τομογραφία

7.1 Ιστορική Αναδρομή ... 143
7.2 Μαθηματικό τυποποίηση .. 144
7.3 Ποιότητα Εκμάθησης ... 148
7.4 Εφαρμογή SOM στη γεωφυσική ... 149

κεφάλαιο 8

8. Εφαρμογή της μεθόδου σε πραγματικά δεδομένα

8.1 Μεθοδολογία της Έρευνας.. 151
8.1.1 Α Μεθοδολογία λήψης δεδομένων ... 154
8.1.1.α Εξοπλισμός λήψης δεδομένων... 157
8.1.1.β Μεθοδολογία ... 159
8.1.2 Λήψη δεδομένων .. 161
8.2 Επεξεργασία δεδομένων και λογισμικό .. 165
8.2.1 Επεξεργασία δεδομένων διάθλασης .. 171
8.2.2 Ποιοτικά Έλεγχος ... 172
8.2.3 Δημιουργία Αρχικού μοντέλου .. 173
8.2.4 Μετρήσεις σε γεωργία για βελτίωση των ταχυτήτων ... 174
8.2.5 Τεχνικές επεξεργασίας .. 176
8.2.6 Επιπηδικές γεωμηλεκτρικές μετρήσεις ... 181
8.2.6.1 Περιγραφή της εργασίας πεδίου .. 182
8.2.6.2 Επεξεργασία ηλεκτρικών δεδομένων .. 183
8.3 Εφαρμογή στη ορίζωση ... 184
8.3.1 Οργανική 1B10 .. 184
8.3.1.2 Περιγραφή και ερμηνεία των γραμμών .. 189
8.3.1.3 Γραμμή 1B10_S1 .. 191
8.3.1.4 Γραμμή 1B10_10S2 .. 195
8.3.1.5 Γραμμή 1B10_S3 .. 198
8.3.1.6 Γραμμή 1B10_S5S6 ... 200
8.3.1.7 Γραμμή 1B10_S7 .. 203
8.3.1.8 Γραμμή S1 .. 206
8.3.1.9 Γραμμή S2 ... 209
8.3.1.10 Γραμμή S3 ... 212
8.3.1.11 Γραμμή S4a ... 215
8.3.1.12 Γραμμή S4b ... 217
8.3.2 Οργανική 1A26 .. 219
Εισαγωγή

Η συγκεκριμένη διδακτορική διατριβή, με θέμα «Τρισδιάστατη τομογραφία σε περιοχές τεχνικών έργων με έντονες αντιθέσεις ταχύτητας. Εφαρμογή στο αποστραγγιστικό δίκτυο της Μέκκας – Σαουδική Αραβία» εκπονήθηκε στο Εργαστήριο Σεισμολογίας του Πανεπιστημίου Πατρών στα πλαίσια των γεωφυσικών
μελετών που διεξήχθησαν στην πόλη της Μέκκας, με σκοπό την χαρτογράφηση των γεωλογικών δομών που περιβάλλουν το υδρευτικό και αποχετευτικό σύστημα της πόλης.

Περιλαμβάνεται όλη η απαραίτητη θεωρία αλλά και η ιστορική αναδρομή των μεθόδων που προηγήθηκαν αυτής που παρουσιάζεται στην ανα ιστορία διατριβή.

Γίνεται σύγκριση των μεθόδων ειδικά σε δεδομένα από επιφανειακά πειράματα και μελετάται η αντίδραση των αλγορίθμων σε περιπτώσεις εντόνου αντιθέσεως στη ταχύτητα των σεισμικών κυμάτων, αναλυτική μεθοδολογία ανάλυσης αβεβαιοτήτων με στατιστικές μεθόδους, θεωρητική ανάπτυξη του ευθέους αλλά και του αντιστρόφου προβλήματος, χρήση για πρώτη φορά σε ανάλογα προβλήματα των αλγορίθμων Kohonen, μεθοδολογία βέλτιστης λήψης δεδομένων σε δυσχερείς συνθήκες και τέλος λήψη, ανάλυση, ποιοτικός έλεγχος, επεξεργασία και ερμηνεία ενός μεγάλου όγκου σεισμικών δεδομένων, αλλά και ορισμένων γεωηλεκτρικών που έδρασαν συνεπικουρικά, πάνω σε ένα γεωτεχνικό πρόβλημα.

Ο σκοπός της διδακτορικής διατριβής ήταν η καταρχάς διερεύνηση και εξέταση των αλγορίθμων δισδιάστατης και τρισδιάστατης σεισμικής τομογραφίας διάθλασης και η ποιοτική καταγραφή των προβλημάτων και των μειονεκτημάτων που αντιμετωπίζουν. Η σημασία δώθηκε στην εφαρμογή των αλγορίθμων αυτών σε μικρά βάθη και στην συμπεριφορά τους σε έντονες αντιθέσεις στην ταχύτητα των σεισμικών κυμάτων. Για να εκτιμήσουμε τις αβεβαιοτήτες των δεδομένων και των αποτελεσμάτων που προέκυπταν εφαρμόσαμε σύστημα ποιοτικού ελέγχου των δεδομένων με βάση πιθανοθεωρητικές προσεγγίσεις και στατιστικές μεθόδους.
Έπειτα από σύγκριση μεταξύ των Μπεϋσιανών (Bayesian) και των συχνοτικών μεθόδων αποτίμησης, χρησιμοποιήσαμε Μπεϋσιανές μεθόδους για να εκτιμήσουμε την ποιότητα των δεδομένων και ένα πιθανοθεωρητικό σύστημα καταγραφής σφαλμάτων μέσα στον αλγόριθμο.

Ιδιαίτερη μνεία γίνεται και στη σημασία του αρχικού μοντέλου ταχυτήτων και πώς αλλά και σε ποιό βαθμό επηρεάζει τα τελικά αποτελέσματα. Για την εξαγωγή χρήσιμων συμπερασμάτων, απαιτήθηκε πλήθος πειραμάτων με συνθετικά δεδομένα (ομαλά, με ανωμαλία σε καθορισμένο σημείο κτλ) και διάφορα αρχικά μοντέλα ταχυτήτων. Υλοποιήθηκαν τρεις νέοι αλγορίθμοι σε γλώσσα Matlab για την αντίματη εισαγωγή ανωμαλίας σε συνθετικά δεδομένα. Οι αλγορίθμοι εισάγουν τριγωνική, τετράπλευρη και κυκλική ανωμαλία καθορισμένων από το χρήστη διαστάσεων. Διαπιστώθηκε, ότι σε προβλήματα τρισδιάστατης σεισμικής τομογραφίας και ιδιαίτερα σε μικρού βάθους πειράματα, το αρχικό μοντέλο ταχυτήτων επηρεάζει κατά πολύ τα τελικά αποτελέσματα. Μάλιστα, στην περίπτωση ανωμαλιών μεγάλου μεγέθους και ιδιόμορφου σχήματος (π.χ. τριγωνικού σχήματος ανωμαλίες, κανάλια κτλ) η καθοδήγηση του μοντέλου ως ένα βαθμό κρίνεται απαραίτητη, αφού σε διαφορετική περίπτωση, δηλαδή αν εισάγουμε ένα τυχαίο μοντέλο, τα αποτελέσματα απέχουν από την πραγματικότητα. Ελέγξαμε επίσης τη σημασία των ελεύθερων μεταβλητών αλλά και του μεταβλητού βάρους στην κανονικοποιημένη αντιστροφή.

Η διδακτορική αυτή διατριβή δεν περιορίσθηκε μόνο στο σημείο του πιθανοθεωρητικού ελέγχου σεισμικών δεδομένων και αποτελεσμάτων αλλά επεκτάθηκε και στο αλγοριθμικό σκέλος. Αφού αναλύθηκε ευρέως το ευθύ και το
αντίστροφο πρόβλημα, οι διάφορες μέθοδοι με τα μειονεκτήματα και τα πλεονεκτήματα τους και δώθηκε επαρκής εξήγηση για το λόγο επιλογής του συγκεκριμένου αλγορίθμου, προσπαθήσαμε να επεκτείνουμε σε θεωρητικό επίπεδο τη γνώση στους αλγορίθμους ray-tracing (ιχνηλάτησης ακτινών). Ειδικότερα, για πρώτη φορά, εφαρμόστηκε μια νέα προσέγγιση στους αλγορίθμους ray-tracing με βάση τη γεωμετρία και τους χώρους Finsler. Συγκεκριμένα, στηριχτήκαμε στην ιδέα ότι κάθε μοναδιαία σφαίρα ενός ισοτροπικού μέσου σε εφαπτόμενο χώρο, που δημιουργείται από ένα σημείο που ανήκει στο μέτωπο κύματος, μπορεί να επεκταθεί σε ένα ελλειψοειδές σε ανισοτροπικό μέσο και ότι τελικά αυτό το ελλειψοειδές μπορεί να χαρακτηρίζει το σεισμικό κύμα. Η διαπίστωση αυτή γενικεύει τις εξισώσεις ray-tracing στη βάση μιας ολικής δέσμης στη διαφορική γεωμετρία του Finsler.

Η νέα αυτή προσέγγιση στο χώρο του ray-tracing, θέτει τις βάσεις για αλγορίθμους γρηγορότερους και πιο αποτελεσματικούς, οι οποίοι θα δουλεύουν τόσο σε ισοτροπικούς αλλά κυρίως σε ανισοτροπικούς χώρους. Η χρήση κλασσικής Ευκλείδειας γεωμετρίας για την απεικόνιση της διάδοσης των σεισμικών ακτίνων, όπως θα διορίστηκε και συνοπτικά στην απέναντι πλευρά της σχεδίασης της σεισμικής τουμογραφίας σε άλλο κεφάλαιο της παρούσας διατριβής, δημιουργήσεις αρκετές δυσκολίες στο παρελθόν ενώ η γενικευτική των εξισώσεων ray-tracing στη βάση μιας ολικής δέσμης ξεπερνά πολλά από αυτά τα προβλήματα. Επίσης εφαρμόσαμε αλγορίθμους Kohonen για πρώτη φορά σε αντίστοιχα προβλήματα και διαιτητικότερα με τα προτερήματα και τα μειονεκτήματα της μεθόδου.
Τέλος, εφαρμόσαμε τους αλγορίθμους σε σεισμικά δεδομένα που συγκεντρώσαμε από επιτόπια έρευνα στη Σαουδική Αραβία. Σκοπός της έρευνας ήταν η υπεδαφική χαρτογράφηση της περιοχής αλλά και των αρχαίων ορυγμάτων του αποχετευτικού συστήματος της Μέκκα, ώστε αυτά να σταθεροποιηθούν. Η χαρτογράφηση περιέλαβε πλήρη απεικόνιση σε τρεις διαστάσεις πάνω από τα δύο αρχαία ορύγματα, με δεκαοχτώ συνολικά σεισμικές γραμμές. Η περιοχή μελέτης καλύπτει συνολικά μια έκταση συνολικού μήκους 13.972 μέτρων, μέσα σε αστικό περιβάλλον, με ιδιαίτερα δυσχερείς συνθήκες λήψης δεδομένων και πολύ υψηλά όρια θορύβου. Οι δύο σήραγγες που μας ενδιέφεραν βρίσκονταν στην περιοχή Wadi Ibrahim, της Μέκκας. Η προετοιμασία της μελέτης, η συλλογή, ο ποιοτικός έλεγχος, η επεξεργασία και η ερμηνεία ενός τέτοιου μεγάλου όγκου σεισμικών δεδομένων, αποτελούν το κύριο τμήμα της αναχείρας διατριβής.

Η συλλογή των δεδομένων ξεκίνησε τον Νοέμβριο του 2004 και ολοκληρώθηκε τον Μάρτιο του 2005. Τα δεδομένα ελέγθηκαν ποιοτικά πριν την επεξεργασία τους με βάση τις Μπεϋσιανές μεθόδους. Τέλος, για την καλύτερη ερμηνεία των αποτελεσμάτων ελέγθηκαν και ηλεκτρικά προφίλ, ενώ πήραμε και δεδομένα από γεωτρήσεις.

Ο σκοπός της επιτόπιας αυτής έρευνας ήταν να προσδιορισθεί η υπεδαφική δομή στην περιοχή γύρω από τα ορύγματα αλλά και να βρεθεί η ανύψωση της κορεσμένης δομής μέσα στο υπόστρωμα. Επίσης, εντοπίσθηκαν οι ασθενείς ζώνες και υπολογίσθηκε το βάθος του αλλουβιακού και του κορεσμένου βραχώδους στρώματος.
Τα γεωφυσικά δεδομένα που συλλέξαμε και επεξεργαστήκαμε υποδεικνύουν την παρουσία 4 διακριτών σεισμικών περιοχών με ταχύτητες που κυμαίνονται από 800 ως 7000 m/s. Η γεωλογική ερμηνεία των αντίστοιχων δεδομένων μας έδωσε τους ακόλουθους γεωλογικούς σχηματισμούς: ιζήματα και ανθρωπογενείς προσχώσεις ιδιαίτερα αποσαρθρωμένα βραχώδεις υπόστρωμα, βραχώδες υπόστρωμα, θραυσμένα κρυσταλλικά, καθώς και κρυσταλλικά υποστρώματα.

Επιπλέον έγινε και υδρογεωλογική ερμηνεία, η οποία στηρίχτηκε κυρίως στα γεωηλεκτρικά δεδομένα, ενώ εξέχθηκαν χρήσιμοι δυναμικοί και μηχανικοί παράμετροι, βασισμένοι στο μέτρο Young, από τα δεδομένα των γεωτρήσεων.

Το περιεχόμενο της διδακτορικής διατριβής αποτελείται από οκτώ κεφάλαια και πέντε παραρτήματα που καλύπτουν αναλυτικά τη θεωρητική κομμάτι της σεισμικής τομογραφίας, τη μεθοδολογία που ακολουθήθηκε, τις καινοτομίες που εφαρμόστηκαν και, τέλος, την εφαρμογή της μεθόδου στην επιτόπια έρευνα στη Σαουδική Αραβία καθώς και παρουσίαση και σχολιασμό των αποτελεσμάτων αυτών.

Το πρώτο κεφάλαιο αποτελεί μία εισαγωγή στη σεισμική τομογραφία, όπου γίνεται αναφορά στα είδη και τον τρόπο με τον οποίο εξελίχθηκε στο χρόνο και τα διαφορετικά είδη της σεισμικής τομογραφίας. Ιδιαίτερος βαρός δίνεται στην εξέλιξη της σεισμικής τομογραφίας διάθλασης από τις πρώτες μελέτες στις αρχές της δεκαετίας του 1970 και τα προβλήματα που αντιμετώπισαν, λόγω των τεχνολογικών περιορισμών της εποχής, μέχρι τις σημερινές εργασίες που εκμεταλλεύονται στο
έπακρο τις τεχνολογικές δυνατότητες, κάνοντας τη σεισμική τομογραφία μια αξιόπιστη μέθοδο, με ένα ευρύ φάσμα εφαρμογών.

Στο δεύτερο κεφάλαιο παρατίθεται κυρίως η μεθοδολογική ραχοκοκκαλια του εγχειρήματος της σεισμικής τομογραφίας. Αναλύεται η μέθοδος και τα οριοθετήσια της, περιγράφεται συνοπτικά το δίπολο ευθύ-αντίστροφο πρόβλημα ενώ δίνονται και οι βασικές αρχές επιλογής κατάλληλου μοντέλου. Τέλος στο κεφάλαιο αυτό αναπτύσσουμε συνοπτικά ένα ικανό σύστημα μελέτης για παρόμοια προβλήματα.

Στο τρίτο κεφάλαιο γίνεται λόγος για την κατασκευή και την παραμετροποίηση του μοντέλου. Ουσιαστικά, στο κεφάλαιο αυτό περιγράφεται ο τρόπος με τον οποίο μοντελοποιούμε το φυσικό φαινόμενο σε μαθηματικό φορμαλισμό και πώς αυτό το πρόβλημα μετατρέπεται σε αλγόριθμο ενώ δίδεται και μια αναλυτική περιγραφή για το πώς επιλέγεται η κατάλληλη συνάρτηση βάσης. Αποτελεί με άλλα λόγια το κεφάλαιο αυτό τη μετάβαση από τη θεωρητική σύλληψη του προβλήματος στην μαθηματική περιγραφή του.

Στο τέταρτο κεφάλαιο περιγράφεται το ευθύ πρόβλημα. Αναλύονται οι διάφορες μέθοδοι προσέγγισης του και δίνεται μια αναλυτική παράθεση των δυο σημαντικότερων μεθόδων, αυτής της κυματομορφής και της μεθόδου eikon. Είναι ένα κεφάλαιο όπου πέρα από την παρουσίαση των μεθόδων ray-tracing αλλά και των μεθόδων πεπερασμένων διαφορών, αναφερόμαστε στον αλγόριθμο που χρησιμοποιούμε και στα πραγματικά δεδομένα μας αλλά παράλληλα κάνουμε την
καινοτόμο προσέγγιση στο αλγοριθμικό κομμάτι, εμπλέκοντας γεωμετρία και καμπυλότητες Finsler στις εξισώσεις ray-tracing.

Το πέμπτο κεφάλαιο ασχολείται με το αντίστροφο πρόβλημα. Παρουσιάζεται η λογική πίσω από αυτό, οι κατηγορίες αντιστρόφων προβλημάτων, οι τρόποι αντιστροφής, με τα αντίστοιχα πλεονεκτήματα και μειονεκτήματα που έχει ο καθένας αλλά και οι στόχοι που βρίσκονται πίσω από τη διαδικασία της αντιστροφής.

Στο έκτο κεφάλαιο γίνεται μια αναλυτική παρουσίαση των αβεβαιοτήτων και της διακινδύνευσης στα προβλήματα σεισμικής δρομοχρονικής τομογραφίας. Αναλύονται με λεπτομέρεια οι πιθανοί κίνδυνοι για εξαγωγή λανθασμένων μοντέλων και συμπερασμάτων ενώ γίνεται και εμβριθής μελέτη των παραμέτρων και της χρήσης αυτών από τον αλγόριθμο. Εφαρμόζουμε δοκιμές με συνθετικά δεδομένα και διαπιστώνουμε τη σημασία του αρχικού μοντέλου ταχυτήτων και πως αυτό επηρεάζει το τελικό μοντέλο ενώ παράλληλα δοκιμάζουμε διάφορα είδη ανωμαλιών δεδομένων για να εκτιμήσουμε τη συμπεριφορά του αλγορίθμου.

Στο έβδομο κεφάλαιο γίνεται μια εισαγωγή στα δίκτυα Kohonen και στη χρησιμότητά τους στην αποτίμηση των τομογραφικών δεδομένων μας κατά την εφαρμογή στη Μέκκα. Χρησιμοποιώντας τους αυτο-ρυθμιζόμενους χάρτες Kohonen (SOM) μπορούμε να εισάγουμε πληροφορία σε ένα νευρωνικό δίκτυο πεπερασμένης διάστασης και να πάρουμε σαφώς βελτιωμένα αποτελέσματα σε σχέση με αυτά που θα παίρναμε αν χρησιμοποιούσαμε οποιαδήποτε άλλη μέθοδο.
Το τελευταίο κεφάλαιο, το άγγδοο, αποτελεί και του βασικότερο τμήμα της παρούσας διδακτορικής διατριβής διότι συνιστά το αμιγώς πρακτικό μέρος αυτής. Εδώ, παρουσιάζεται με λεπτομέρεια η τομογραφική διερεύνηση της περιοχής ενδιαφέροντος και η παράθεση της ερμηνείας των αποτελεσμάτων της τομογραφίας. Επίσης, αυτά συγκρίνονται με τα αποτελέσματα από τις γεωτρήσεις που έγιναν στην περιοχή αλλά και τις ηλεκτρικές μετρήσεις.

Στα πέντε παραρτήματα που παρατίθενται στο τέλος της διδακτορικής διατριβής, περιέχονται στοιχεία που πλαισιώνουν όσα αναφέρονται στα επιμέρους κεφάλαια, όπως η τρισδιάστατη απεικόνιση της υπεδαφικής δομής της περιοχής ενδιαφέροντος, οι αλγόριθμοι που αναπτύχθηκαν καθώς και επιπλέον θεωρητικά στοιχεία που αποσαφηνίζουν τον τρόπο διεξαγωγής της τομογραφικής μελέτης.

Κεφάλαιο 1

1. Προλογικά
Καθώς ο άνθρωπος προσπαθεί να ανακαλύψει και να «εκλογικεύσει» τα μεγάλα μυστικά του κόσμου, τα φυσικά φαινόμενα αποκτούν για αυτόν έναν χαρακτήρα που χαρακτηρίζει την τυχαιότητα και το αφηρημένο. Η αναζήτηση της προέλευσης αυτών των φαινομένων, η αναζήτηση με άλλα λόγια της απόλυτης γνώσης, χαράκτηρα στις περισσότερες περιπτώσεις τα ανθρώπινα γνωσιακά ορία. Σαν συνέπεια αυτού, έρχεται η μοντελοποίηση ή προτυποποίηση, η κατασκευή δηλαδή μοντέλων που θα εξομοιώνουν με ικανοποιητική πιστότητα τα φυσικά φαινόμενα, για να γεφυρωθεί το κενό. Τέτοια μοντέλα βασίζονται στην παρατήρηση αλλά και στην αναγωγική ή επαγωγική εξαγωγή συμπερασμάτων από υπάρχοντα όγκο δεδομένων και συνδέονται με μια πολύπλοκη διαδικασία όπου οι υποθέσεις τυποποιούνται και διαρκώς επανεκτιμούνται. Οι αριθμητικές μέθοδοι είναι ένα τέτοιο παράδειγμα και αποτελούν βασικό εργαλείο για την μελέτη ενός ευρέως φάσματος φαινομένων που εκτείνεται από την κλιματική αλλαγή μέχρι την τεχνητή νοημοσύνη.

Οι αριθμητικές μέθοδοι χρησιμοποιήθηκαν ευρέως και σε σημαντικά προβλήματα που αντιμετωπίζουν οι γεωλόγοι και ιδιαίτερα στην περιγραφή της δομής του εσωτερικού της γης. Η γεωφυσική, ως η επιστήμη διερεύνησης του εσωτερικού της γης, υπήρξε σημείο συνάντησης πολλών «κλασικών» επιστημονικών κλάδων, όπως μαθηματικά, φυσική, γεωλογία, χημεία, μηχανική. Τα συμπεράσματα που αφορούν το εσωτερικό της γης απαιτούν συχνά πολύπλοκους και μακροσκελείς μαθηματικούς αριθμητικούς μέθοδους.
υπολογισμούς που αντικαταστήθηκαν με τον καιρό από στατιστικές και αριθμητικές μεθόδους.

Η ανάπτυξη της υπολογιστικής τεχνολογίας, τόσο σε θέματα χωρητικότητας όσο και σε θέματα επεξεργασίας (π.χ. τεχνολογία grid, συστήματα clusters), η αύξηση της πυκνότητας των σεισμολογικών δικτύων ανα τη γη αλλά και η ποιοτικότερη αναβάθμιση των οργάνων εγγραφής σεισμικών δεδομένων έδωσε τη δυνατότητα στους γεωπυκνοτιστήμονες να καταγράφουν δεδομένα υψηλής ποιότητας, να τα επεξεργάζονται με τη βοήθεια της θεωρίας της αντιστροφής (inversion theory), με ταχύτητα και ακρίβεια ώστε να παίρνουν χρήσιμες πληροφορίες για το εσωτερικό της γης.

Πώς όμως οδηγήθηκαμε στην ανάγκη αυτή; Είναι γνωστό ότι η άμεση δειγματοληψία για τη γη είναι πραγματοποιήσιμη μόνο για τα πρώτα λίγα χιλιόμετρα (γύρω στα δέκα χιλιόμετρα). H θερμοκρασία σε μεγαλύτερα βάθη είναι αποτρεπτική για βαθύτερες γεωτρήσεις. Γενικά όμως, η μέθοδος της δειγματοληψίας για την μελέτη του εσωτερικού της γης, αν και άμεση, παρουσιάζει δύο σημαντικά μειονεκτήματα:

1. Ιδιαίτερα υψηλό κόστος λόγω των γεωτρήσεων.
2. Τοπικό χαρακτήρα στην εξαγωγή συμπερασμάτων

Σε αυτά τα προβλήματα τη λύση ήρθε να δώσει η τομογραφία. Η βασική ιδέα πίσω από την τομογραφία βρίσκεται στην ετυμολογία της λέξης [τέμνω + γράφω]. Σύμφωνα με το βασικό θεώρημα τομών που διατυπώθηκε από τον Radon (1917), μπορούμε να
αναδομήσουμε τη τρισδιάστατη εικόνα ενός αντικειμένου αν πάρουμε πολλές
dισδιάστατες τομές. Αντίστοιχα τις δισδιάστατες τομές μπορούμε να τις
catatasekousoume apó monodiasstaties graffies.

Η τομογραφία ξεκίνησε σαν κλάδος της ιατρικής για την απεικόνιση του ανθρώπινου
σώματος και επεκτάθηκε στη γεωφυσική για τη διερεύνηση του εσωτερικού της γης
και την αποτίμηση των φυσικών ιδιοτήτων της. Αν θέλουμε να ορίσουμε την
tomoagραφία θα λέγαμε ότι πρόκειται για μια τεχνική με την οποία αναδομούμε το
μοντέλο ταχυτήτων μιας συγκεκριμένης περιοχής. Από το συγκεκριμένο μοντέλο
taχυτήτων και σύμφωνα με τον πίνακα ταχυτήτων των υλικών, μπορούμε να
sυμπεράνουμε τι βρίσκεται στο εσωτερικό της γης.

Η σεισμική τομογραφία θεωρείται μια από τις πλέον ενδεδειγμένες μεθόδους για την
diereυνηση του εσωτερικού της γης. Οι άλλες γεωφυσικές μέθοδοι, βαρυτικά,
μαγνητικά, ηλεκτρικά, ηλεκτρομαγνητικά, ροή θερμότητας, γεωραντάρ χάνουν
gρήγορα την διακριτική τους ικανότητα με το βάθος. Αυτό οφείλεται κατά κύριο λόγο
στη διεισδυτικότητα των φυσικών μέσων που χρησιμοποιούνται με αποτέλεσμα οι
diaforikes exiswseis pou orizoun autes tis mebdous, p.x. h eξiswoun diadoseis gia
tη ροή θερμότητας, και τα ηλεκτρομαγνητικά χαμηλής συχνότητας, οι εξισώσεις
Poisson gia ta barutika ktl. na mhn apodidoun se megalá báthi.

Τα πρώτα τομογραφικά πειράματα δεν πείθουν τους σεισμολόγους για την αξιοπιστία
της μεθόδου. Στις αρχές της δεκαετίας του 1980 οι επαναληπτικές μέθοδοι (Clayton
και Comer, 1983 και Nolet, 1985) αλλά και τα πρώτα τομογραφικά δεδομένα που
έδιναν ταυτόσημα αποτελέσματα με τις ήδη υπάρχουσες μετρήσεις του γεωειδούς (Dziewonski και Anderson, 1984, Tanimoto και Anderson, 1984 και Hager et al., 1985) ενίσχυσαν την αξιοπιστία της τομογραφίας.

1.1 Είδη τομογραφίας

Η τομογραφία χωρίζεται σε διαφορετικές κατηγορίες ανάλογα με τα παρατηρούμενα μεγέθη, την πηγή και τη γεωμετρία του προβλήματος. Στη παρούσα διατριβή θα ασχοληθούμε μόνο με σεισμικές μεθόδους χωρίς να ασχοληθούμε με την ηλεκτρική τομογραφία.

Η σεισμική τομογραφία ανάλογα με το παρατηρούμενο μέγεθος χωρίζεται σε τρεις βασικές κατηγορίες: α) Την δρομοχρονική τομογραφία (traveltime tomography) όπου καταγράφονται οι χρόνοι διαδρομής των σεισμικών κυμάτων από την/τις πηγή/ες μέχρι τους δέκτες. Με αυτή αναδομούμε το μοντέλο ταχυτήτων της γης, χρησιμοποιώντας τις αποκλίσεις στους χρόνους διαδρομής των σεισμικών κυμάτων από ένα προκαθορισμένο αρχικό μοντέλο β) την τομογραφία πλάτους (amplitude tomography) (Zelt και Ellis, 1988) στην οποία μετράται ο τρόπος με τον οποίο μεταβάλλεται το πλάτος του κύματος από την/τις πηγή/ες στους δέκτες. Η τομογραφία πλάτους παρουσιάζει ακόμη μεγάλες δυσκολίες και γ) την τομογραφία κυματομορφής (waveform tomography) (Thompson, 1993) όπου χρησιμοποιείται ολόκληρη η κυματομορφή.
Σημαντικό ρόλο στη δρομοχρονική τομογραφία κατέχει ο τρόπος με τον οποίο επιλέγουμε τους χρόνους διαδρομής (picking), μια διαδικασία ιδιαίτερα ευάλωτη σε σφάλματα. Οι χρόνοι διαδρομής μπορούν να επιλεγούν με τρόπο χειρωνακτικό, όταν έχουμε λίγα δεδομένα, αλλά η διαδικασία αυτή καθίσταται ολοένα και λιγότερο πρακτική καθώς ο αριθμός των δεδομένων ακόμη και σε τυπικές έρευνες ολοένα και μεγαλώνει. Στην περίπτωση που χρησιμοποιηθούν αυτοματοποιημένοι αλγόριθμοι επιλογής των χρόνων (π.χ. Tinivella, 1998, Nicola-Carena, 1998) σφάλματα, όπως τα "outlier picks", επιλογές λανθασμένων χρόνων δηλαδή, πρέπει να ληφθούν υπόψη κατά την αντιστροφή των δεδομένων. Αν χρησιμοποιηθεί τομογραφία κυματομορφής δεν υφίσταται πρόβλημα επιλογής χρόνων και αν μάλλον τα δεδομένα είναι ποιοτικά μπορούμε να πάρουμε αποτελέσματα πολύ καλύτερα από τη δρομοχρονική, κυρίως σε ότι αφορά στη διακριτική ικανότητα (resolution). Βέβαια, η τομογραφία κυματομορφής βρίσκεται σε εμβρυακό στάδιο και παρουσιάζει σημαντικές υπολογιστικές δυσκολίες ακόμη και σε επεξεργαστές που δουλεύουν με την τεχνολογία πλέγματος, ενώ σε σύγκριση με τη δρομοχρονική τομογραφία ο χρόνος υπολογισμού που απαιτείται είναι κατά πολύ μεγαλύτερος. Στην παρούσα διατριβή θα μας απασχολήσει η δρομοχρονική σεισμική τομογραφία.

Η πηγή που προκαλεί το σεισμικό κύμα είναι χαρακτηριστική για το είδος της σεισμικής τομογραφίας. Αν η πηγή είναι κάποιος φυσικός σεισμός, βρισκόμαστε στην κατηγορία της παθητικής σεισμικής τομογραφίας (passive seismic tomography). Στην αντίθετη περίπτωση, αν πηγή είναι ανθρωπογενής, προέρχεται δηλαδή από κάποιο τεχνητό μέσο (π.χ. σύστημα πλάκας-σφύρας, πίπτον βάρος, έκρηξη κ.α.), μιλάμε για ενεργή σεισμική τομογραφία (active seismic tomography).
Δεν θα μας απασχολήσει ιδιαίτερα η παθητική τομογραφία αφού δεν συνίσταται για τα χαρακτηριστικά της εν λόγω μελέτης (π.χ. ρηχή διακριτική ικανότητα της τάξης του ενός μέτρου), ενώ σαν μέθοδος παρουσιάζει το μειονέκτημα του μη ακριβούς προσδιορισμού της πηγής, τόσο όσον αφορά στο επίκεντρο όσο και στο χρόνο γέννησης. Σε αντίθεση, στην ενεργή τομογραφία έχουμε ακριβή εικόνα τόσο για την τοπογραφία και τα σημεία των εκρήξεων όσο και για το χρόνο γέννησης των τεχνητών σεισμών (εκρήξεων).

Στις περιπτώσεις τομογραφίας ανάκλασης και διάθλασης οι δέκτες βρίσκονται στην επιφάνεια της γης. Όταν τοποθετούμε πηγές και δέκτες σε γεωτρήσεις τότε μιλάμε για τομογραφία crosshole (Bregman et al., 1989, Goulty, 1990, 1993).

Η σεισμική τομογραφία βρίσκει πλήθος εφαρμογών από την κλίμακα της πλανητικής έρευνας της γης ως την εύρεση αρχαιοτήτων σε μικρό βάθος. Η εξέλιξη της τεχνολογίας (π.χ. χαρτογράφηση των υπο-βασαλτικών δομών) ήταν η επεξεργασία αυτών δεν θα μπορούσε να γίνει με απλές αναλύσεις ταχύτητας και η χρήση ευρυγώνιων (wide-angle) δεδομένων βοήθησε να περιγράψει σημαντικά χαρακτηριστικά όπως π.χ. η χαρτογράφηση των υπο-βασαλτικών δομών (Fruehn et al., 1998, Hughes et al., 1998).

Η μέθοδος της διάθλασης μέχρι και πρόσφατα εφαρμοζόταν κυρίως σαν εργαλείο ασημενικής χρήσης για μελέτες του φλοιού ή του χρώματος της γης (Mooney και Brocher, 1987, Morgan et al., 1989, Holbrook et al., 1992). Το πρόβλημα με τα δεδομένα από διάθλαση είναι ότι δεν μπορούν να ερμηνευτούν χωρίς την
κατασκευή κάποιου μοντέλου, κάτι που θα αναπτύξουμε περεταίρω στη συνέχεια αυτής της διατριβής. Επιπλέον, η μέθοδος χρησιμοποιείται στον εντοπισμό του υδροφόρου ορίζοντα και του υποβάθρου, στον εντοπισμό εγκοίλων, στη μελέτη ιδιοτήτων υλικών αλλά και, όπως και η μέθοδος της ανάκλασης, σε γεωτεχνικές, περιβαλλοντικές μελέτες και τον μη-καταστροφικό έλεγχο κατασκευών.

Η τομογραφία crosshole χρησιμοποιείται κυρίως στην έρευνα πετρελαίου (π.χ. Dong et al., 2005, Weisenborn και Hague, 2005) αλλά και στη γεωτεχνική και σε μελέτες θεμελίωσης. Το κόστος της συγκριτικά με τις άλλες μεθόδους είναι απαγορευτικό για ευρεία χρήση.

Isserlin et al., 2003), σε περιβαλλοντικές μελέτες (Johansen et al., 2003, Balia et al., 2003).

Η σεισμική τομογραφία, σε αντίθεση με την ιατρική τομογραφία (π.χ. C-T, X-ray tomography), είναι μη-γραμμικό πρόβλημα και ως εκ τούτου η λύση του προτιμάται κάποια μορφή μοντελοποίησης και υφιστάμενης χρήσης μεθόδων αντιστροφής. Οι μέθοδοι και η φιλοσοφία της αντιστροφής καθώς και τα προβλήματα που δημιουργούνται από αυτή, θα αναλυθούν στα επερχόμενα κεφάλαια.

1.2 Ιστορική Εξέλιξη της σεισμικής δρομοχρονικής τομογραφίας

Οι γνώσεις που έχουμε για το εσωτερικό της γης ουσιαστικά δίδονται από τη καταγραφή των σεισμικών κυμάτων, που είτε προέρχονται από φυσικούς σεισμούς είτε από τεχνητές διεργασίες. Η άμεση δειγματοληψία για τη στέρεη γη περιορίζεται στα πρώτα λίγα χιλιόμετρα, με αποτέλεσμα οι γνώσεις μας για μεγαλύτερα βάθη να προέρχονται από την μελέτη των σεισμικών κυμάτων.
Ан και πολλές αρχικές σεισμικές μελέτες μπορούν να ταξινομηθούν, χωρίς να είναι στην πραγματικότητα, κάτω από το πλαίσιο της τομογραφίας όπως π.χ. η ανακάλυψη του πυρήνα της γης από τον Oldham (1906), η σχέση βάθους-ταχύτητας των Herglotz (1907) και Wiechert (1910), η ύπαρξη ασυνεχείων μεταξύ φλοιού και μανδύα (Mohorovicic, 1909), μανδύα και πυρήνα (Gutenberg, 1913), η ανακάλυψη του βάθους του πυρήνα (Gutenberg, 1914), η ύπαρξη ζωνών χαμηλής ταχύτητας (Slichter, 1932, Gerver και Markusevitch, 1966), τα στρώματα χαμηλών ταχύτητων του Gutenberg, ο εσωτερικός πυρήνας από την Lehman (1936), μόλις πρόσφατα η σεισμική τομογραφία άρχισε να διαφαίνεται και να αναγνωρίζεται ως μια νέα, υποσχόμενη τεχνική της γεωφυσικής και της σεισμολογίας. Κατά τη διάρκεια του τελευταίου μισού της δεκαετίας του 1970 δημιουργήθηκαν οι πρώτες εργασίες που αφορούσαν τη σεισμική τομογραφία στηριζόμενες κατά πολύ στη λογική της ιατρικής τομογραφίας.

Η πρώτη ουσιαστικά πρακτική εφαρμογή της τομογραφίας συντελείται στην ιατρική. Υπέρ αυτού συνεισφέρει η ανακάλυψη των ακτίνων-Χ από τον Βίλχελμ Ρέντγκεν το 1895, με αποτέλεσμα να γίνει σύντομα ένα βασικό εργαλείο για την ιατρική διάγνωση. Το 1917 διατυπώνεται το θεώρημα κεντρικής τομής (Radon, 1917), όπου σύμφωνα με αυτό μια τρισδιάστατη εικόνα μπορεί να ανακατασκευαστεί μέσα από διάφορες δισδιάστατες τομές. Οι δισδιάστατες αυτές τομές προκύπτουν από ένα σύνολο μονοδιάστατων γραμμών. Το θεώρημα αυτό αποτελεί ουσιαστικά την απαρχή της τομογραφίας.
Πάνω σε αυτό θα βασίστει ο Cormack για να διατυπώσει κάποια χρόνια αργότερα (Cormack, 1963) μια μέθοδο ραδιολογικής απεικόνισης που θα του χαρίσει το βραβείο Νόμπελ. Το 1973 εισάγεται η τομογραφία μέσω υπολογιστή (CAT – Computer Aided Tomography) (Houndsfield, 1973), όπου με τη βοήθεια σαρωτή ακτίνων X και ενός υπολογιστή απεικονίζεται το ανθρώπινο σώμα. Η τεχνική βασίζεται στην ριπή δέσμης ακτίνων-X προς το ανθρώπινο σώμα, και λόγω της έντονης αντίθεσης ανάμεσα στα οστά και την ανθρώπινη σάρκα απεικονίζεται το εσωτερικό σε μορφή χρωματικής αντίθεσης.

Από τη στιγμή που η αρχή είχε γίνει στον τομέα της ιατρικής ήταν ζήτημα χρόνου η μέθοδος να υιοθετηθεί και από τη γεωφυσική κοινότητα. Όχι όμως χωρίς δυσκολίες όπως θα δούμε. Με την εγκατάσταση των πρώτων σεισμογράφων σε διάφορα σημεία της γης, από τα τέλη του 19ου αιώνα, οι γεωπειστήμονες αντιλήφθηκαν ότι τα σεισμικά κύματα μπορούν να χρησιμοποιηθούν για την ανίχνευση κοντινών ή μακρινών στόχων.

Φυσικά, ένα τέτοιο εργαλείο δεν θα μπορούσε να μην τραβήξει το ενδιαφέρον για όχι και τόσο αγαθές δραστηριότητες. Βλέπουμε έτσι ότι στον Α’ Παγκόσμιο Πόλεμο σεισμικά κύματα χρησιμοποιούνται για τον εντοπισμό πυροβολικού ενώ στον Β’ Παγκόσμιο Πόλεμο χρησιμοποιούνται για τον έλεγχο των πυρηνικών δοκιμών. Η ανάγκη για παρακολούθηση των πυρηνικών εκρήξεων αλλά και η συνεχώς ακμάζουσα πετρελαιική βιομηχανία, κατά τις δεκαετίες 1950 και 1960, οδηγεί στην βελτίωση των οργάνων που χρησιμοποιούνται ενώ η ανακάλυψη του μαγνητικού
δίσκου, ως μέσο για αποθήκευση δεδομένων, θέτει νέα δεδομένα και προετοιμάζει την είσοδο της σεισμικής τομογραφίας.

Εικ.1.2: Μια σύγχρονη τομογραφική απεικόνιση της γης (Gu, 2000) όπου απεικονίζονται οι αποκλίσεις της ταχύτητας των S-κυμάτων από ένα μονοδιάστατο μοντέλο ταχύτητων. Οι περιοχές με μπλέ χρώμα είναι πιο γρήγορες (μεγαλύτερη ταχύτητα) ενώ οι περιοχές με πορτοκαλί χρώμα πιο αργές.

Στο σημείο αυτό θα κάνουμε μια σύντομη επισκόπηση των διαφορετικών μεθόδων και αλγορίθμων που χρησιμοποιήθηκαν στη σεισμική δρομοχρονική τομογραφία γενικά.

Τα τέλη της δεκαετίας του 1980 βρίσκουν τη σεισμική τομογραφία να κάνει ένα μεγάλο βήμα προς τα εμπρός. Στα προβλήματα του ray-tracing απαντά η μέθοδος του μετώπου κύματος. Πάνω σε αυτή, παρουσιάζεται η μέθοδος πεπερασμένων διαφορών (finite difference) από τον Vidale το 1988 για δύο διαστάσεις και δύο χρόνια αργότερα για τρεις διαστάσεις (Vidale, 1990). Οι μέθοδοι ray-tracing πριν τον Vidale, παρουσίαζαν δύο σοβαρές αδυναμίες: χαμηλή υπολογιστική ταχύτητα και εφαρμογή μόνο σε περιοχές που δεν παρουσιάζαν αποκλίσεις στην ταχύτητα των σεισμικών κυμάτων. Με τον Vidale τα προβλήματα αυτά ξεπερνούνται αν και αυτή η μέθοδος δεν στερείται ελλατωμάτων. Το σημαντικότερο είναι ότι δεν μπορεί να δουλέψει για διαφορές ταχυτήτων ανάμεσα σε δύο στρώματα (u1, η ταχύτητα στο πρώτο στρώμα και u2 η ταχύτητα στο κατώτερο στρώμα) που μεταβαίνουν τον λόγο u2/u1 > √2 (Qin et al., 1992) και δευτερευόντως ότι υπολογίζει μόνο πρώτες αφίξεις.

Σημαντικό όπλο στην αντιμετώπιση της μη-γραμμικότητας ήταν οι μέθοδοι κανονικοποίησης, όπου το μη-γραμμικό τομογραφικό σύστημα εξισώσεων γραμμικοποιείται, διαχωρίζοντας το μοντέλο ταχυτήτων σε ένα αρχικό γνωστό μοντέλο και μια άγνωστη διαταραχή, την οποία θεωρούμε πολύ μικρή. Σε ένα κανονικοποιημένο σύστημα εξισώσεων μπορούμε να αντιστρέψουμε δεδομένα διαφορετικής φύσης (π.χ. δεδομένα από ανάκλαση ή διάθλαση ή και συνδυασμό αυτών) αλλά και διαφορετικές παραμέτρους που αφορούν το μοντέλο (π.χ. βραδύτητα, ανακλαστήρες).
Σκοπός της κανονικοποιημένης αντιστροφής είναι να ταυτίσει τους χρόνους που προκύπτουν από τις μετρήσεις με τους θεωρητικούς χρόνους του μοντέλου. Όπως αποδείχθηκε όμως αργότερα (Thompson, 1993) μπορούμε να ταυτίσουμε μέχρι όποιο βαθμό θέλουμε τους παραπτηρηθέντες με τους θεωρητικούς χρόνους. Το γεγονός αυτό μείωσε την αξιοπιστία της μεθόδου αφού τα αποτελέσματα που προκύπτουν μπορεί να μην εξηγούνται με φυσικό τρόπο.

Επειδή όλες οι παραπάνω μέθοδοι που αναφέρθηκαν αποτελούν προσεγγίσεις του πραγματικού προβλήματος πρέπει αφενός να είμαστε επιφυλακτικοί με τα αποτελέσματά τους και, αφετέρου, να δοκιμάζουμε την οξιτιστία τους με σύγχρονες μαθηματικές μεθόδους ανάλυσης αβεβαιότητας, που θα δούμε σε παρακάτω κεφάλαιο. Η ανάπτυξη των υπολογιστικών πλεγμάτων και η ολοένα αυξανόμενη υπολογιστική ισχύς των συστημάτων που έχουμε στη διάθεσή μας, μας δίνει τη δυνατότητα να παίρνουμε συνεχώς καλύτερα και πιο κοντά στην αλήθεια αποτελέσματα.
Κεφάλαιο 2

Μεθοδολογικά Οριοθέσια

«Τα γεγονότα της παρατήρησης μπορεί να εναρμονίζονται ή όχι με κάποιο παραδεκτό σχήμα του σύμπαντος. Το βασικό όμως, σύμφωνα με τον Γαλιλαίο, είναι να αποδεχθεί κανείς τα γεγονότα και να οικοδομήσει εκείνη τη θεωρία που εναρμονίζεται μαζί τους.»

H.D. Antony, “Science and its background”
2.1 Μέθοδος Εργασίας

Σκοπός του τομογραφικού αλγορίθμου, με τον οποίο θα ασχοληθούμε, είναι να πάρουμε ένα μοντέλο που θα περιέχει την ελάχιστη δυνατή δομή και το οποίο θα περιλαμβάνει όλα τα χαρακτηριστικά που απαιτούνται από τα δεδομένα. Το μοντέλο αυτό πρέπει να εξαρτάται όσο το δυνατό λιγότερο από το αρχικό μοντέλο ταχυτήτων. Από ένα καθορισμένο σύνολο δεδομένων μπορούμε να φτιάξουμε ένα μοντέλο που θα συμβαδίζει με τους ισχύοντες φυσικούς νόμους και περιορισμούς. Το πρόβλημα όμως είναι ότι στην πλειονότητα των περιπτώσεων, περισσότερα από ένα μοντέλα μπορούν να εξηγήσουν ικανοποιητικά τα δεδομένα με αποτέλεσμα να πρέπει να επιλέξουμε ποιό από αυτά είναι το καταλληλότερο. Η επιλογή αυτή είναι ιδιαίτερα σημαντική και το ιδανικό μοντέλο πρέπει να στηρίζεται στα εξής κριτήρια:

1. Πρέπει να είναι απλό. Ένα απλό μοντέλο είναι προτιμότερο από κάποιο πιο σύνθετο αν και τα δύο μπορούν να εξηγούν τα ίδια δεδομένα με τον ίδιο τρόπο.
2. Τα δεδομένα πρέπει να είναι ποιοτικά και να μην εμπεριέχουν μεγάλο βαθμό αβεβαιότητας, γεγονός που θα ενισχύσει την ορθότητα της όλης διαδικασίας.

Η διάκριση ανάμεσα στα διαφορετικά χαρακτηριστικά των δεδομένων δεν είναι πάντα απλή, ούτε τετριμμένη.

Το πρώτο από τα κριτήρια είναι μια αρχή που εκφράσθηκε από τον Φραγκισκανό μοναχό και φιλόσοφο William of Occam και είναι γνωστή στην ιερά της Occam ή
αρχή της οικονομίας και συνοψίζεται στην ακόλουθη φράση *Frustra fit per plura quod fieri potest per pauciora* (είναι μάταιο να κάνεις κάτι με πολλά ενώ θα μπορούσες να το κάνεις με λιγότερα).

Σε αυτή τη διατριβή, παρουσιάζεται μια νέα προσέγγιση στη τομογραφική μοντελοποίηση με τη χρήση γεωμετρικών χώρων Finsler αλλά και ένας πλήρης έλεγχος και μηχανισμός εκτίμησης αβεβαιοτήτων στον αλγόριθμο.

2.2 Τομογραφική αντίστροφή σεισμικών δεδομένων

Η τομογραφία αποτελείται από δύο βασικά μέρη: το ευθύ και το αντίστροφο πρόβλημα. Κατά το ευθύ μέρος του προβλήματος (forward) μία εικονική ή αληθινή διάταξη (διάταξη και πυκνότητα συστήματος χτυπημάτων-γεωφώνων) συνδυάζεται με ένα αρχικό υποθετικό μοντέλο, που απεικονίζει προσεγγιστικά το πραγματικό μοντέλο, έτσι ώστε μέσα από τη διαδικασία αυτή να παραχθεί ένα σύνολο συνθετικών δεδομένων. Το αποτέλεσμα αυτής της διαδικασίας, η παραγωγή δηλαδή συνθετικών δεδομένων από κάποιο αρχικό μοντέλο και κάποια πειραματική γεωμετρία καλείται ευθύ πρόβλημα. Όταν προσπαθούμε, με μεθόδους αντίστροφης, να βρούμε το τελικό μοντέλο από ένα συγκεκριμένο σύνολο δεδομένων ή να βελτιώσουμε ένα υπάρχον μοντέλο ώστε να είναι όσο πιο κοντά στη πραγματικότητα, καλούμε τη διαδικασία αντίστροφο πρόβλημα.

Όσον αφορά στα γραμμικά τομογραφικά συστήματα (π.χ. ιατρική τομογραφία) τα πράγματα είναι κάπως πιο απλά, αφού εκεί είναι πιο εύκολο να γίνει η σύνδεση
ανάμεσα στα δεδομένα και στα μοντέλα που προκύπτουν από τα συγκεκριμένα
dεδομένα. Σε ιδιαίτερα μη-γραμμικά συστήματα, όπως αυτά που προκύπτουν από την
eυρυγώνια σεισμική τομογραφία, τα μοντέλα που προκύπτουν δεν είναι εύκολο να
συσχετισθούν με τα χαρακτηριστικά των δεδομένων. Για να πάρουμε αξιόπιστα
tελικά μοντέλα πρέπει να διωθεί ιδιαίτερη προσοχή στην ποιότητα των δεδομένων
tόσο αυτών που λαμβάνουμε κατά τη διάρκεια του πειράματος όσο και αυτών που
eπιλέγουμε για μοντελοποίηση. Τα δεδομένα που λαμβάνονται κατά τη διάρκεια ενός
πειράματος πρέπει να είναι τέτοιας ποιότητας ώστε να μπορέσουν να δώσουν μια
πιστή εικόνα της υπό έρευνας περιοχής· σε διαφορετική περίπτωση εισάγονται
σφάλματα που περιορίζουν την διακριτική ικανότητα και την αξιοπιστία των
tομογραφικών μοντέλων που παράγονται για να συμφωνήσουν με τα δεδομένα.

Αν υπάρχουν σφάλματα στα δεδομένα, αυτά πρέπει να εκτιμηθούν και αν είναι
dυνατόν να απομακρυνθούν ή σε διαφορετική περίπτωση, κάτι που συμβαίνει τις
περισσότερες φορές, να δωθεί μικρότερη βαρύτητα κατά τον υπολογισμό τους ώστε
να μην επηρεάσουν σε μεγάλο βαθμό το τελικό αποτέλεσμα. Το μοντέλο που θα
παραχθεί από την διαδικασία της τομογραφίας δεν αρκεί μόνο να εξηγεί με
ικανοποιητικό τρόπο τα δεδομένα- πρέπει να είμαι σίγουρο ότι αυτό που
μοντελοποιήσαμε είναι ωφέλιμα δεδομένα και όχι θόρυβος. Η συνεχής «βελτίωση»1
του τελικού μοντέλου δεν είναι πανάκεια, αντιθέτως μπορεί να παγιδέυσει τον χρήστη
της τομογραφικής μεθόδου σε μια αδιέξοδη ατακό όπου μπορεί φαινομενικά να
παίρνουμε ένα καλύτερο μοντέλο αλλά να μοντελοποιούμε αντί για δεδομένα θόρυβο.

1 Βελτίωση με την έννοια της στατιστικής μεθόδου όπως θα εξηγηθεί με λεπτομέρεια και παρακάτω.
Από την στιγμή που έχουμε βγάλει ένα μοντέλο που θα δίνει ικανοποιητική προσέγγιση με τα δεδομένα, πρέπει αυτό να αξιολογηθεί και να εκτιμηθεί με βάση τα ακόλουθα κριτήρια:

- Υπάρχουν ή θα μπορούσαν να βρεθούν άλλα μοντέλα που να ταυτίζονται το ίδιο καλά με τα δεδομένα;
- Αν ναι γιατί επιλέχθηκε το συγκεκριμένο μοντέλο;
- Πόσο καλά ορισμένο είναι το μοντέλο που έχουμε;
- Μπορούμε να εκτιμήσουμε τις αβεβαιότητες στις παραμέτρους του μοντέλου βασιζόμενοι στις αβεβαιότητες που υπάρχουν στα δεδομένα;

Η εκτίμηση του τελικού μοντέλου απαιτεί προσοχή και εμπειρία, ενώ δεν πρέπει να παρασύρουν τον χρήστη της μεθόδου, όπως θα δούμε και παρακάτω, τα στατιστικά κριτήρια αφού δεν δίνουν πάντα την πιο σωστή λύση.

2.3 Σύστημα μελέτης

Η τομογραφική μοντελοποίηση των δεδομένων είναι, όπως έχει προαναφερθεί, ένα μη-γραμμικό πρόβλημα. Αυτό που θέλουμε να επιτύχουμε είναι να μειώσουμε στο ελάχιστο τη μη-γραμμικότητα κάνοντας τη διαδικασία πιο ευάκυνη και να εξάγουμε το δυνατό περισσότερη ικανότητα πληροφορία από ένα συνδυασμό διαφορετικών σεισμικών δεδομένων. Στη προσπάθεια μας αυτή μειώνουμε τα δεδομένα σε ένα πεπερασμένο σύνολο χρόνων διαδρομής και το μοντέλο σε ένα πεπερασμένο σύνολο
παραμέτρων βάθεων και σεισμικών ταχυτήτων. Η μέθοδος θα ορίζεται από τα ακόλουθα στοιχεία:

1. Χρησιμοποιούμε το φορμαλισμό στρώμα – συνοριακή επιφάνεια.
2. Η διακριτική ικανότητα περιορίζεται από το εύρος των σεισμικών δεδομένων και επιπλέον από τη ζώνη Fresnel.

Οι περιορισμοί στη διακριτική ικανότητα μας δίνουν μια πιο λεία ή πιο «κηλιδωμένη» (blurred) εικόνα του τελικού μοντέλου από αυτό που ισχύει στην πραγματικότητα. Σε συνδυασμό με τον κανόνα του Occam συμπεραίνουμε ότι το ιδανικό τελικό μοντέλο θα είναι το πιο λείο από όσα μπορούν να εξηγήσουν τα δεδομένα και παράλληλα θα περιέχει την έλαχιστη δομή, δηλαδή θα είναι το πιο απλό από τα άλλα. Για να ικανοποιηθούν και οι δύο απαιτήσεις εισάγουμε περιορισμούς στα δεδομένα. Εδώ θα πρέπει να προσέξουμε οι περιορισμοί να μην «καθοδηγούν» το μοντέλο, δηλαδή να μην το πηγαίνουν εκεί που θέλουμε (bias), αλλά να πηγαίνει αβίαστα στο αληθινό μοντέλο (unbiased).

Εξίσου σημαντικό στοιχείο είναι ο τρόπος με τον οποίο καθορίζεται η «ομαλότητα» (smoothness) του μοντέλου, το πόσο λείο είναι δηλαδή. Επειδή θα χρησιμοποιήσουμε το φορμαλισμό των διεπιφανειών και των στρωματώσεων, θα πρέπει τα μοντέλα να περιλαμβάνουν επιφάνειες που θα επιπρέπουν, στη περίπτωση μας, τη διάθλαση καθώς και αλλαγές ταχύτητας μέσα στα στρώματα ώστε να είναι δυνατή η διάδοση των καμπύλων ακτίνων. Στο σχήμα 2.1 παρουσιάζεται ένα μονοδιάστατο μοντέλο ταχυτήτων το οποίο θα θεωρούμε λείο, γιατί σε κάθε στρώμα αξιωματικά δεχόμαστε
ότι η ταχύτητα παραμένει σταθερή. Κάθε αλλαγή στη στρωματοποιήση των ταχυτήτων συνεισφέρει στο να γίνει το μοντέλο πιο τραχύ (rough).

Σχ. 2.1: Μονοδιάστατο μοντέλο ταχυτήτων

Ο προσδιορισμός της ταχύτητας ενός μοντέλου χαρακτηρίζεται από τις παραγώγους δευτέρας τάξης της ταχύτητας και του βάθους (παράγωγος Frechet) και από το μέτρο της πρώτης χωρικής παραγώγου.

Σχ. 2.2: Γραφική αναπαράσταση της επαναληπτικής γραμμικής αντίστροφης
Η μέθοδος της γραμμικής επαναληπτικής αντιστροφής (Williamson, 1990), είναι μια μέθοδος που επιτρέπει στο μοντέλο να αυξάνει την ανομοιομορφία του σταδιακά, ξεκινώντας από ένα λείο αρχικό μοντέλο ταχυτήτων, προσεγγίζοντας με αυτό το τρόπο τη μη-γραμμικότητα του προβλήματος με διαδοχικά βήματα, επιτρέποντας στο μοντέλο να είναι όσο το δυνατόν ανεξάρτητο από το αρχικό μοντέλο ταχυτήτων.

Σε αντίθεση με τις κλασικές μεθόδους που χρησιμοποιούνταν στο παρελθόν οι οποίες περιορίζαν το μοντέλο, η μέθοδος αυτή σταδιακά οδηγεί το μοντέλο εκεί που πρέπει να πάει και όχι εκεί που θέλουμε να πάει. Στη μέθοδο που χρησιμοποιούμε για τη μοντελοποίηση των τομογραφικών δεδομένων στη παρούσα διατριβή, κάθε στοιχείο χρόνου διαδρομής έχει ένα ειδικό βάρος ανάλογα με την αβεβαιότητα, επιτρέποντας έτσι να υπάρχουν διαφορετικά επίπεδα εμπιστοσύνης ανάλογα με τα δεδομένα που έχουμε.
3. Παραμετροποιήση μοντέλου

Πολύ σημαντική θέση στην τομογραφική αντιστροφή κατέχει, όπως είδαμε και στην ανάλυση αβεβαιοτήτων, η μοντελοποίηση των δεδομένων. Στο συγκεκριμένο κεφάλαιο θα ασχοληθούμε με την παραμετροποίηση του μοντέλου και πώς αυτή μπορεί να οδηγήσει σε ένα σωστό τομογραφικό αποτέλεσμα. Η επιλογή της παραμετροποίησης επηρεάζει και το ευθύ αλλά και το αντίστροφο πρόβλημα της τομογραφικής αντιστροφής και έτσι πρέπει να υπάρχει μια ισορροπία ανάμεσα σε μια ευέλικτη παραμετροποίηση και στις απαιτήσεις του προβλήματος.

Σύμφωνα με όσα έχουμε αναφέρει στο δεύτερο κεφάλαιο θα αναζητήσουμε μια παραμετροποίηση συμβατή με τον φορμαλισμό στρωματώσεων και διεπιφανειών.
Ο πιο γρήγορος και ευθύς τρόπος για να προσεγγίσουμε την αντιστροφή θα ήταν να κατασκευάζεμε απλά μοντέλα τα οποία θα περιέχουν ένα πολύ μικρό αριθμό παραμέτρων, οι οποίες θα βελτιστοποιηθούν για να ταιριάξουν με τα υπάρχοντα δεδομένα. Αυτή η διαδικασία αποτελεί τη βασική προσέγγιση στη δρομοχρονική αντιστροφή και εμπλέκει διάφορα στοιχεία, όπως ταχύτητα P-κυμάτων, βάθος διεπιφανειών κτλ. Βέβαια, αυτή η απλότητα των συγκεκριμένων μοντέλων τα καθιστά ουσιαστικά αναπτυλεσματικά όταν οι δομές που θέλουμε να περιγράψουμε περιέχουν έστω και μια μικρή πολυπλοκότητα.

Καταλήγουμε έτσι σε πιο σύνθετες παραμετροποιήσεις, οι οποίες προσπαθούν να απεικονίσουν μορφές σε δύο ή τρείς διαστάσεις. Ο αλγόριθμος που χρησιμοποιούμε (Zelt and Barton, 1998) θεωρεί ομοιογενή κάνναβο σε δύο ή τρείς διαστάσεις ανάλογα με το πρόβλημα που έχουμε.

Η παραμετροποίηση με τον ομοιόμορφο κάνναβο επιτρέπει διαφορετικά είδη δομών να παραχθούν σε διαφορετικές περιοχές του μοντέλου, ανάλογα με τις απαιτήσεις των δεδομένων που έχουμε. Στην παραμετροποίηση αυτή πρέπει να προσέχουμε ώστε ο κάνναβος που θα έχουμε επιλέξει να είναι τέτοιου μεγέθους που θα ικανοποιεί και θα εξηγεί με ακρίβεια τα δεδομένα. Έτσι, το αντίστροφο πρόβλημα που θα κληθεί ο αλγόριθμος να επιλύσει θα είναι, στην πλειονότητα των περιπτώσεων, επαρκώς ορισμένο (over-parametrized), δηλαδή το σύστημα εξισώσεων προς επίλυση θα έχει περισσότερους γνωστούς από αγνώστους ή με άλλα λόγια οι παράμετροι του μοντέλου θα ξεπερνούν τον αριθμό των δεδομένων.
Σε αυτές τις περιπτώσεις, όπου υπάρχουν περιοχές του μοντέλου που δεν καλύπτονται από τα υπάρχοντα δεδομένα, για να σταθεροποιήσουμε την διαδικασία της αντιστροφής χρειάζεται κάποια μορφή λείανσης (smoothing) ή απόσβεσης (damping). Η χρήση ενός τύπου παραμέτρου, διευκολύνει σημαντικά το αντίστροφο πρόβλημα και είναι αυτή που προτιμάται στις περισσότερες περιπτώσεις περιπτώσεις τομογραφίας διάθλασης.

3.1 Επιλογή συνάρτησης βάσης

Θα προσπαθήσουμε να ελέγξουμε πώς μπορεί να υπάρξει ένας ευέλικτος μηχανισμός ικανός να περιγράψει ένα ευρύ φάσμα διαφορετικών δομών σεισμικής ταχύτητας και γεωμετρίας.

Όταν έχουμε μια συνεχή συνάρτηση (π.χ. τη χωρική κατανομή της ταχύτητας των σεισμικών κυμάτων) και θέλουμε να δούμε πώς αυτή μπορεί να κατασκευαστεί από τις τιμές των κόμβων ενός ομοιογενούς κανάβου δύο ή τριών διαστάσεων, πρέπει να ελέγξουμε τα αποτελέσματα που θα έχει στο ευθύ και το αντίστροφο πρόβλημα. Σύμφωνα με το βασικό θεώρημα δειγματοληψίας, ένας κάναβος, όπου οι κόμβοι του αντιστοιχούν σε τιμές, μπορεί να περιγράψει μια συνεχή συνάρτηση περιέχοντας συχνοτικά στοιχεία που δεν θα ξεπερνούν την συνάρτηση Nyquist, η οποία δίνεται από τον παρακάτω τύπο:

\[
 f_n = \frac{1}{2d} \quad (3.1)
\]
όπου \(d \) είναι το διάστημα ανάμεσα στους κόμβους (spacing). Για παράδειγμα θα μπορούσαμε να πάρουμε την συνάρτηση \(\text{sinc}(x) \) ή την ημιτονοειδή συνάρτηση:

\[
f'(x) = d \sin \left(\frac{\pi x}{d} \right)
\]

(3.2)

η οποία χρησιμοποιείται για να παράγει μια συνεχή κυματομορφή από ένα σύνολο κομβικών τιμών, χωρίς να δίνει αρμονικές παραμορφώσεις, και να την ορίσουμε σαν βάση της συνάρτησης που επιθυμούμε να κατασκευάσουμε. Η συνάρτηση αυτή μηδενίζεται σε ακέραια πολλαπλάσια του διαστήματος \(d \), εξασφαλίζοντας με αυτό τον τρόπο ότι η τιμή της συνάρτησης που θέλουμε να κατασκευάσουμε σε κάθε κόμβο είναι ίση με την τιμή του κόμβου. Επειδή η ημιτονοειδής συνάρτηση είναι άπειρη, την περικόπτουμε. Περικόπτοντας τη συνάρτηση, εμφανίζονται διάφορες αρμονικές παραμορφώσεις, συνήθως με την μορφή συχνοτήτων πάνω από την τιμή Nyquist.
Η χρήση όμως άπειρων συναρτήσεων απαιτεί πολύ μεγάλη υπολογιστική ισχύ ιδιαίτερα στα τομογραφικά προβλήματα. Έτσι, στην πράξη ακολουθούμε την μέθοδο των τοπικών συναρτήσεων, συναρτήσεις δηλαδή που εξαρτώνται μόνο από ένα μικρό αριθμό τιμών γειτονικών κόμβων. Μια από τις πλέον δημοφιλείς εξισώσεις για την τομογραφία είναι οι εξισώσεις B-spline. Μια εξίσωση spline μπορεί να κατασκευαστεί από μια σειρά τιμών των κόμβων. Για κάθε τάξη της spline συνάρτησης ορίζεται μια αντίστοιχη συνάρτηση βάση B-spline, η οποία δεν αντιστοιχεί πάντα στην τιμή του κόμβου της συνάρτησης spline. Έτσι αν

εικ.3.1: Η γραφική παράσταση της συνάρτησης sinc(x).

Ως spline τάξης μ ορίζεται μια πολυωνυμική συνάρτηση f η οποία είναι βαθμού μικρότερου ή ίσου του μ στα μέσοδιστήματα των κόμβων και οι παράγωγοι τάξης ως και μ-1 είναι όλες συνεχείς.

Εικ.3.2: Η χρήση κυβικών B-splines σημαίνει ότι η ταχύτητα θα είναι συνάρτηση 16 τιμών κόμβων, οι 8 κόμβοι που κλείνουν το κελί και οι 8 γειτονικοί του.

Οι πλέον τυπικές συναρτήσεις βάσης στο πρόβλημα της τομογραφίας είναι η ημιτονοειδής, η συνάρτηση "top hat", η 1ου, 2ου και 3ου βαθμού B-spline. Η επιλογή της συνάρτησης βάσης είναι ιδιαίτερα βασική, αφού καθορίζει την εγγυρότητα με την
οποία αποδίδονται από τον αλγόριθμο η ταχύτητα του σεισμικού κύματος και η
tοπογραφία.

![Cubic Spline](image)

Εικ.3.3: Η γραφική παράσταση της κυβικής b-spline εξίσωσης.

Αυτό που πρέπει να προσέχουμε στην επιλογή μιας συνάρτησης βάσης είναι αυτή να
απαιτεί όσο το δυνατό λιγότερος παραμέτρους και να επιτρέπει μεγάλη ταχύτητα
στους υπολογισμούς. Πρέπει να λαμβάνεται υπόψη ότι στο ευθύ πρόβλημα, αν
χρησιμοποιηθεί η μέθοδος του ray-tracing η μορφή της συνάρτησης της ταχύτητας θα
επηρεάσει κατά πολύ την αποτελεσματικότητα του ray-tracing. Με βάση αυτούς τους
περιορισμούς, καταλήγουμε στην εξίσωση B-spline 2ου βαθμού, η οποία ικανοποιεί
όλες τις παραπάνω προϋποθέσεις, εξασφαλίζοντας ότι η συνάρτηση της ταχύτητας
και η πρώτη παράγωγός της είναι συνεχείς, και επιπλέον επιτρέπει στις ακτίνες να χαράσσονται γρήγορα.

Η εξίσωση B-spline 2ου βαθμού έχει την ακόλουθη μορφή:

\[
\beta_2(x, x') = \begin{cases}
\frac{3}{4} - \left(\frac{|x-x'|}{d} \right)^2 \alpha \alpha \alpha |x-x'| \leq \frac{1}{2} \alpha \alpha \alpha d, \\
\frac{1}{2} - \left(\frac{|x-x'|}{d} - \frac{3}{2} \right)^2 \alpha \alpha \alpha \frac{1}{2} \alpha \alpha \alpha d < \frac{3}{2} \alpha \alpha \alpha d, \ & |x-x'| \leq \frac{3}{2} \alpha \alpha \alpha d, (3.3) \\
0, \alpha \alpha \alpha \frac{3}{2} \alpha \alpha \alpha d < |x-x'|
\end{cases}
\]

και η κυβική B-Spline την ακόλουθη:

\[
\beta_3(x, x') = \begin{cases}
\frac{2}{3} - \left(\frac{|x-x'|}{d} \right)^2 + \frac{1}{2} \left(\frac{|x-x'|}{d} \right)^2 \alpha \alpha \alpha |x-x'| \leq \alpha \alpha \alpha d, \\
\frac{1}{6} \left(2 - \left(\frac{|x-x'|}{d} \right)^2 \right) \alpha \alpha \alpha \alpha \alpha d < |x-x'| \leq 2 \alpha \alpha \alpha d, \ & (3.4) \\
0, \alpha \alpha \alpha 2 \alpha \alpha \alpha d < |x-x'|
\end{cases}
\]

όπου \(x' \) το σημείο κέντρου της B-spline και \(d \) η απόσταση μεταξύ των κόμβων (spacing). Κάθε συνάρτηση B-spline σε δύο ή τρεις διαστάσεις μπορεί να κατασκευαστεί από την μονοδιάστατη B-spline. Η B-spline σε τρεις διαστάσεις δίνεται από τον εξής τύπο:
\[B_2^{\text{τρισδιάστατη}}(x, x') = \beta_2(x_1, x'_1)\beta_2(x_2, x'_2)\beta_2(x_3, x'_3) \] (3.5)

όπου \(\beta_2(x_i, x'_i) \) η μονοδιάστατη B-spline. Έτσι, το τρισδιάστατο πεδίο της σεισμικής ταχύτητας, χρησιμοποιώντας τρισδιάστατες B-splines δευτέρου βαθμού θα δίνεται από τον τύπο:

\[u(x) = \sum_{i=1}^{27} B_2^{\text{τρισδιάστατη}}(x, x_i)u_i \] (3.6)

όπου \(u_i \) οι συντελεστές ταχύτητας της B-spline που αντιστοιχούν στις θέσεις \(x_i \) των κόμβων.

3.2 Κατασκευή μοντέλου

Χρησιμοποιώντας τον φορμαλισμό των διεπιφανειών και των στρωμάτων, κάθε τομογραφικό μοντέλο περιγράφεται σαν ένα σύνολο από στρώματα ταχυτήτων που χωρίζονται από διεπιφάνειες. Σε κάθε στρώμα, η ταχύτητα του σεισμικού κύματος μοντελοποιείται ως μια συνεχής συνάρτηση θέσης, σε σχέση με τους κόμβους του ομοιόμορφου κάναβου, χρησιμοποιώντας συναρτήσεις B-splines δευτέρου βαθμού.

Οι διεπιφάνειες με τη σειρά τους αναπαριστούν στο μοντέλο τις ασυνέχειες στη σεισμική ταχύτητα, ασυνέχειες στις οποίες μπορεί να συμβούν διαθλάσεις και το βάθος τους μοντελοποιείται με τις κυβικές B-splines. Για να απλοποιήσουμε τη
διαδικασία του μοντέλου χρησιμοποιούμε, όπως είπαμε και παραπάνω, ομοιόμορφο κάναβο και θεωρούμε ότι η απόσταση μεταξύ των κόμβων, το λεγόμενο spacing, είναι σταθερή. Είναι στην ευχέρεια του χρήστη να διαλέξει το μοντέλο που ικανοποιεί τις ανάγκες του πριν τρέξει το ευθύ και το αντίστροφο πρόβλημα. Μπορεί δηλαδή ο χρήστης να επιλέξει το μοντέλο σεισμικών ταχυτήτων που πλησιάζουν τις συνθήκες του πειράματός του αλλά και να ορίσει τα στρώματα και τα βάθη τους. Φυσικά, αυτή η ευελιξία στην επιλογή του μοντέλου πρέπει να γίνεται με σύνεση ώστε να μην καθοδηγήσουμε το τελικό μοντέλο εκεί που θέλουμε να πάει (bias).

Για κάθε στρώμα θεωρούμε την ταχύτητα του σεισμικού κύματος, την ταχύτητα των P-κυμάτων αφού μόνο με αυτά δουλεύουμε, σταθερή και οι παράμετροι που χρησιμοποιούνται στην αντιστροφή είναι οι τιμές των κόμβων των ταχυτήτων. Κάθε στρώμα αριθμείται και φράσεται από μια διεπιφάνεια που έχει τον ίδιο αριθμό με αυτόν του στρώματος. Το πλέγμα που απεικονίζει ένα στρώμα είναι σταθερό και σχηματίζει ένα κυβοειδές, το οποίο πρέπει να καλύπτει τη μέγιστη έκταση που προσδοκούμε ότι θα έχει το στρώμα κατά την διαδικασία της αντιστροφής.
Κεφάλαιο 4

4. Ευθύ Πρόβλημα

Για να προσεγγίσουμε το πρόβλημα της διάδοσης της σεισμικής ενέργειας στη γη έχουμε δύο βασικές μεθόδους:

1. τις μεθόδους κυματομορφής, οι οποίες αναζητούν λύσεις στις κυματικές εξισώσεις
2. τις μεθόδους eikonal που αναζητούν λύσεις στην εξίσωση eikonal, μια προσέγγιση της κυματικής εξίσωσης.

Οι περισσότερες προσεγγίσεις στη μοντελοποίηση των σεισμικών κυμάτων θεωρούν τη γη σαν συνεχής με απόλυτη ελαστικότητα. Η συμπεριφορά ελαστικών μέσων χαρακτηρίζεται από τον νόμο του Hooke, ο οποίος για ισοτροπικά υλικά περιγράφεται από τον ακόλουθο τύπο:

\[\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij} \] (4.1)

όπου \(\lambda \) και \(\mu \) οι παράμετροι Lamé, \(\sigma_{ij} \) ο τανυστής της παραμόρφωσης, \(\varepsilon_{ij} \) ο τανυστής τάσης. Βέβαια, πολλές δομές μέσα στη γη εμφανίζουν ανισοτροπία και αρα δεν μπορούν να εκφρασθούν με τον παραπάνω τύπο. Η εισαγωγή ανισοτροπίας σε τομογραφικά δεδομένα περιπλέκει το ευθύ πρόβλημα, χρησιμοποιώντας κλασσικές Ευκλείδειες μεθόδους.

Οι μέθοδοι που θα παρουσιάσουμε παρακάτω, με εξαίρεση το κομμάτι που αφορά τη γενίκευση του αλγορίθμου ray-tracing σε χώρους Finsler, αναφέρονται σε ισοτροπικούς χώρους. Όταν μοντελοποιούμε σεισμικά δεδομένα σε ισοτροπικούς χώρους πρέπει πάντα να λαμβάνουμε υπόψιν την πιθανότητα ανισοτροπίας, η οποία συνήθως φανερώνεται με την κακή σύγκλιση των μοντέλων ταχύτητας.
Η διάδοση του κύματος μέσα σε ένα ελαστικό μέσο μοντελοποιείται αν επιλύσουμε με αριθμητικές μεθόδους την εξίσωση Navier η οποία περιγράφεται παρακάτω:

\[\rho \frac{\partial^2 u}{\partial t^2} = \nabla (\lambda \nabla \cdot u) + 2 \nabla \mu \cdot \varepsilon + \mu \nabla^2 u + \mu \nabla (\nabla \cdot u) + \rho \nabla \psi \]

όπου \(u(t) \) το διάνυσμα μετατόπισης, το οποίο περιγράφει τη θέση του στοιχείου τη χρονική στιγμή \(t \), \(\psi \) το βαρυτικό δυναμικό σε συγκεκριμένη θέση και χρόνο και \(\rho \) η πυκνότητα του μέσου. Αν περιγράψουμε το μέσο διάδοσης σαν ένα διακριτό πλέγμα (κάναβο) όπου παίρνουμε μια λύση σε κάθε κόμβο, τότε χρησιμοποιούμε την προσέγγιση των πεπερασμένων διαφορών (finite-difference), χρήσιμη κυρίως όταν χρησιμοποιούμε μια πλήρη κυματομορφή.

Επειδή η εξίσωση του Navier δεν λαμβάνει υπόψιν τις απώλειες της σεισμικής ενέργειας λόγω απόσβεσης, με τη βοήθεια του θεωρήματος του Helmholtz καταλήγουμε στην ακόλουθη εξίσωση για την εξίσωση Navier:

\[\nabla \left[(\lambda + 2\mu) \nabla^2 \phi - \rho \frac{\partial^2 \phi}{\partial t^2} \right] + \nabla \times \left[\mu \nabla^2 \psi - \rho \frac{\partial^2 \psi}{\partial t^2} \right] = 0 \]

όπου \(\phi \) και \(\psi \) διανυσματικά πεδία, και η κίνηση του κύματος που περιγράφει το \(\psi \) δεν εισάγει δευτερεύων κύμα (S-) ενώ το \(\phi \) δεν επιφέρει αλλαγή στον όγκο του. Οι λύσεις στην κυματική εξίσωση γράφονται γενικά ως εξής:
φ(χ,τ) = Ae^{i(k_α·χ−ωτ)}
ψ(χ,τ) = B×ke^{i(k_β·χ−ωτ)} (4.4)

οι οποίες περιγράφουν ένα επίπεδο κύμα που διαδίδεται σε γωνιακή συχνότητα ω, με x το διάνυσμα θέσης, κ_α και κ_β διανύσματα που ορίζονται από τους ακόλουθους τύπους:

k_α = ωk / α (4.5)

k_β = ωk / β (4.6)

με k το μοναδιαίο διάνυσμα, α και β σταθερές που ορίζουν το πλάτος των κυμάτων.

Η κυματική εξίσωση, για P- κύματα, μπορεί να γραφεί και ως ακόλουθως:

φ(χ,τ) = φ_0(χ)e^{−iωτ} (4.7)

με φ_0(χ) την εξής:

φ_0(χ) = A(χ)e^{iκ_0S(χ)} (4.8)

όπου κ_0 = ω / α_0, με α_0 ταχύτητα αναφοράς και οι συναρτήσεις A(χ) και S(χ), γνωστή και σαν eikonal, μας δίνουν τη χωρική μεταβολή του πλάτους και της φάσης αντίστοιχα.
Για κύματα σε υψηλές συχνότητες, όπου το πλάτος και η φάση δεν μεταβάλλονται
ιδιαίτερα στο χώρο παίρνουμε την παρακάτω εξίσωση:

\[(\nabla S)^2 = \frac{a_o^2}{a^2} \] (4.9)

η οποία όπως προαναφέραμε είναι γνωστή σαν εξίσωση eikonal. Ο χρόνος
diadromής \(T(x) \) προσδιορίζεται σαν τον χρόνο που απαιτείται για ένα μέτωπο
κύματος να πάει από ένα σημείο αναφοράς \(x_o \) σε ένα οποιοδήποτε σημείο \(x \),
το οποίο όμως πρέπει να βρίσκεται στην ίδια diadromή aktínas (ray-path). Η εξίσωση
eikonal σχετίζεται με το χρόνο diadromής με την εξίσωση:

\[S(x) = \alpha_o T(x) \] (4.10)

Έτσι, η εξίσωση eikonal μπορεί να μετασχηματιστεί σαν σχέση του χρόνου
diadromής και της ταχύτητας του κύματος:

\[(\nabla T)^2 = \frac{1}{\mu(x)^2} \] (4.11)

Με την προϋπόθεση ότι η akína diadromής είναι κάθετη στο μέτωπο κύματος
παίρνουμε:
\[\frac{dx}{ds} = u \nabla T \quad (4.12) \]

όπου το μέγεθος \(\nabla T \) καλείται βραδύτητα (slowness). Αν παραγωγίσουμε την eikonal εξίσωση με βάση το \(s \), τότε παίρνουμε:

\[\nabla T \cdot \frac{d \nabla T}{ds} = \frac{1}{u} \frac{d}{ds} \left(\frac{1}{u} \right) = \frac{1}{u} \frac{dx}{ds} \cdot \nabla \left(\frac{1}{u} \right) \quad (4.13) \]

η οποία αν συνδυαστεί με την εξίσωση (4.12) παίρνουμε:

\[\frac{d \nabla T}{ds} = \nabla \left(\frac{1}{u} \right) \quad (4.14) \]

Αυτές οι δύο συνθήκες οδηγούν στις βασικές εξισώσεις του ray-tracing, οι οποίες σύμφωνα με το φορμαλισμό του παρόντος κεφαλαίου και με βάση οριακές συνθήκες οι οποίες θα περιγραφούν στην παρακάτω ενότητα, γράφονται ως εξής:

\[\frac{dx}{ds} = u \nabla T \quad και \quad \frac{d(1/u)}{ds} = \nabla \left(\frac{1}{u} \right) \quad (4.15) \]

Οι παραπάνω διαφορικές εξισώσεις χαράσσουν την τροχιά μιας ακτίνας. Έχοντας χαράξει την τροχιά που ακολουθεί η ακτίνα μπορούμε να υπολογίσουμε τους χρόνους διαδρομής, ολοκληρώνοντας την εξίσωση eikonal, κατά μήκος της διαδρομής της ακτίνας. Παίρνουμε δηλαδή την ακόλουθη εξίσωση:
4.1 Ray-tracing δύο σημείων

Στην προηγούμενη ενότητα δώσαμε τις εξισώσεις του ray-tracing και δηλώσαμε ότι αυτές ισχύουν με βάση κάποιες αρχικές συνθήκες. Η συνθήκη η οποία μας ενδιαφέρει στη παρούσα ενότητα και είναι η πιο σημαντική για το ray-tracing είναι αυτή που απαιτεί το σημείο εκκίνησης και τερματισμού της διαδρομής της ακτίνας να είναι γνωστά. Η συνθήκη αυτή είναι γνωστή και σαν πρόβλημα των δύο σημείων, ένα αρκετά δύσκολο και πολύπλοκο πρόβλημα για την τομογραφία. Στην εισαγωγή, στο πρώτο κεφάλαιο, αναφέραμε τις τρεις βασικές προσεγγίσεις στο πρόβλημα. Εκεί, μιλήσαμε για τεχνικές shooting, bending και συντομότερης διαδρομής.

Κάθε μια από αυτές τις προσεγγίσεις έχει τα πλεονεκτήματα και τα μειονεκτήματα της. Για παράδειγμα οι μέθοδοι shooting είναι αποτελεσματικοί μόνο όταν έχουμε μεγάλο αριθμό σεισμικών πηγών και μικρό αριθμό δεκτών (ή αντίστροφα), ενώ, αντίθετα αν ο αριθμός πηγών και δεκτών είναι παραπλάνητος σε πλήθος, τότε παρουσιάζουν σημαντικά προβλήματα σύγκλισης.

Από την άλλη οι μέθοδοι bending είναι σχετικά σταθεροί αλγόριθμοι μόνο όταν έχουμε πολύ πυκνό δίκτυο ενώ η και σύγκλισή τους δεν είναι πάντα η σωστή, συγκλίνουν δηλαδή σε λάθους χρόνους. Τέλος, η μέθοδος της συντομότερης...
διαδρομής είναι μέθοδος όχι μεγάλης ακρίβειας και συνίσταται μόνο όταν θέλουμε να έχουμε μια πρώτη εικόνα για τους χρόνους διαδρομής. Στον αλγόριθμό, λόγω αυτών των προβλημάτων επιλέγουμε τον πιο σταθερό αλγόριθμο των πεπερασμένων διαφορών με σημαντικές τροποποιήσεις ώστε να μπορεί να ανταποκρίνεται στις μεγάλες διακυμάνσεις των ταχυτήτων των σεισμικών κυμάτων που συναντούμε σε ρηχά πειράματα. Στις επόμενες ενότητες παρουσιάζουμε τη μέθοδο που χρησιμοποιούμε στον αλγόριθμο, την τροποποιημένη δηλαδή μέθοδο των πεπερασμένων διαφορών, ενώ παραθέτουμε και μια νέα προσέγγιση στην τεχνική ray-tracing, με την εισαγωγή του φορμαλισμού της γεωμετρίας Finsler.

4.1.2 Περιορισμοί από το Ray-tracing

Ο φορμαλισμός των ακτίνων όπως είδαμε είναι ιδιαίτερα βολικός αφού μπορούμε να χρησιμοποιήσουμε αρκετούς νόμους από την οπτική, για να προσέγγισουμε το ευθύ πρόβλημα. Βέβαια, δεν πρέπει να λησμονούμε ότι οι εξισώσεις των ακτίνων που είδαμε στην προηγούμενη ενότητα, ουσιαστικά αποτελούν μια υψηλής συχνότητας προσέγγιση της κίνησης σε ελαστικό μέσο. Η κυματική εξίσωση μπορεί να θεωρηθεί ότι έχει ακριβής λύση μόνο στην υποθετική περίπτωση κύματος άπειρης συχνότητας. Στο εύρος των πεπερασμένων συχνοτήτων, σε αυτές δηλαδή που εργαζόμαστε, οι ακτίνες προσφέρουν μια καλή προσέγγιση στην κίνηση του κύματος, δεδομένου ότι έχουν ληφθεί υπ’όψιν φαινόμενα περίθλασης.

Ένα από τα πιο σημαντικά φαινόμενα περίθλασης για τη σεισμική δρομοχρονική τομογραφία αποτελεί η λεγόμενη πρώτη ζώνη Fresnel. Αυτή η ζώνη μπορεί να
θεωρηθεί σαν ένας χώρος που βρίσκεται περιμετρικά της ακτίνας καθώς αυτή θα προχωράει μέσα στο μοντέλο και έτσι ο χρόνος διαδρομής μπορεί να λογιστεί σαν μια συνάρτηση της ταχύτητας του σεισμικού κύματος μέσα στον όγκο της ζώνης Fresnel που κυκλώνει την ακτίνα.

Μια απλοική προσέγγιση της ζώνης Fresnel (Yilmaz, 1987), θεωρώντας ένα μέσο σταθερής ταχύτητας, είναι:

$$r' = \sqrt{\frac{d\lambda}{2}} \quad (4.17)$$

όπου \(\lambda\) το μήκος κύματος και \(d\) η απόσταση μέχρι τον ανακλαστήρα, από την πηγή ή τον δέκτη (όποιος είναι πιο κοντά στον ανακλαστήρα).

Έτσι τίθενται περιορισμοί στη διακριτική ικανότητα λόγω της ζώνης Fresnel, οι οποίοι εξεταίρωνται συνήθως με την εισαγωγή επιπλέον δεδομένων. Συνήθως, θεωρούμε μια πιο σφαιρική όψη των δεδομένων, συμπεριλαμβάνοντας πλάτη ή ακόμη και ολόκληρες κυματομορφές για την καλύτερη εκμετάλλευση των δεδομένων που έχουμε. Βέβαια, η εισαγωγή και η επεξεργασία αυτών των δεδομένων απαιτεί ιδιαίτερα μεγάλους υπολογιστικούς πόρους.

Έτσι, αν και οι πλέον πρόσφατοι αλγόριθμοι, σε αυτούς περιλαμβάνονται και αυτοί που χρησιμοποιούμε στην παρούσα διατριβή, βασίζονται στη θεωρία των ακτίνων, οι νέοι τρόποι σχεδίασμού σεισμικών ερευνών, τα νέα μηχανήματα λήψης δεδομένων
αλλά και οι νέες σεισμικές πηγές, είναι έτσι σχεδιασμένα ώστε να ξεπερνούν αυτά τα προβλήματα και να δίνουν τη βέλτιστη δυνατή εικόνα του αντικειμένου ή της δομής που θέλουμε να ελέγξουμε.

4.1.3 Θεωρία διαταραχής

Η θεωρία διαταραχής των ακτίνων, αποτελεί παρακλάδι της θεωρίας ακτίνων και περικλείει τεχνικές που επιτρέπουν να προσεγγίσουμε σχετικά γρήγορα, διαδρομές ακτίνων, χρόνους διαδρομής, πλάτη ακόμη και πλήρεις κυματομορφές, εφαρμόζοντας διαταραχές σε μοντέλα για τα οποία έχουμε ήδη μια λύση, συνήθως μια αναλυτική λύση.

Και στις δύο προσεγγίσεις ακολουθούμε παρόμοια διαδικασία: δηλαδή, μια ακτίνα σχεδιάζεται σε κάποιο μέσο αναφοράς, σε ένα μοντέλο για το οποίο έχουμε ήδη κάποια λύση, και υπολογίζονται οι τιμές, για συγκεκριμένα μεγέθη, π.χ. για κάποιο χρόνο διαδρομής, για τη συγκεκριμένη ακτίνα, ας την ονομάσουμε ακτίνα-αναφοράς. Έπειτα, εφαρμόζονται στο σύστημα μια σειρά από μικρές διαταραχές, στην τιμή για παράδειγμα της ταχύτητας, που είναι και η πιο σύνθετης διαταραχή, ή ακόμη και στη γωνία με την οποία φεύγει η ακτίνα από κάποια πηγή, και υπολογίζεται το
αποτέλεσμα στην ακτίνα, παράγοντας τη λεγόμενη διαταραγμένη ακτίνα. Αν το αποτέλεσμα της διαταραχής είναι αρκετά μικρό ώστε να θεωρηθεί αποδεκτό, τότε υπολογίζονται οι διαταραχές και εφαρμόζονται στις ποσότητες, π.χ. στο χρόνο διαδρομής, και αυτές οι διαταραγμένες τιμές λογίζονται πλέον σαν τη λύση.

Η Χαμιλτονιανή προσέγγιση βασίζεται στην εξίσωση Hamilton που θα δούμε παρακάτω, ενώ η Λαγκρανζιανή προσέγγιση βασίζεται στην εξίσωση Euler-Lagrange, που στην περίπτωση της θεωρίας ακτίνων είναι η εξίσωση (4.14).

Για ένα ισοτροπικό μέσο, η Χαμιλτονιανή δίνεται από τον εξής τύπο:

$$H(\frac{1}{u}, x, \beta) = \frac{(\beta^2 - u^2(x))}{2}$$ (4.18)

όπου x το διάνυσμα θέσης και β μια παράμετρος, η οποία μπορεί να ορισθεί από τον παρακάτω τύπο:

$$dt = u^2 d \beta$$ (4.19)
όπου το χρόνος διαδρομής. Ετσι, μπορούμε να μετατρέψουμε το σύστημα ray-tracing (4.15) σύμφωνα με τη χαμιλτονιανή ως εξής:

\[
\frac{dx}{d\beta} = \nabla_{1/u} H \\
\frac{d(1/u)}{d\beta} = -\nabla_x H
\] (4.20)

Στη συνέχεια θα παρουσιάσουμε μια τροποποιημένη μέθοδο πεπερασμένων διαφορών που ξεπερνά πολλές από τις δυσκολίες που αντιμετωπίζουν οι αλγόριθμοι ray-tracing και θα αποτελέσει τη βάση πάνω στην οποία θα στηριχθεί και ο αλγόριθμός που θα χρησιμοποιήσουμε.

4.2 Μια τροποποιημένη μέθοδος των πεπερασμένων διαφορών

Στον αλγόριθμο με τον οποίο επεξεργαζόμαστε τα τομογραφικά δεδομένα από το πείραμά μας, χρησιμοποιούμε μια τροποποιημένη μορφή της μεθόδου του Vidale (1990), η οποία υπολογίζει τις πρώτες αφίξεις πάνω σε ομοιόμορφο κάνναβο, όπως φαίνεται στο παρακάτω σχήμα:
Και λύοντας την εξίσωση:

\[
\left(\frac{\partial t}{\partial x} \right)^2 + \left(\frac{\partial t}{\partial z} \right)^2 = s(x, z)^2 (4.21)
\]

όπου \(x, z\) οι άξονες των συντεταγμένων και \(s\) ο συντελεστής βραδύτητας. Η παραπάνω εξίσωση είναι η eikonal εξίσωση και επιλύεται με τη χρήση πεπερασμένων διαφορών, δηλαδή:

\[
\left(\frac{\partial t}{\partial x} \right) = \frac{1}{2h} (t_0 + t_2 - t_1 - t_3) \\
\left(\frac{\partial t}{\partial z} \right) = \frac{1}{2h} (t_0 - t_2 + t_1 - t_3) (4.22)
\]
Τις οποίες αν αντικαταστήσουμε στην eikonal εξίσωση παίρνουμε:

\[t_3 = t_0 + \sqrt{2(hs)^2 - (t_1 - t_0)^2} \] (4.23)

Οι χρόνοι υπολογίζονται πάνω στις πλευρές ενός τετραγώνου, αν πρόκειται για πρόβλημα δύο διαστάσεων, ή ενός «επεκτεινόμενου» κύβου, αν πρόκειται για πρόβλημα τριών διαστάσεων, τελειώνοντας μια πλευρά πριν πάμε στην επόμενη.

Σε δεδομένα που έχουν περισσότερες πηγές από δέκτες μπορούμε να υπολογίσουμε το χρόνο αποτελεσματικά ακολουθώντας αντίστροφη διαδικασία, θεωρώντας δηλαδή κάθε δέκτη σαν πηγή. Στην μορφή που παρουσιάστηκε η μέθοδος του Vidale, όπως είπαμε και στην ιστορική αναδρομή, δεν είναι αξιόπιστη σε περιπτώσεις όπου έχουμε μεγάλες αντιθέσεις ταχύτητας.

Οι κόμβοι που συνιστούν μια νέα πλευρά του «επεκτεινόμενου» κύβου υπολογίζονται ανάλογα με το χρόνο των πλευρών που βρίσκονται ακριβώς από πίσω τους. Η σειρά με την οποία οι πλευρές του επεκτεινόμενου κύβου υπολογίζονται, προσδιορίζεται.
από την πλευρά που περιέχει τον κόμβο με τον συντομότερο χρόνο. Με αυτό τον τρόπο ο επεκτεινόμενος κύβος θα χαράζει με τη μεγαλύτερη δυνατή ακρίβεια το πραγματικό σχήμα των μετώπων κύματος.

Ο μέγιστος χρόνος που θα πάρουμε μπορεί να διαφέρει από πηγή σε πηγή και εξαρτάται από τη γεωμετρία της έρευνας και την ποιότητα των δεδομένων. Για να εκοικονομήσουμε υπολογιστική ισχύ και χρόνο κατά τη διάρκεια των υπολογισμών, μπορούμε να σταματήσουμε τη διάδοση από μια πηγή όταν οι χρόνοι όλων των κόμβων γύρω από όλους τους επιλεγμένους δέκτες έχουν υπολογιστεί. Αν απαιτείται αντίστροφη διάδοση, οι κόμβοι που απαιτούνται είναι μόνο αυτοί που βρίσκονται στον ίδιο κύβο που υπολογίσαμε τους χρόνους κατά την ευθεία διάδοση.

Ο αλγόριθμος αυτός σε σχέση με τους κλασικούς αλγορίθμους ray-tracing παρουσιάζει σημαντικά πλεονέκτημα αφού: 1. είναι πιο γρήγορος και απαιτεί λιγότερη υπολογιστική ισχύ και 2. δεν αντιμετωπίζει προβλήματα λόγω γεωμετρίας πηγών-δέκτων. Στην παρακάτω ενότητα παρουσιάζουμε έναν εναλλακτικό φορμαλισμό των εξισώσεων ray-tracing με τη χρήση χώρων Finsler.

4.3 Ray-tracing σε χώρους Finsler

Στην ενότητα αυτή θα παρουσιάσουμε μια εναλλακτική προσέγγιση της ray-tracing τεχνικής, χρησιμοποιώντας στοιχεία από τη διαφορική γεωμετρία Finsler. Όπως είδαμε και σε προηγούμενες ενότητες, η χρήση της κλασικής, Ευκλείδειας γεωμετρίας αντιμετωπίζει σημαντικά και πολλαπλά προβλήματα, πολύ περισσότερο αν
εφαρμοστεί σε ανισοτροπικούς χώρους. Στην παρούσα, θα γενικεύουμε τις εξισώσεις ray-tracing που είδαμε σε προηγούμενη ενότητα στη βάση της γεωμετρίας της ολικής δέσμης.

Οι εξισώσεις που περιγράψαμε στην (4.15) λύνονται είτε με την μέθοδο των χαρακτηριστικών είτε γενικεύοντας την αρχή του Fermat. Καθώς οι ακτίνες στη σεισμική τομογραφία δεν είναι ευθείες γραμμές, αλλά γεωδαισικές, η Ευκλείδεια γεωμετρία δεν είναι το κατάλληλο μέσο για να περιγράψει ανισοτροπικούς σεισμικούς χώρους, τους οποίους θα ονομάσουμε Β.

Η ιδέα της χρήσης Finsler γεωμετρίας σε ανισοτροπικούς χώρους γενικά, εκφράσθηκε ουσιαστικά για πρώτη φορά από τον ίδιο τον Finsler και αργότερα από άλλους (π.χ. Antonelli et al., 1993). Στην περίπτωση αυτή, η ταχύτητα των σεισμικών κυμάτων εξαρτάται από τη διεύθυνση ή από το υλικό μέσα στο οποίο κινείται το κύμα (Mardsen και Hughes, 1983).

Μια μοναδιαία σφαίρα ενός ισοτροπικού μέσου στον εφαπτόμενο χώρο, που δημιουργείται από ένα σημείο που ανήκει στο μέτωπο κύματος, μπορεί να επεκταθεί
σε ένα ελλειψοειδές σε ανισοτροπικό μέσο. Αυτό το ελλειψοειδές θα χαρακτηρίζει
από εδώ και πέρα το κύμα.

Για να ορίσουμε έναν υλικό χώρο Finsler, θεωρούμε το σύνολο \((M, V, F)\), το οποίο
αποτελείται από μια διαφορίσιμη πολλαπλότητα \(M = M^n \text{τάξης } C^\infty\). Τα σημεία της
dιαφορίσιμης πολλαπλότητας ονομάζονται υλικά σημεία. Το \(V\) ονομάζεται υλική
dέσμη κώνου και δίνεται από την εξίσωση:

\[
V = \bigcup_{x \in M} V_x \quad (4.24)
\]

όπου \(V_x\) κώνος στον εφαπτόμενο χώρο \(T_x M\). Κάθε \(V_x\) θα λέμε ότι είναι κώνος όταν
τηρεί την παρακάτω συνθήκη:

\[
y_1 \in V_x, \quad \text{ότε} \quad y_2 = py_1, \quad p > 0
\]

Η \(F\) είναι μια θετική συνάρτηση δύο μεταβλητών, έστω \(x\) και \(y\), και ορίζεται ως εξής:

\[
F : V \setminus \{0\} \rightarrow \mathbb{R}_+
\]

\[
F(x, y), x \in M, \quad y \in V_x, y \neq 0
\]

Η συνάρτηση \(F\) ικανοποιεί τις παρακάτω συνθήκες:
1. Η Φ είναι γ-ομογενής, δηλαδή \[F(x, ky) = kF(x, y), \quad k > 0 \]

2. Η Φ είναι μετρικώς ομαλή, δηλαδή \[\left| f_x \right| := \frac{1}{2} \frac{\partial^2 F}{\partial y' \partial y''}
eq 0 \]

Η Φ καλείται γεννήτρια μετρική συνάρτηση ή αλλιώς Λανγρανζιανή (Langrangian).

Το υλικό Φινσλεριανό τανυστικό πεδίο \(f_y \) (Εσσιανή της \(\Phi \)) είναι ανισοτροπικό πεδίο εξαρτώμενο από την \(y \)-διεύθυνση.

Το μήκος της υλικής καμπύλης \(C \) σε έναν υλικό χώρο Finsler δίνεται από την:

\[
\begin{align*}
\int_{a}^{b} F(x(t), y(t)) \, dt
\end{align*}
\]

(4.25)

όπου \(x' = x'(t) \) και \(y' = y'(t) \) με \(a \leq t \leq b \) και η καμπύλη \(C \) ανήκει στην περιοχή συντεταγμένων \(U \subset M^n \). Το μήκος του διανύσματος \(u \) δίνεται από:

\[
\left| u \right| = f_y(x, y)u'u'(4.26)
\]

το οποίο καλείται μήκος του \(u \) σε σχέση με την \(y \)-διεύθυνση. Σε ανισοτροπικά μέσα, ο χρόνος διαδρομής \(T(x, y) \) θα μετράται μόνο κατά την \(y \)-διεύθυνση, έτσι μπορούμε να δώσουμε μια σχέση ανάλογη για το χρόνο διαδρομής:
\[T(x, y) = \int_{S_0} \frac{1}{u_y} dS \quad (4.27) \]

όπου \(\frac{1}{u_y} \) η βραδύτητα (slowness) ως προς την \(y \)-διεύθυνση.

Μπορούμε να θεωρήσουμε ως μέτωπα κύματος υλικές επιφάνειες με κάθε είδους διαταραχή. Μπορούμε να εφαρμόσουμε την αρχή του Huygens θεωρώντας τον εξής διμορφισμό:

\[\Phi_t : S_0 \rightarrow S_t \]

όπου το \(S_t \) για \(t \in R \) εκφράζει το μέτωπο κύματος έπειτα από χρόνο \(t \), με \(t>0 \) και συνιστάται από τα σημεία που περνάει η διαταραχή μέσα σε χρόνο \(t \).

Για κάθε μέτωπο \(S_s \), μπορούμε να θεωρήσουμε μια νέα επιφάνεια \(S_s dy \) και τον διμορφισμό:

\[\Phi_s : S_s \rightarrow S_s \]

Τότε όμως, το μέτωπο κύματος του \(S_0 \) μετά από χρόνο \(s+t \) θα δίνεται από τον διμορφισμό \(\Phi_{s+t}(S_0) \) όπου:
Η σχέση (4.28) ουσιαστικά αναπαριστά το εξωτερικό περίβλημα των μετώπων S_t. Σύμφωνα και με την αρχή του Huygens, ο τοπικός χαρακτήρας της διάδοσης θα δίνεται από την νόμιμη του διανύσματος V της ταχύτητας της Ριμάνιας μετρικής της δείκτριας σε έναν υλικό χώρο Finsler, το οποίο συμβαδίζει με τα εσωτερικά χαρακτηριστικά του μέσου. Η μορφή της νόμιμης στην παραπάνω περίπτωση θα δίνεται από το εξής:

\[|V|^2 = V^\alpha V^\beta g_{\alpha\beta} \quad (4.29) \]

όπου:

\[g_{\alpha\beta} = h_{ij} Y^i Y^j \quad (4.30) \]

με

\[Y^i = \frac{\partial y^i}{\partial u^\alpha} \quad (4.31) \]

και

\[y^i = y^i(u^\alpha) \quad (4.32) \]

για $\alpha=1,2$ όπου α συμβολίζει τις παραμετρικές εξισώσεις της δείκτριας και h_{ij} η γωνιακή μετρική.
Η μοναδιαία σφαίρα ενός υλικού χώρου Finsler στο σημείο \(x_0 \) θα συμβολίζεται με \(I_{x_0} \) και αποτελεί μια υπερεπιφάνεια του εφαπτόμενου χώρου στο σημείο \(x_0 \) (Arnold, 1978). Επεκτείνουμε αυτή τη διαπίστωση στο πλαίσιο της εφαπτόμενης δέσμης μιας υλικής επιφάνειας Finsler. Σε αυτή την περίπτωση ο εφαπτόμενος χώρος είναι η εφαπτόμενη επιφάνεια \(T_x M, x \in M \). Η υλική σφαιρική δέσμη \(SM \) (Yasuda, 1979) στην επιφάνεια \(M^2 \) συνίσταται από όλες τις διαστάσεις μιας σεισμικής ακτίνας και είναι μια τετραδιάστατη πολλαπλότητα στο τοπικό σύστημα συντεταγμένων \((x^1, x^2, y^1, y^2)\), όπου:

\[
y^i = \frac{dx^i}{dt} \quad (4.33)
\]

με \(x^1, x^2 \in M \). Αυτές οι συντεταγμένες επάγουν τις συντεταγμένες \((y^1, y^2)\) στο εφαπτόμενο επίπεδο \(T_x M \).

Ένα διανυσματικό πεδίο \(V \) στο \(SM \) μπορεί να γραφεί με τον τοπικό τύπο:

\[
V = V^a \frac{\partial}{\partial y^a} \quad (4.34)
\]

tο οποίο είναι κάθετο στην επιφάνεια \(M \). Στον υλικό χώρο \(T(SM) \) της σφαιρικής δέσμης μια τοπική βάση δίνεται από το δισύνολο \(\left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^a} \right) \) όπου:
Η εξίσωση (4.31) αποτελεί το οριζόντιο μέρος της βάσης και το $\frac{\partial}{\partial y^a}$ το κάθετο, με το N^a_i να αναπαριστά τη μη γραμμική σύνδεσή (Miron και Anastasei, 1994).

Στην υλική εφαπτόμενη δέσμη η διαδρομή μιας σεισμικής ακτίνας μπορεί να προσδιορισθεί από την παραμετρική καμπύλη $C: (x_i(t), v_i)$, η οποία θα ονομάζεται τροχιά της ακτίνας και αναπαριστά στην ουσία ένα πεδίο στην υλική εφαπτόμενη δέσμη TM. Η μετρική δομή αυτής της δέσμης Finsler θα δίνεται από την εξίσωση:

$$dl^2 = ds^2 + d\sigma^2 \quad (4.36)$$

όπου:

$$ds^2 = g_{ij}(x, v)dx^i \otimes dx^j,$$

$$d\sigma^2 = g_{\alpha\beta}(x, v^{\alpha})\delta v^\alpha \otimes \delta v^\beta \quad (4.37)$$

$$\delta v^\alpha = P^\alpha_\mu dv^\mu + Q^\alpha_\mu dx^\mu$$

Με P και Q σταθερές. Στην περίπτωσή μας η ταχύτητα προσδιορίζεται από την ακόλουθη εξίσωση:
\[V(t) = \frac{\delta C(t)}{\delta t} = \frac{dx(t)}{dt} + \frac{DV(t)}{Dt} = \frac{ds(t)}{dt} + \frac{D\sigma(t)}{Dt} \quad (4.38) \]

όπου \(\frac{ds(t)}{dt} \) αναπαριστά την εξωτερική ταχύτητα της ακτίνας και \(\frac{D\sigma(t)}{Dt} \) η εσωτερική ταχύτητα της ακτίνας. Σε μια υλική εφαπτόμενη δέσμη χώρου Finsler, η γεωδαισική εξίσωση, με βάση και την αρχή του Fermat, δίνεται από την ακόλουθη εξίσωση:

\[\frac{\delta V}{\delta r} = 0 \quad (4.39) \]

όπου \(r \) μια συγγενής παράμετρος. Η εξίσωση (4.39) αναπαριστά στην πραγματικότητα ένα παράλληλα διαδούμενο πεδίο ταχύτητας. Μια λύση του συστήματος ray-tracing (4.15), με αρχικές συνθήκες, προσδιορίζεται από ένα σημείο της καμπύλης στο χώρο Finsler.

Αν \(x_0(t) \) είναι η θέση της τροχιάς της ακτίνας και \(y_0(t) \) η διεύθυνση στο σημείο αυτό, τότε μπορούμε να ορίσουμε αρχική τιμή για το σύστημα (4.15).

Κάτω από αυτές τις συνθήκες ένα σεισμικό κύμα μπορεί να θεωρηθεί σαν ένα πεδίο \(\vec{y} \) στον υλικό χώρο μιας ανισοτροπικής Finsler επιφάνειας. Το πεδίο \(\vec{y} \) μπορεί να αναλυθεί στο πεδίο του πρωτεύοντος κύματος \(\vec{S} \), το οποίο είναι εφαπτόμενο στο μέτωπο κύματος, και στο πεδίο \(\vec{m} \) το οποίο είναι κάθετο στο μέτωπο κύματος:
\[
Y = S^i \frac{\delta}{\delta x^i} + m^a \frac{\partial}{\partial y^a} \tag{4.40}
\]
\[
Y = \vec{S} + \vec{m}
\]

όπου:

\[
\vec{S} = S^i \frac{\delta}{\delta x^i} \tag{4.41}
\]

και αναπαριστά το οριζόντιο διανυσματικό πεδίο και \(\vec{m} \):

\[
\vec{m} = m^a \frac{\partial}{\partial y^a} \tag{4.42}
\]

tο κάθετο διανυσματικό πεδίο που ανήκει στο χώρο \(T(SM) \). Σε ανισοτροπικό μέσο

ο χρόνος διαδρομής \(T(x^i, y^a) \) θα εξαρτάται από την \(y \)-διεύθυνση, η οποία για

σταθερό χρόνο \(t \) είναι μια υλική φινσλεριανή επιφάνεια και περιγράφεται από την

eξίσωση:

\[
T(x^i, y^a) = t \tag{4.43}
\]

Καθώς ο χρόνος περνά, η (4.43) θα αναπαριστά ένα κινούμενο μέτωπο κύματος. Το

dιάνυσμα \(\vec{m} \) είναι κάθετο στο μέτωπο κύματος και δίνεται από τον τύπο:
\[\vec{m} = \vec{\nabla} T \] (4.44)

όπου \(\vec{\nabla} y = \frac{\partial}{\partial y} \). Το διάνυσμα \(\vec{m} \) ουσιαστικά αναπαριστά την βραδύτητα (slowness).

Με βάση τον παρακάτω φορμαλισμό θα καταλήξουμε στις εξισώσεις του συστήματος ray-tracing σε χώρους Finsler:

\[\frac{1}{u(x, y)} \frac{1}{u(x, y)} = \frac{1}{u} \] (4.45)

τότε παίρνω

\[\vec{\nabla} T \vec{\nabla} T = \frac{1}{u} \] (4.46)

και

\[\vec{\nabla} x T \vec{\nabla} x T = \frac{1}{w^2} \] (4.47)

με \(\vec{\nabla} x T = \frac{\delta}{\delta x^j} T(x, y) \) και \(w(x, y) \) να συνιστούν τα τοπικά πεδία ταχύτητας στην επιφάνεια Finsler. Τα \(w(x) \), \(u(x) \) εξαρτώνται από τη συχνότητα της διάδοσης του κύματος.
4.3.1 Εφαρμογή της Finsler ray-tracing μεθόδου

Εφαρμόζαμε τη μέθοδο με τις επιφάνειες Finsler για να αντικαταστήσουμε τους υπάρχοντες αλγορίθμους ray-tracing. Μέλημα μας ήταν να ελέγξουμε κατά πόσο αποτελεσματικοί θα ήταν οι αλγορίθμοι αυτοί και στην πράξη και όχι μόνο σε θεωρητικό επίπεδο. Όπως έχουμε ήδη πει οι αλγόριθμοι που υπάρχουν σε επίπεδο σχεδιασμού της σεισμικής ακτίνας αντιμετωπίζουν προβλήματα όταν η εφαρμογή είναι μικρού βάθους, π.χ. 0-4 μέτρα, και είναι αργοί σε ταχύτητα ειδικά αν δουλεύουμε με προβλήματα σε τρεις διαστάσεις.

Κατασκευάσαμε έναν αλγόριθμο σε Matlab με υπορουτίνες σε γλώσσα Matlab και Fortran (Arvanitis, 2006) για ray-tracing χρησιμοποιώντας τις επιφάνειες Finsler. Για να ελέγξουμε την σταθερότητα του αλγορίθμου δουλέψαμε με διάφορα αρχικά μοντέλα ταχυτήτων κρατώντας σταθερές τις υπόλοιπες παραμέτρους του μοντέλου.

Δοκιμάσαμε περισσότερα από τριάντα διαφορετικά αρχικά μοντέλα ταχυτήτων με τον ίδιο αλγόριθμο αντιστροφής αλλάζοντας μόνο τη μέθοδο ray-tracing. Συγκρίναμε ουσιαστικά τη μέθοδο με τη γεωμετρία Finsler και την τροποποιημένη μέθοδο πεπερασμένων διαφορών του Vidale. Εργαστήκαμε με μονοδιάστατα μοντέλα ταχυτήτων με συνθετικά αλλά και πραγματικά δεδομένα.

Σε εύκολα μοντέλα ταχυτήτων, δηλαδή μοντέλα με διαφορές στις ταχύτητες των σεισμικών κυμάτων μικρότερη του 40% από ταχύτητα σε ταχύτητα δεν κρίνεται επιτακτική η χρήση των αλγορίθμων με Finsler αφού δίνουν πανομοιότυπα
αποτελέσματα με την απλή μέθοδο του Vidale αλλά σε μεγαλύτερο χρόνο αφού ο
αλγόριθμος είναι πιο πολύπλοκος λόγω χρήσης διαφορικής γεωμετρίας.

Εικ. 4.1: Χρήση μοντέλων ταχυτήτων με μικρή διακύμανση ταχυτήτων
Εικ. 4.2: Απεικόνιση του χρόνου υπολογισμού για το πρώτο μοντέλο ταχυτήτων. Διαπιστώνουμε ότι για διακυμάνσεις ταχυτήτων μέχρι και 40% η μέθοδος που αναπτύξαμε με τις καμπυλότητες Finsler είναι αρκετά πιο αργή σε σχέση με την υπάρχουσα μέθοδο του Vidale.

Όμως για διακυμάνσεις που ξεπερνούν αυτό το ποσοστό και όσο αυτό ανεβαίνει ο αλγόριθμος με τη καμπυλότητα Finsler αποδίδει σε καλύτερο χρόνο ενώ για κάποια μοντέλα ταχυτήτων είναι και αισθητά γρηγορότερος από την μέθοδο Vidale. Βέβαια, ο αλγόριθμος δουλεύει σε υπολογιστικά συστήματα τα οποία τρέχουν το λειτουργικό σύστημα Unix και δεν έχει μεταφερθεί σε συστήματα με το κλασικό σύστημα των Windows.

Σε ότι αφορά τα τελικά αποτελέσματα μετά και την αντιστροφή τα αποτελέσματα που δίνει ο αλγόριθμός μας προσεγγίζουν κατά πολύ περισσότερο το πραγματικό μοντέλο από τους άλλους αλγορίθμους, μόνο όμως όταν έχουμε μεγάλες αντιθέσεις ταχύτητας και μικρά βάθη.
Εικ. 4.3: Το πάνω γράφημα δείχνει το αποτέλεσμα μετά την αντιστροφή με τον αλγόριθμο με την καμπυλότητα Finsler και το κάτω με τον κλασικό αλγόριθμο του Vidale. Είναι προφανής η καλύτερη προσέγγιση του πρώτου στο πραγματικό μοντέλο σε σχέση με το δεύτερο.

Πολύ σημαντική για το μέλλον του αλγορίθμου θα είναι και η ανάπτυξη του αλγορίθμου σε περιβάλλον ακέραιας αριθμητικής καθώς και η χρήση επεξεργασίας
πλέγματος (grid) με την οποία ο αλγόριθμος θα μπορεί να γίνει αρκετές φορές πιο γρήγορος από ότι είναι τώρα.
Κεφάλαιο 5

5. Το αντίστροφο πρόβλημα

5.1. Εισαγωγή

Στο προηγούμενο κεφάλαιο είδαμε τις βασικές μεθόδους επίλυσης του ευθέους προβλήματος και μιλήσαμε κυρίως για την μέθοδο που θα ακολουθήσουμε, τηντροποποιημένη μέθοδο των πεπερασμένων διαφορών, αλλά και για μια νέα μέθοδο που ανοιχτούν νέες δρόμους στη Διαφορέτη και αποτελεσματικότερη επίλυση του ευθέους προβλήματος, ιδίως σε ανισοτροπικούς χώρους. Στο κεφάλαιο αυτό θα εξετάσουμε τη θεωρία αντιστροφής, τη λογική πίσω από αυτή, θα κάνουμε μια σύντομη επισκόπηση των σημαντικότερων μεθόδων αντιστροφής και θα σταθούμε στη μέθοδο αντιστροφής που θα χρησιμοποιήσουμε στον αλγόριθμό μας.

5.2 Η λογική πίσω από το αντίστροφο πρόβλημα

Ας υποθέσουμε ότι έχουμε ένα μοντέλο, το οποίο ότι περιγράφεται από το διάνυσμα \(m \), τα στοιχεία του οποίου είναι οι παράμετροι βάθους και ταχύτητας που θέλουμε να αντιστρέψουμε. Αυτό που έχουμε περιγράψει ύδη από το δεύτερο κεφάλαιο, το ευθύ πρόβλημα κατασκευάζει μια ακολουθία από συνθετικούς χρόνους, οι οποίοι
περιέχονται σε ένα διάνυσμα \(t \). Το ευθύ πρόβλημα δηλαδή από ένα γνωστό φάσμα
dedoméνων και μια συγκεκριμένη τοπογραφική γεωμετρία παρασκευάζει συνθετικά
dedoméνα. Η αντιστροφή με τη σειρά της παίρνει αυτά τα συνθετικά dedoméνα και με
μαθηματικές διαδικασίες δίνει ένα μοντέλο το οποίο θα ταιριάζει σε αυτά τα συνθετικά
dedoméνα.

Στα προβλήματα της σεισμικής τομογραφίας που αντιμετωπίζουμε, υπάρχει ένα
βασικό πρόβλημα που χρειάζεται να εξεταστούμε: από την παραπάνω περιγραφή
catalabaíνουμε ότι το αρχικό μοντέλο που θα χρησιμοποιήσουμε θα επηρεάσει κατά
πολύ την αντίστροφη διαδικασία. Δυστυχώς όμως, τις περισσότερες φορές, σε
gεωτεχνικά προβλήματα, όπως αυτό που περιγράφουμε παρακάτω, το αρχικό
μοντέλο χαμηλότερο ή ακόμα και βαθύτερο για τις διεπιφάνειες δεν μας είναι γνωστό.
Έτσι, ξεκινούμε από ένα αρχικό μοντέλο ταχυτήτων το οποίο θεωρούμε ότι
ανταποκρίνεται ή προσεγγίζει κατά πολύ την πραγματικότητα. Το μοντέλο αυτό
επαναπροσδιορίζεται σύμφωνα με τις παραμέτρους του μοντέλου και επειδή η
diaðikasia είχε μια επαναληπτικότητα μέχρι των ορίων που έχουμε θέσει, η μέθοδος
αυτή ονομάζεται επαναληπτική (iterative). Σημαντικό ρόλο, όπως είδαμε και στο
δεύτερο κεφάλαιο παίζει και η μη μοναδικότητα της λύσης, για αυτό και καθορίζουμε
συντελεστές βαρύτητας με σκοπό την κατεύθυνση της λύσης (bias).

Ας διακρίνουμε το διάνυσμα \(t \) που είδαμε παραπάνω, σε δύο υποκατηγορίες.
Χωρίζουμε έτσι το διάνυσμα \(t \) σε \(t^+ \) και \(t^- \), με το πρώτο να αποτελεί το διάνυσμα των
χρόνων που παρατηρήθηκαν στην πραγματικότητα και το δεύτερο το διάνυσμα των
χρόνων που υπολογίσθηκαν μέσα από τον αλγόριθμο. Για να μετρήσουμε το «ταίριασμα» (fit) κάποιου μοντέλου στα υπάρχοντα δεδομένα, ορίζουμε το διάνυσμα υπολοίπου (residual) ως εξής:

\[r = t^o - t^e (5.1) \]

Όπως γνωρίζουμε από τα όσα έχουμε πει παραπάνω, η σχέση ανάμεσα σε μια μικρή διαταραχή σε μια παράμετρο του μοντέλου και η διαταραχή που προκύπτει σε κάθε συνθετικό χρόνο διαδρομής, μπορεί να προσεγγιστεί με μια γραμμική εξίσωση. Αυτό σημαίνει ότι μικρές αλλαγές στους συνθετικούς χρόνους διαδρομής σχετίζονται με μικρές αλλαγές στο υπάρχον μοντέλο σύμφωνα με την εξίσωση:

\[\delta t = P \delta m (5.2) \]

όπου P ο πίνακας Frechet που υπολογίζει την ευαισθησία ανάμεσα στο υπάρχον μοντέλο και τους συνθετικούς χρόνους, με στοιχεία της μορφής:

\[\rho_{ij} = \frac{\partial t_i}{\partial m_j} (5.3) \]

Η εξίσωση (5.2) ουσιαστικά είναι ο πρώτος όρος μιας σειράς Taylor και είναι έγκυρη για μια συγκεκριμένη περιοχή τιμών. Αναζητούμε δηλαδή μια διαταραχή η οποία θα είναι τόσο μικρή ώστε να επιτρέπει στο μοντέλο αφ' ενός να παραμένει γραμμικό και
αφ’έτερον να πλησιάζει τα δεδομένα. Η άμεση αντιστροφή ενός πίνακα, δηλαδή ουσιαστικά η επίλυση της εξίσωσης (5.2), αλλά και άλλες μέθοδοι που χρησιμοποιούνται ευρέως στα μαθηματικά προβλήματα αντιστροφής, δεν είναι έγκυρη για τα τομογραφικά προβλήματα, αφού το μοντέλο συνήθως είναι ή γίνεται μη-γραμμικό ενώ για τρισδιάστατα τομογραφικά προβλήματα, όπως αυτό που αντιμετωπίζουμε εμείς, οι πίνακες είναι ιδιαίτερα, κυρίως αντιμετωπίζουν το πρόβλημα της μη μοναδικότητας, δηλαδή υπάρχουν πολλές λύσεις που ικανοποιούν το πρόβλημα (Ramm, 1995, Vasco et al., 1996). Τα περισσότερα μοντέλα που προκύπτουν από άμεση αντιστροφή της εξίσωσης (5.2) είναι μη-ρεαλιστικά, παρόλο που παρουσιάζουν αρκετά καλά ταίριασμα (fitting) των δεδομένων. Για αυτό το λόγο άλλωστε χρησιμοποιούμε και αρχικό μοντέλο ταχυτήτων για να περιορίσουμε τις λύσεις στο επίπεδο του πραγματικού.

Όπως είδαμε και παραπάνω η διαφορά που μας ενδιαφέρει είναι αυτή που προκύπτει από το r. Για να μετρήσουμε το r, πρέπει να επιλέξουμε κατάλληλη νόρμα. Χωρίς να θέλουμε να υπεισέρθουμε σε λεπτομέρειες που είναι γνωστές και αφορούν τον λογισμό πινάκων, θα παρουσιάσουμε σύντομα τις πιο ουσιαστικές νόρμες για την αντιστροφή σεισμικών δεδομένων.

Η επιλογή της νόρμας, είναι πολύ ουσιαστική αφού αυτή επηρεάζει τη σημασία που θα δωθεί κατά τη διάρκεια της αντιστροφής στα δαφορετικά στοιχεία του διανύσματος r. Η πιο βασική νόρμα, η οποία χρησιμοποιείται στην τυποποίηση των ελαχίστων τετραγώνων (Scales και Smith, 1977) είναι η τετραγωνική νόρμα που δίνεται από τον τύπο:
Εκτός από την τετραγωνική νόρμα, αν και με αυτή θα ασχοληθούμε στο δικό μας αντίστροφο πρόβλημα, είναι η νόρμα-1, η οποία δίνεται από τον τύπο:

\[\|x\|_1 = |x_1| + |x_2| + ... + |x_N| \quad (5.5) \]

και στην οποία στηρίζεται η μέθοδος της ελάχιστης απόλυτης απόκλισης (Claerbout και Muir, 1973). Η μέθοδος αυτή, συγκρινόμενη με τη μέθοδο των ελαχίστων τετραγώνων, είναι πιο σταθερή αφού η λύση της στηρίζεται στην στατιστική διάμεσο και όχι στη μέση τιμή όπως η μέθοδος των ελαχίστων τετραγώνων και αρα επηρεάζεται λιγότερο από δεδομένα θορύβου (Scales και Gersztenkorn, 1988). Οι νόρμες ανώτερου βαθμού είναι λιγότερο σταθερές εκτός από την νόρμα-άπειρο, η οποία όμως στάνει χρησιμοποιείται στο τομογραφικό πρόβλημα.

Οι νόρμες-1 δείχνουν μικρότερη ευαισθησία σε σφάλματα από μεγάλα δεδομένα σε σύγκριση με τις τετραγωνικές νόρμες, και έτσι μπορούν να δώσουν ορισμένες φορές πιο σταθερά αποτελέσματα (Taylor et al., 1979, Chapman και Barrodale, 1983, Scales et al., 1988).

Βέβαια η επιλογή της νόρμας-1 δεν είναι πάντα η κατάλληλη επιλογή και ας είναι πιο σταθερή σε σχέση με την τετραγωνική. Η νόρμα-1 δεν είναι λεία συνάρτηση και...
τα παρουσιάζει ιδιομορφίες, με αποτέλεσμα η αριθμητική ελαχιστοποιήση της να είναι πολλές φορές μια επίτοπη διαδικασία.

Πολλές προσπάθειες έγιναν για τη χρήση της νόρμας-1 σε τέτοια προβλήματα, είτε με γραμμικό προγραμματισμό (Barrodale και Roberts, 1980) είτε με επαναληπτικό smoothing (Scales et al., 1988) αλλά και οι δύο απαιτούσαν σημαντικό υπολογιστικό κόστος και φυσικά χρόνο.

Αυτά τα μειονεκτήματα της νόρμας-1 οδήγησαν πολλούς είτε στην υιοθέτηση της τετραγωνικής νόρμας, όπως κάνουμε κι εμείς στον αλγόριθμό μας, είτε στην χρήση διάφορων υβριδικών μεθόδων που χρησιμοποιούν νόρμα-1 για μεγάλα σφάλματα και Γκαουσιανή αντιμετώπιση (τετραγωνική νόρμα) για μικρότερα. Μάλιστα η μέθοδος IRLS, που θα δούμε και παρακάτω, χρησιμοποιήθηκε για να ελαχιστοποιήσει μια τέτοια υβριδική συνάρτηση σε πρόβλημα τομογραφίας (Bube και Langan, 1997).

Στην παρακάτω ενότητα θα αναφερθούμε συνοπτικά σε μια υβριδική νόρμα Huber, τη μόνη ίσως από τις υβριδικές νόρμες που βρίσκει καλή εφαρμογή στο τομογραφικό πρόβλημα.

5.2.1 Η υβριδική νόρμα Huber

Έχουμε την παρακάτω νόρμα, η οποία ονομάζεται Huber (1973) και περιγράφεται από την εξής:
\begin{equation}
M(r) = \begin{cases}
\frac{r^2}{2\varepsilon}, & 0 \leq |r| \leq \varepsilon \\
|r| - 2\varepsilon, & \varepsilon < r
\end{cases} \quad (5.5.1)
\end{equation}

όπου \(\varepsilon\) το όριο ανάμεσα στην νόρμα-1 και την τετραγωνική. Το άθροισμα της (5.5.1) καλείται συνάρτηση απώλειας Huber. Η συγκεκριμένη εξίσωση αντιμετωπίζει τα μεγάλα \(r\) (residuals) με την νόρμα-1 και τα μικρά με την τετραγωνική. Επειδή είναι διαφορίσιμη παντού είναι πιο εύκολο να ελαχιστοποιηθεί από την νόρμα-1 και παράλληλη είναι πιο ικανή σε μεγάλα \(r\).

Το ελάττωμα της συγκεκριμένης νόρμας είναι ότι ο προσδιορισμός της απώλειας οδηγεί σε ένα μη-γραμμικό πρόβλημα βελτιστοποίησης γιατί κάθε \(r\) κοντά στο όριο \(\varepsilon\) μπορεί να παίξει ανάμεσα στις δυο νόρμες.

5.3 Κατηγορίες αντιστρόφων προβλημάτων

Πριν επεκταθούμε στις μεθόδους λύσης, και κυρίως στις δύο βασικότερες εξ'αυτών, είναι χρήσιμο να αναφερθούμε εν συντομία στις κατηγορίες αντιστρόφων προβλημάτων. Φυσικά, όπως προαναφέραμε, εμάς μας ενδιαφέρει κατά κύριο λόγο η αντιμετώπιση των επαρκώς ορισμένων προβλημάτων τα οποία αποτελούν και τη μεγάλη πλειοψηφία στη τρισδιάστατη σεισμική αντιστροφή.

Τα προβλήματα που έχουν ίσο αριθμό δεδομένων με τον αριθμό των παραμέτρων του μοντέλου (\(\dim M=\dim D\)), ονομάζονται ακριβώς ορισμένα προβλήματα (even
και υπάρχει μία και μοναδική λύση που τα ικανοποιεί. Στην πραγματικότητα των τομογραφικών δεδομένων, οι περιπτώσεις αυτές είναι σπάνιες ώς και ανύπαρκτες.

Τα προβλήματα που συναντάμε στη φύση και θέλουμε να τα μοντελοποιήσουμε, όπως επαρκώς αναφέραμε στο πρώτο κεφάλαιο, είτε έχουν μεγαλύτερο αριθμό δεδομένων από τις παραμέτρους του μοντέλου οπότε αναφερόμαστε σε επαρκώς ορισμένα προβλήματα (over-determined) είτε έχουν μικρότερο πλήθος δεδομένων από παραμέτρους οπότε μιλάμε για κακώς ορισμένα προβλήματα (under-determined).

Τα κακώς ορισμένα προβλήματα δεν έχουν την απαραίτητη πληροφορία ώστε να υπολογιστούν οι παράμετροι του μοντέλου, με λίγα λόγια το σύστημα θα έχει μεν άπειρο αριθμό λύσεων αλλά δεν θα μπορούμε από αυτές να επιλέξουμε τη βέλτιστη. Για το λόγο αυτό σε προβλήματα σαν και αυτό χρησιμοποιούμε εκ των προτέρων πληροφορία (a priori). Οι πληροφορίες αυτές μπορούν να περιορίσουν σημαντικά τον αριθμό των πιθανών λύσεων και να οδηγήσουν, υπο προϋποθέσεις, ακόμη και στη μοναδικότητα της λύσης.

Τέλος, υπάρχει πάντα η περίπτωση να βρεθούμε αντιμέτωποι με ένα πρόβλημα που θα συνδυάζει ιδιότητες και κακώς αλλά και επαρκώς ορισμένου προβλήματος. Όσο κι αν ακούγεται παράδοξο, αυτά τα μικτά (mixed-determined), όπως ονομάζονται, προβλήματα, μπορεί να περιέχουν πληροφορίες ώστε να ορίζεται με μοναδικό τρόπο ένα μέρος των παραμέτρων του προβλήματος ενώ κάποιο άλλο να μην μπορεί να ορισθεί επαρκώς.
5.4 Τρόποι αντίστροφής και στόχοι

Στην παρούσα ενότητα θα προσπαθήσουμε να δούμε τους διαφορετικούς τρόπους, όχι τις μεθόδους, με τους οποίους μπορούμε να χειριστούμε την αντίστροφη σε τομογραφικά προβλήματα. Κάθε τρόπος αποσκοπεί και σε ένα συγκεκριμένο αποτέλεσμα και είναι πολύ σημαντικό για τον χρήστη να γνωρίζει τι ακριβώς θέλει να επιτύχει με τα σεισμικά δεδομένα που διαθέτει ώστε πριν διαλέξει τη μέθοδο αντίστροφης που θα ακολουθήσει να έχει βρει τον τρόπο που θα δώσει το καλύτερο δυνατό αποτέλεσμα.

Στην επισκόπηση αυτή χρησιμοποιούνται ουσιαστικά δύο διαφορετικές μέθοδοι επίλυσης του αντίστροφου προβλήματος, η μέθοδος των ελαχίστων τετραγώνων και η μέθοδος οπισθοπροβολής (backprojection), στις οποίες θα αναφερθούμε στην ενότητα που θα ακολουθήσει.

5.4.1 Ομοιόμορφο πλέγμα και μοντέλο ελάχιστης δομής

Σε αυτή τη προσέγγιση χρησιμοποιούμε ομοιόμορφο πλέγμα και αναζητούμε ένα μοντέλο με την ελάχιστη δυνατή δομή (Zhang et al., 1998). Το μοντέλο με το οποίο ξεκινούμε είναι συνήθως ομοιογενές ή όσο το δυνατό πιο απλό, ανάλογα φυσικά με τη δομή που έχουμε να μοντελοποιήσουμε. Συνήθως δεν περιλαμβάνουμε a priori πληροφορία, εκτός φυσικά από το αρχικό μοντέλο ταχυτήτων. Το αρχικό μοντέλο ταχυτήτων συνήθως προέρχεται από την ανάλυση σε μια διάσταση όλων ή μερικών «χτυπημάτων» (shots). Το φαινόμενο των επαρκώς ορισμένων παραμέτρων (over-parametrized) σε όλο ή σε μέρη του μοντέλου δεν μας απασχολεί αφού η
κανονικοποιημένης αντιστροφής που θα χρησιμοποιήσουμε και η οποία περιλαμβάνει περιορισμούς για το πόσο επίπεδο (flatness) και πόσο λείο (smoothness) θα είναι το μοντέλο διασφαλίζει μια σταθερή αντιστροφή.

Αυτή η προσέγγιση είναι ιδιαίτερα καλή για να προσδιορισθεί η ελάχιστη δομή του μοντέλου που απαιτείται από τα δεδομένα, χωρίς να χρειαζόμαστε πολλή a priori πληροφορία. Δουλεύει εξίσου καλά με πυκνά όσο και με αραιά δεδομένα. Αυτή η προσέγγιση ουσιαστικά αποτελεί τη γνήσια τομογραφική μέθοδο. Στη προσέγγιση αυτή μπορούμε να χρησιμοποιήσουμε και τη μέθοδο backprojection αν και το τελικό μοντέλο μπορεί να είναι πιο σύνθετο, να περιέχει περισσότερη πληροφορία, από το μοντέλο που θα παίρναμε με κανονικοποιημένη αντιστροφή, ειδικά για αραιά (sparse) δεδομένα (Zelt and Barton, 1998).

5.4.2 Μοντέλο ελάχιστων παραμέτρων και πρωταρχικής δομής

Στην αντίπαρα όχθη από την μέθοδο που μόλις περιγράψαμε, συναντούμε τη μεθοδολογία που θα αναλύσουμε παρακάτω. Εδώ χρησιμοποιούμε τις ελάχιστες παραμέτρους και αναζητούμε μοντέλο πρωταρχικής δομής. Το αρχικό μοντέλο θα περιέχει είτε απλές δομές από την πληροφορία, όπως ταχύτητες ή ασυνέχειες ή πιο σύνθετη πληροφορία όπως θέση υπερκείμενων δομών μέσα σε άλλες κτλ. Το αρχικό μοντέλο στη πρώτη περίπτωση μπορεί να είναι πολύ απλό, όπως για παράδειγμα ένας κόμβος θα καθορίζει την ταχύτητα στο πάνω και στο κάτω μέρος του στρώματος, η πολύ σύνθετο στη δεύτερη περίπτωση. Και στις δύο περιπτώσεις πάντως η κανονικοποιημένη αντιστροφή, δεδομένου του σχετικά μικρού αριθμού
παραμέτρων του μοντέλου αλλά και της ακανόνιστης κατανομής των κόμβων, η οποία θα περιορίζει την διαταραχή του μοντέλου σε κάθε επανάληψη, είναι κατάλληλη. Στην περίπτωση ενός απλού αρχικού μοντέλου, το τελικό μοντέλο κατασκευάζεται προσθέτοντας παραμέτρους μόνο όπου και όταν χρειάζεται, αρχικά κατά μήκος και έπειτα κατά βάθος, χρησιμοποιώντας πρώτα τις φάσεις οι οποίες περιορίζουν την ρηχή δομή και έπειτα πηγαίνει σε μεγαλύτερα βάθη διαδοχικά. Η μέθοδος αυτή ονομάζεται πολλές φορές και “across and down” μέθοδος.

Στην περίπτωση που έχουμε σύνθετο αρχικό μοντέλο, αυτό πρέπει να διορθωθεί ώστε να υπάρχουν ακτίνες που θα καλύπτουν όλο το μοντέλο πριν προχωρήσουμε στην αντιστροφή. Καθώς η μέθοδος της αντιστροφής εξελίσσεται, προστίθενται ελάχιστες παράμετροι, μόνο όπου απαιτείται για να έχουμε σύγκλιση των δεδομένων και όλες οι παράμετροι του μοντέλου επιλύονται ταυτόχρονα. Η μεθοδολογία αυτή είναι γνωστή στη βιβλιογραφία σαν “whole-model” μέθοδος.

Και οι δύο προσεγγίσεις που είδαμε είναι εξαιρετικές στο να περιλαμβάνουν αρχική πληροφορία στο τελικό μοντέλο. Αν η δομή που εξετάζουμε είναι σχετικά απλή τότε και οι δύο μέθοδοι θα δουλέψουν ικανοποιητικά. Αν όχι, τότε η μέθοδος που δουλεύει καλά είναι η “whole model”. Αυτό συμβαίνει γιατί η υπόθεση που κάνουμε κατά την πρώτη μέθοδο μπορεί να μην ισχύει σε ένα πολύπλοκο μοντέλο.

Τέλος, μπορεί να εφαρμοσθεί μια μικτή μέθοδος, όπου εφαρμόζουμε την μέθοδο “across and down” αλλά ένα μοντέλο κόμβων βρίσκεται στην αρχή κάθε στρώματος (Parsons et al., 1996).
5.4.3 Μοντέλο παραμετροποίησης σε ομοιόμορφο κάναβο και πρωταρχική δομή

Αυτή η μεθοδολογία χρησιμοποιεί ομοιόμορφο πλέγμα και αναζητά πρωταρχική δομή. Η αρχική πληροφορία σε αυτή την περίπτωση μπορεί να είναι γεωλογική, για παράδειγμα η άποψη ενός ρήγματος (Lailly και Sinoquet, 1996) ή μπορεί να είναι κάποια δομή σε κάποιο σημείο του μοντέλου που χρησιμοποιεί κανονικοποιήση που εξαρτάται χωρικά για να εκτιμήσει τη σταθερότητα συγκεκριμένων χαρακτηριστικών του μοντέλου και το αποτέλεσμα επηρεάζει άλλα σημεία του μοντέλου (Zelt και Barton, 1998). Η αρχική πληροφορία μπορεί να είναι επίσης το αποτέλεσμα των συμπερασμάτων που προκύπτουν από τη χρήση διαφορετικών αρχικών μοντέλων ταχύτητας ώστε να επιλέξουμε το βέλτιστο από αυτά (Zelt και Barton, 1998).

Έτσι αυτή η προσέγγιση μοιάζει κατά πολύ στην προηγούμενη με μικρές αλλαγές μόνο που αφορούν στο αρχικό μοντέλο. Επειδή η πρωταρχική πληροφορία λαμβάνεται υπ’ όψιν, αλλά το μοντέλο λογίζεται σαν πρωταρχική δομή, η προσέγγιση αυτή είναι ιδανική για να εκτιμήσει η μοναδικότητα των ιδιοτήτων του μοντέλου, η επιρροή της a priori πληροφορίας και τα όρια των ευρυγώνιων δεδομένων.

5.4.4 Μοντέλο ελάχιστης παραμέτρου ελάχιστης δομής

Αυτή η μεθοδολογία χρησιμοποιεί ένα μοντέλο ελάχιστης παραμέτρου και αναζητά ένα μοντέλο ελάχιστης δομής. Η μέθοδος λειτουργεί όπως και η μέθοδος ελάχιστης παραμέτρου-πρωταρχικής δομής με την εξαίρεση ότι χρησιμοποιεί λιγότερη a priori πληροφορία για να αναζητήσει ένα απλούστερο μοντέλο ή επαναπροσδιορίζει την a
πριον πληροφορία, τις συγκεκριμένες παραμέτρους του μοντέλου ή τις παραμέτρους που συνδέονται με την αντιστροφή για να συγκρίνει τις επιπτώσεις στο τελικό μοντέλο.

Ο στόχος είναι να αποδειχθεί ότι ένα συγκεκριμένο μοντέλο έχει την ελάχιστη δομή, ή τουλάχιστον ότι ένα χαρακτηριστικό του μοντέλου είναι ελάχιστης δομής (Zelt και White, 1995). Η συγκεκριμένη μεθοδολογία δεν μπορεί να συγκρίνει με αυτή του ομοιόμορφου κανάβου, σε σχετικά μικρής κλίμακας έρευνες, αφού ένα μεγάλο μοντέλο έχει περισσότερη δομή από κάποιο μικρότερο. Παρόλα αυτά η μεθοδολογία είναι κατάλληλη όταν θέλουμε να εκτιμήσουμε τη μοναδικότητα ιδιοτήτων σε μεγάλες κλίμακες.

5.5 Μέθοδοι αντιστροφής

Στην προηγούμενη ενότητα αναφερθήκαμε στους τρόπους αντιστροφής, στο φορμαλισμό της ανακατασκευής του μοντέλου πριν την αντιστροφή ανάλογα με το στόχο που θέλουμε να επιτύχουμε. Σε αυτή την ενότητα θα αναφερθούμε σε μεθόδους αντιστροφής και κυρίως στις σημαντικότερες από αυτές, την κανονικοποιημένη αντιστροφή, τη μέθοδο ελαχιστών τετραγώνων, τη μέθοδο backprojection και κάποιες τροποποιήσεις αυτών.

Αν και υπάρχουν πολλές μέθοδοι αντιστροφής περιοριζόμαστε σε αυτές γιατί όλες οι άλλες έχουν αποδεδειγμένα μικρότερη ικανότητα και αποτελεσματικότητα ενώ
παράλληλα είναι απαρχαιωμένες και απαιτούν ιδιαίτερα μεγάλο υπολογιστικό κόστος με πολύ μικρότερη αξία αποτελεσμάτων.

5.5.1 Η μέθοδος των ελαχίστων τετραγώνων

Αποτελεί μια από τις σημαντικότερες μεθόδους στην επίλυση αντιστρόφων προβλημάτων. Προτάθηκε αρχικά από τον Gauss το 1809 και βελτιώθηκε από τον Lagrange. Η μέθοδος ονομάζεται και προσέγγιση μέγιστης πιθανότητας, ονομασία που περιγράφει κατά πολύ τη λογική που κρύβεται πίσω από αυτή. Αν υποθέσουμε ότι έχουμε ένα σύνολο από \(N \) συντεταγμένες στοιχείων \((x_i,y_i)\) με \(i=1,2,...,N \) και ένα μοντέλο με \(M \) το πλήθος ρυθμιζόμενες παραμέτρους, έστω \(\rho_j \), τότε το μοντέλο που είναι πιο πιθανό να έχει παράγει αυτά τα δεδομένα είναι αυτό που θα ελαχιστοποιεί τη συνάρτηση:

\[
 f(\rho) = \sum_{i=1}^{N} [y_i - y(x_i;\rho_1,\ldots,\rho_M)]^2 \quad (5.6)
\]
δεδομένου ότι κάθε στοιχείο \(y \) έχει κάποιο λάθος μέτρησης το οποίο είναι τυχαίο και ακολουθεί μια κανονική κατανομή γύρω από το πραγματικό μοντέλο \(y(x) \) (Press et al., 1994).

Αν κάθε στοιχείο από αυτά έχει τη δική του τυπική απόκλιση, \(\sigma_i \), τότε η εξίσωση (5.6) μπορεί να μετασχηματιστεί στην εξής:

\[
x^2(\rho_1, \ldots, \rho_M) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{y_i - y(x_i; \rho_1, \ldots, \rho_M)}{\sigma_i} \right)^2 (5.7)
\]

Το ελάχιστο της συνάρτησης (5.7) δίνει τη συνάρτηση που έχει τις περισσότερες πιθανότητες να έχει παράγει τα δεδομένα. Αν και η λύση των ελαχιστών τετραγώνων προορίζεται μόνο για ανεξάρτητα δεδομένα που έχουν αβεβαιότητες που ακολουθούν κανονική κατανομή με μέσο μηδέν, στην ουσία χρησιμοποιείται συχνά σε πολλές περιπτώσεις που τα σφάλματα έχουν ορισμένη συσχέτιση μεταξύ τους, η που ακολουθούν κατανομή που δεν μπορεί να μοντελοποιηθεί από μια κανονική. Σε αυτές τις περιπτώσεις είναι πολύ σημαντικό να γνωρίζουμε πώς μια λύση μπορεί να επηρεαστεί από αυτά τα χαρακτηριστικά και να εκτιμήσουμε αν πρέπει ή όχι να χρησιμοποιήσουμε τη μέθοδο των ελαχιστών τετραγώνων.

Όταν μοντελοποιούμε σεισμικά δεδομένα, και κυρίως χρόνους διαδρομής, η στατιστική κατανομή των σφαλμάτων ή των αβεβαιοτήτων εξαρτάται από το σύστημα καταγραφής των δεδομένων, το οποίο και ορίζει το εύρος ζώνης των δεδομένων, και
μπορεί να εισάγει συστηματικά σφάλματα, τα οποία δεν μπορούν να κατανεμηθούν ποιοτικά, στους χρόνους διαδρομής, από παράγοντες όπως ο ρυθμός καταγραφής, κάποιος αυτοματοποιημένος αλγόριθμος επιλογής χρόνων που μπορεί να κάνει λάθος, θόρυβος στα σεισμικά δεδομένα. Όλα αυτά μπορούν να επηρεάσουν την ικανότητα της μεθόδου των ελαχίστων τετραγώνων. Πρέπει πάντα τα δεδομένα που έχουμε να αντιστρέψουμε με τη μέθοδο να είναι απαλλαγμένα από όλα αυτά τα ελαττώματα και για αυτό πιο κάτω παρουσιάζουμε μεθόδους εκτίμησης σφαλμάτων.

Ένα σημαντικό χαρακτηριστικό της μεθόδου είναι ότι σημαντικό μέρος από την απώλεια των δεδομένων λαμβάνεται υπ’όψιν κατά την αντιστροφή, κάτι που αρκετοί προσπάθησαν να εξαλείψουν αλλά ορισμένες φορές είναι χρήσιμο για να καταλάβουμε χονδρικά τα βασικά χαρακτηριστικά του μοντέλου κατά τα πρώτα στάδια της αντιστροφής.

Θεωρώντας μια μεταβολή των δεδομένων δm, σε κάποιο μοντέλο m, και με βάση τις εξισώσεις (5.3) και (5.4), η γενική συνάρτηση των ελαχίστων τετραγώνων μπορεί να πάρει τη μορφή ως ακολούθως:

\[
f(\delta m) = \Phi(\delta m) + \Psi(\delta m) \quad (5.8)\]

όπου:

\[
\Phi(\delta m) = \|r - P\delta m\|_D^2 \quad (5.9)
\]
Η συνάρτηση $Φ$ αποτελεί μέτρο της απόκλισης των γραμμικοποιημένων δεδομένων για μια διαταραχή στο μοντέλο $δm$ και $Ψ$ η συνάρτηση που δίνεται από την εξίσωσή:

$$Ψ(δm) = \lambda_α \left\| (m + δm) - m_α \right\|^2_{M_α} + \lambda_β \left\| (m + δm) - m_β \right\|^2_{M_β} + ... (5.10)$$

και αποτελεί ουσιαστικά μια άπειρη ακολουθία που με όρους που μετρούν τις διάφορες ιδιότητες του μοντέλου με τη διαταραχή. Οι νόρμες $\left\| \cdot \right\|_o, \left\| \cdot \right\|_m$ είναι σταθμισμένες l_2 νόρμες και τα λ μονόμετρα που ελέγχουν τη βαρύτητα που δίνεται σε κάθε έναν από τους όρους κατά τη διάρκεια της αντιστροφής.

5.5.2 Η damped μέθοδος των ελαχίστων τετραγώνων

Η προηγούμενη μέθοδος, δηλαδή η απλή μέθοδος των ελάχιστων τετραγώνων, ταιριάζει σε προβλήμαta όπου όλοι οι παράμετροι του προβλήματος είναι σαφώς καθορισμένες, όμως τα σεισμικά προβλήματα και ιδιαίτερα αυτά σε τρεις διαστάσεις περιέχουν δεδομένα που δεν μπορούν να καθορισθούν, να περιορισθούν ή να ελεγχθούν. Αν και οι νέες τεχνικές επιλογές καννάβου, μειώνουν κάπως το πρόβλημα, η κλασική προσέγγιση με τον ομοιόμορφο κάναβο και η εφαρμογή περιορισμών στην αντιστροφή συνεχίζει να είναι κυρίαρχη.

Μια από τις πιο κλασικές μεθόδους είναι η damped μέθοδος των ελαχίστων τετραγώνων, όπου ο όρος $Ψ$ της εξίσωσης (5.8) γίνεται ως εξής:
\[\Psi(\delta m) = \lambda \| \delta m \|_{m,0}^2 \quad (5.11) \]

με την νόμα \(\| \cdot \|_{m,0} \) να ορίζεται ως εξής:

\[\| x \|_{m,0}^2 = \sum_i x_i^2 \quad (5.12) \]

Η νόμα αυτή περιορίζει το μέγεθος της διαταραχής του μοντέλου κατά την αντιστροφή και την κρατά να μένει μικρή, με την παράμετρο \(\lambda \) να δείχνει πόσο μικρή θα είναι, ουσιαστικά αποτρέποντας το μοντέλο να αλλάξει κατά πολύ σε κάθε κύκλο αντιστροφής.

Η μέθοδος σταθεροποιεί παραμέτρους που δεν καλύπτονται επαρκώς από τα δεδομένα, απαγορεύοντας τους ουσιαστικά να αλλάξουν, εκτός κι αν όντως πρέπει να αλλάξουν για να μειωθεί το στατιστικό σφάλμα, και έτσι μπορεί και σταθεροποιεί αλλά και ομαλοποιεί την αντιστροφή μέχρι ένα βαθμό. Παρόλα αυτά η μέθοδος δεν είναι πάντα αξιόπιστη και συχνά εξαρτάται από την πυκνότητα των παραμέτρων που χρησιμοποιούνται (McCaughey, 1995).
5.5.3 Μέθοδος backprojection

Αποτελεί μια επαναληπτική μέθοδο επίλυσης του αντιστρόφου προβλήματος, όπου το μοντέλο παραμετροποιείται θεωρώντας ότι κάθε κελί του κανάβου έχει σταθερή ταχύτητα, και άρα βραδύτητα (slowness), με τα κελιά να έχουν ίδιο μέγεθος με το βήμα που χρησιμοποιεί το ευθύ πρόβλημα.

Σε κάθε επανάληψη δύο αθροίσματα υπολογίζονται για κάθε κελί: α) το πηλίκο r/I, όπου I το συνολικό μήκος της ακτίνας που περνά από το κελί και r το διάνυσμα υπολοίπου όπως ορίστηκε στην (5.1). και β) ο αριθμός των κελιών που περνούν από το κάθε κελί. Αφού σχεδιαστούν όλες οι ακτίνες η νέα βραδύτητα για κάθε κελί από το οποίο περνάει τουλάχιστον μια ακτίνα ισούται με το πηλίκο του πρώτου αθροίσματος προς το δεύτερο άθροισμα.

Πολλές φορές για να σταθεροποιηθεί η αντιστροφή χρησιμοποιούμε ένα φίλτρο κινούμενου μέσου (MA – Moving Average) στην νέα τιμή της βραδύτητας πριν την χρησιμοποιήσουμε στην αντιστροφή. Το μέγεθος του συντελεστή (MA) μειώνεται με τις επαναλήψεις και σταθεροποιεί την αντιστροφή αφού με κάθε νέα επανάληψη καθορίζει σταδιακά, μοντέλο μικρότερου μήκους κύματος. Έπειτα από κάθε επανάληψη το μοντέλο αναπαραμετροποιείται από την τυποποίηση των κελιών σε
αυτή των κόμβων υπολογίζοντας τη μέση βραδύτητα των οκτώ κελιών που περικλείουν ένα κόμβο.

Οι χρόνοι διαδρομής και οι διαδρομές των ακτίνων υπολογίζονται σύμφωνα με το νέο μοντέλο και οι επαναλήψεις συνεχίζονται μέχρι να επιτευχθεί τετραγωνικό σφάλμα \(\chi^2 \) ίσο ή κοντά στο 1. Οι σημαντικότερες τεχνικές backprojection είναι οι ART (Algebraic Reconstruction Technique) και SIRT (Simultaneous Reconstruction Technique).

Τα αποτελέσματα που μας δίνει η backprojection είναι συνήθως μη-λεία (rough) σε σύγκριση με άλλες μεθόδους αντιστροφής. Αυτό συμβαίνει γιατί όταν προστίθεται στο μοντέλο μια μη-λεία διαταραχή στην βραδύτητα, δεν υπάρχει τρόπος να λειάνουμε αυτή τη δομή στις επερχόμενες επαναλήψεις. Έτσι αναγκαζόμαστε να κάνουμε λείανση σε όλο το μοντέλο ή σε όλη τη διαταραχή.

Η «λείανση» αυτή μπορεί να γίνει με τρεις διαφορετικούς τρόπους: ο πρώτος είναι να κάνουμε λείανση σε όλο το μοντέλο και όχι στη διαταραχή. Ο δεύτερος είναι να κάνουμε λείανση στο μοντέλο αφού τα δεδομένα έχουν ικανοποιηθεί κάποιο συγκεκριμένο κριτήριο σύγκλισης και μετά να κάνουμε νέες επαναλήψεις ώστε να πετύχουμε καλύτερη σύγκλιση. Και ο τρίτος τρόπος αφορά την λείανση όλου του μοντέλου και ενός μέρους της διαταραχής. Και οι τρεις μέθοδοι δουλεύουν το ίδιο καλά στην πράξη αλλά πολλές φορές επιλέγεται το τρίτο σχήμα, μια που είναι η πιο
κοντινή στην μεθοδολογία της backprojection, όπως έχει περιγραφεί από τα παραπάνω.

5.5.4 Τροποποιημένη backprojection

Η μέθοδος backprojection είναι γενικά μια καλή και αξιόπιστη μέθοδος αντιστροφής όμως πολλές φορές η αντίστροφη σχέση ανάμεσα στην ταχύτητα και την βραδύτητα σημαίνει ότι μια ίση κατανομή της διαταραχής της βραδύτητας σε κάποια τροχιά ακτίνας θα καθοδηγήσει (bias) το τελικό μοντέλο προς μια μεγάλη ετερογένεια σε περιοχές μεγάλης ταχύτητας (Toomey et al., 1994). Για να βελτιωθεί αυτό, οι Zelt και Barton (1998) δούλεψαν με ένα σχήμα ανομοιόμορφης backprojection όπου κάθε κελί δέχεται μια διαταραχή στην βραδύτητα ανάλογη με την πρώτη βραδύτητα που είχε το κελί. Για μια συγκεκριμένη τροχιά, η οποία περνάει μέσα από Μ το πλήθος κελιά, και ένα υπόλοιπο χρόνου r η σχέση που δίνει την ανανέωση της βραδύτητας σε κάθε κελί δίνεται από:

\[r = \sum_{j=1}^{M} l_j \Delta S_j \quad (5.13) \]

όπου \(l \) το μήκος της τροχιάς της ακτίνας και \(\Delta S_j \) η διαταραχή στην τιμή της βραδύτητας για το \(j \)-κελί. Για \(\Delta S_{j,\infty} \), όπου \(s \), η πρώτη βραδύτητα στο κελί \(\eta \) (5.13) γράφεται ως εξής:
\[\Delta S_j = \frac{s_{j} \Delta t}{\sum_{k=1}^{M} l_{k} S_{k}} = \frac{s_{j} \Delta t}{t^{pre}} \] (5.14)

όπου \(t^{pre} \) οχρόνος που έχει προβλεφθεί για το συγκεκριμένο μοντέλο.

Η δεύτερη μετατροπή αφορά την εκτίμηση της διαταραχής της βραδύτητας της (5.14) με βάση το αντίστροφο της αβεβαιότητας που έχουμε για την επιλογή που αντιστοιχεί στον παραπομπούμενο χρόνο διαδρομής για την ακτίνα. Έτσι υπολογίζονται δύο αθροίσματα για κάθε κελί: α) \(\Delta S_j / \sigma_i \) για κάθε ακτίνα που περνά από το κελί, όπου \(\sigma_i \) η αβεβαιότητα που έχουμε για τον παραπομπούμενο χρόνο της συγκεκριμένης ακτίνας και β) \(1/\sigma \) για κάθε ακτίνα που περνά από το κελί. Όπως και στην απλή μέθοδο backprojection έτσι και εδώ η νέα τιμή της βραδύτητας εξαρτάται από το πηλίκο του πρώτου αθροίσματος προς το δεύτερο.

Πολλές φορές μια ακτίνα μπορεί να περνά από μια περιοχή του μοντέλου όπου η ταχύτητα μπορεί να είναι γνωστή η να υποτθεί γνωστή. Σε περιπτώσεις σαν και αυτή το άθροισμα (β) περιορίζεται στα κελιά που η ταχύτητα είναι άγνωστη. Έτσι η εξίσωση (5.14) γίνεται:

\[\Delta S_j = \frac{\sum_{i=1}^{M_i} \frac{1}{\sigma_i} \left[s_{j} \Delta t_i \right]}{\sum_{i=1}^{M_i} \frac{1}{\sigma_i}} \] (5.15)
όπου M_j ο αριθμός των ακτίνων που περνούν από τo j-κελί. Σε αυτή τη διαδικασία δεν αντιστρέφουμε κανένα διάνυσμα και η μνήμη που απαιτείται από το σύστημα είναι πολύ μικρή.

5.5.5 Κλιμακούμενη backprojection (scaled)

Η απλή backprojection τεχνική πάσχει από αργή σύγκλιση, κάτι που ωφείλεται σε δύο λόγους κατά βάση. Ο πρώτος είναι ότι η backprojection έχει να κάνει με μια αντιστροφή όπου μόνο τα διαγώνια στοιχεία του διανύσματος $L^T L$ μένουν αναλοίωτα, όπου L είναι ο πίνακας των μερικών παραγώγων των στοιχείων l_j που αντιστοιχεί στο μήκος της i-ακτίνας μέσα από το j-κελί. Ο δεύτερος λόγος είναι ότι σε κάθε επανάληψη εφαρμόζεται λείανση. Η κλιμακούμενη backprojection (Humphreys και Clayton, Zelt και Barton, 1998), θεωρεί ότι η εξίσωση (5.15) δίνει τη σωστή διεύθυνση στο χώρο, αλλά υπολογίζει το μήκος βρίσκοντας μια τιμή για το διάνυσμα α που θα ελαχιστοποιεί το Φ. Ελαχιστοποιούμε δηλαδή την παρακάτω εξίσωση:

$$\phi = \sum_{i=1}^{N} \left[\frac{t_{\text{obs}}^{i} - \sum_{j=1}^{M} l_j (s_j^{k-1} + \alpha \Delta s_j)}{\sigma_i} \right]^2$$ (5.16)

με βάση το α, όπου N ο αριθμός των δεδομένων, M τα κελιά του μοντέλου. Η εξίσωση (5.16) οδηγεί στην παρακάτω:
\[
\sum_{i=1}^{N} \left[\frac{t_{i}^{\text{obs}} - \sum_{j=1}^{M} l_{ij} s_{j}^{k-1} - a \sum_{j=1}^{M} l_{ij} \Delta s_{j}}{\sigma_{i}} \right] = 0 \quad (5.17)
\]

όπου το άθροισμα \(\sum_{j=1}^{M} l_{ij} s_{j}^{k-1} \) αντιστοιχεί με τον \(i \)-χρόνο που έχουμε υπολογίσει για τη συγκεκριμένη επανάληψη. Αν επιλύσουμε την (5.17) ως προς \(\alpha \) παίρνουμε:

\[
\alpha = \frac{\sum_{i=1}^{N} \left[\frac{t_{i}^{\text{obs}} - t_{i}^{\text{pre}}}{\sigma_{i}} \right] \frac{\Delta t_{i}^{\text{pre}}}{\sigma_{i}}}{\sum_{i=1}^{N} \left[\frac{\Delta t_{i}^{\text{pre}}}{\sigma_{i}} \right]^{2}} \quad (5.18)
\]

Αν θεωρήσουμε \(\Delta t_{i}^{\text{obs}} = t_{i}^{\text{obs}} - t_{i}^{\text{pre}} \) να είναι το υπόλοιπο του χρόνου για τη συγκεκριμένη επανάληψη, αυτό δηλαδή που είχαμε ορίσει παραπάνω σαν \(r \), τότε η (5.18) γίνεται ως εξής:

\[
\alpha = \frac{\Delta t_{i}^{\text{obs}} \Delta t_{i}^{\text{pre}}}{\Delta t_{i}^{\text{pre}} \Delta t_{i}^{\text{pre}}} \quad (5.19)
\]

Το διάνυσμα \(\Delta t_{\text{obs}} \) είναι γνωστό μετά το πρώτο βήμα της backprojection και το \(\Delta t_{\text{pre}} \) μετά τον επανυπολογισμό των διαδρομών των ακτίνων στη συγκεκριμένη επανάληψη.
5.5.6 Η κανονικοποιημένη αντιστροφή

Η κανονικοποιημένη αντιστροφή είναι η μέθοδος που θα χρησιμοποιήσουμε και στον αλγόριθμό μας, και ως εκ τουτού θα αναφερθούμε σε αυτήν με μεγαλύτερη λεπτομέρεια.

Μια εναλλακτική μορφή στην εξίσωση (5.8), στο δεύτερο όρο της συνάρτησης, είναι η ακόλουθη εξίσωση:

\[\Psi(\delta m) = \lambda \|m + \delta m\|^2_M \quad (5.20) \]

όπου η νόρμα μετρά τις διαφορικές ιδιότητες του μοντέλου, δηλαδή πόσο επίπεδο (flatness) ή πόσο λείο (smooth) είναι. Οι ιδιότητες αυτές είναι ανεξάρτητες από το αρχικό μοντέλο \(m \). Αυτή η προσέγγιση επιτρέπει να ορίσουμε επιπλέον πώς η λείανση θα μεταβληθεί κατά τη διάρκεια της αντιστροφής, χρησιμοποιώντας κατάλληλα την παράμετρο \(\lambda \).

Αυτοί οι περιορισμοί θέλουν το μοντέλο, όπως αναφέραμε και στο δεύτερο κεφάλαιο να έχει ελάχιστη δομή, μοντέλα δηλαδή που θα περιέχουν την απολύτως απαραίτητη πληροφορία για να ικανοποιήσουν τα κριτήρια σύγκλισης. Η «ελάχιστη δομή» συνήθως μετρείται σε όρους μη-λείου μοντέλου (roughness). Ένας τέτοιος είναι και η δεύτερη χωρική παράγωγος (Parsons et al., 1996). Έτσι δίνεται η δυνατότητα να βρεθεί κάποια λύση η οποία θα ελαχιστοποιεί την τραχύτητα του μοντέλου αλλά και να είναι κατά το δυνατό πιο κοντά στην πραγματικότητα.

Οι λόγοι για τους οποίους προσπαθούμε να περιορίσουμε την τραχύτητα σε προβλήματα σεισμικής δρομοχρονικής τομογραφίας, τα οποία εμπλέκουν τις ακτίνες των σεισμικών κυμάτων, μπορούν να συνοψισθούν στα παρακάτω. Ο πρώτος είναι ότι οι μέθοδοι που βασίζονται σε ακτίνες «άπειρης» συχνότητας ισχύουν μόνο για λεία μέσα. Ο δεύτερος ότι οι χρόνοι διαδρομής συγκρατούν τα χαρακτηριστικά μόνο από μεγάλα μήκη κύματος και αυτό γιατί τα δεδομένα αναπαριστούν ολοκληρωματικά μέσα στο μοντέλο. Ο τρίτος ότι η θεώρηση σταθερών τροχιών ακτίνων ικανοποιείται περισσότερο σε λεία μοντέλα και τέλος, η θεώρησή μας για την πρώτη ζώνη Fresnel σημαίνει ότι τα μοντέλα που τροποποιούνται θα πρέπει να αναπαριστούν μια λεία εκδοχή του πραγματικού μοντέλου.
Οι πιο χρήσιμες μορφές της κανονικοποιημένης αντιστροφής είναι πέρα από αυτή που ασχολείται με το πόσο λείο είναι το μοντέλο και αυτή που ασχολείται με το πόσο επίπεδο ή όχι είναι το μοντέλο (flatness). Για να μετρήσουμε το πόσο μη-επίπεδο είναι κάποιο μοντέλο χρησιμοποιούμε τον ακόλουθο τύπο, την πρώτη παράγωγο των χωρικών μεταβλητών του μοντέλου:

\[
\|m\|_M^2 = (x_2 - x_1) \int_{x_1}^{x_2} \left(\frac{dm}{dx} \right)^2 \, dx \quad (5.21)
\]

για την απλή περίπτωση ενός τυχαίου μοντέλου \(m\) του οποίου οι παράμετροι ορίζονται σε μια γραμμή ανάμεσα στα σημεία \(x_1\) και \(x_2\).

Κατ’αντίστοιχα, για να μετρήσουμε την τραχύτητα ενός μοντέλου χρησιμοποιούμε τη δεύτερη παράγωγο των χωρικών μεταβλητών του μοντέλου. Παίρνουμε δηλαδή την παρακάτω:

\[
\|m\|_M^2 = (x_2 - x_1)^3 \int_{x_1}^{x_2} \left(\frac{d^2m}{dx^2} \right)^2 \, dx \quad (5.22)
\]

και το αποτέλεσμα κανονικοποιείται όπως και παραπάνω. Τα δύο αυτά χαρακτηριστικά της κανονικοποίησης είναι εξίσου σημαντικά και μπορούν να χρησιμοποιηθούν και για σύγκριση αποτελεσμάτων και δίνουν πληροφορίες σχετικά με τους περιορισμούς που θέτουμε σε ένα μοντέλο.
Στη σεισμική τομογραφία διάθλασης, ακόμη και το πιο απλό μοντέλο πρέπει να περιέχει τουλάχιστον ένα σταθερό μη-μηδενικό κάθετο συντελεστή ταχύτητας. Το μοντέλο αλλάζει με το βάθος, με ένα τρόπο που το αφήνει λείο αλλά όχι επίπεδο. Πολλές φορές επειδή αναζητούμε μοντέλα ελάχιστης δομής τα οποία θα έχουν διαφορετική ταχύτητα με το βάθος, και για να προσεγγίσουμε καλύτερα τη κάθετη και οριζόντια δομή, επιλέγουμε να εφαρμόσουμε στο μοντέλο μόνο περιορισμούς στο πόσο λείο είναι και όχι στο πόσο επίπεδο είναι.

Στη περίπτωση της τρισδιάστατης σεισμικής τομογραφίας, με τον φορμαλισμό των στρωμάτων και των διεπιφανειών, ο όρος της τραχύτητας γίνεται:

$$\|m\|_m^2 = \frac{S}{n} \int_S \left(\frac{\partial^2 z}{\partial x^2} \right)^2 + \left(\frac{\partial^2 z}{\partial y^2} \right)^2 + 2 \left(\frac{\partial^2 z}{\partial x \partial y} \right)^2 dS \quad (5.23)$$

όπου Σ είναι η περιοχή που περικλείει η διεπιφάνεια και ζ(χ,ψ) η συναρτήση που περιγράφει την διεπιφάνεια και:

$$\|m\|_m^2 = \frac{2\sqrt{V}}{n} \int_V \left(\frac{\partial^2 u}{\partial x^2} \right)^2 + \left(\frac{\partial^2 u}{\partial y^2} \right)^2 + \left(\frac{\partial^2 u}{\partial z^2} \right)^2 + 2 \left(\frac{\partial^2 u}{\partial x \partial y} \right)^2 + 2 \left(\frac{\partial^2 u}{\partial x \partial z} \right)^2 + 2 \left(\frac{\partial^2 u}{\partial z \partial y} \right)^2 dV \quad (5.24)$$

για στρώματα όπου V είναι ο όγκος του στρώματος και ω(χ,ψ,ζ) η συνάρτηση της ταχύτητας σε τρεις διαστάσεις. Οι νόρμες της τραχύτητας κανονικοποιούνται σε
τετραγωνικές μονάδες του m και ο συνολικός αριθμός των στρωμάτων και διεπιφανειών, n, περιλαμβάνεται στην αντιστροφή. Με αυτή την τυποποίηση το φυσικό μέγεθος του μοντέλου και ο αριθμός των στρωμάτων μπορούν να τεθούν υπό κλίμακα στην αντιστροφή χωρίς να επηρεάσουν την τραχύτητα για όλο το μοντέλο.

Γενικά η κανονικοποιημένη αντιστροφή υπερτερεί έναντι της backprojection τεχνικής. Η μέθοδος backprojection συγκλίνει πιο αργά σε σχέση με την κανονικοποιημένη αντιστροφή και επιπλέον παράγει μοντέλα τα οποία είναι πιο τραχιά (rough) από την κανονικοποιήση. Ακόμη και η κλιμακούμενη backprojection που είδαμε παραπάνω, πιο γρήγορη από την απλή backprojection, υπερτερεί της κανονικοποιημένης αντιστροφής, καθώς η τελευταία δίδει απλούστερα μοντέλα, με ελάχιστη επιπλέον απαιτούμενη ισχύ.

5.5.7 Μέθοδος με νόρμα Huber

Σε αυτή την ενότητα θα επιλύσουμε το αντίστροφο πρόβλημα χρησιμοποιώντας την υβριδική νόρμα του Huber με μια ψευδονευτώνεια μέθοδο. Κατά το παρελθόν είχαν προταθεί διάφορες μέθοδοι προσέγγισης του αντίστροφου προβλήματος μέσω της νόρμας Huber (Ekblom και Madsen, 1989, Li και Sweist, 1998), η πιο αποτελεσματική όμως έχει αποδειχθεί ότι είναι αυτή που χρησιμοποιεί ψευδονευτώνεια μέθοδο επίλυσης (π.χ. Guitton και Symes, 2003).

Η ψευδονευτώνεια μέθοδος είναι μια επαναληπτική διαδικασία όπου η λύση στο πρόβλημα ανανεώνεται ως ακολούθως:
\[m_{n+1} = m_n - \lambda_n H^{-1} \nabla f(m_n) \] (5.24β)

όπου \(m_{n+1} \) η νέα λύση στην \(n+1 \) επανάληψη, \(\lambda \) το μήκος του βήματος που εξασφαλίζει σημαντική μείωση της \(f(m) \) και \(H \) μια προσέγγιση στην εσσιανή.

\[H_{k+1} = H_k + \frac{yy^T}{y^Ts} - \frac{(H_k s)(H_k s)^T}{s^TH_k s} \] (5.24.γ)

όπου \(s = m_{k+1} - m_k \) και \(y = \nabla f(m_{k+1}) - \nabla f(m_k) \). Στην πράξη μπορούμε να γράψουμε την εξίσωση (5.24.γ) ως εξής:
και να χρησιμοποιήσουμε τη νέα εσσιανή από το να αποθηκεύσουμε όλο τον πίνακα \(H^{-1}_k \). Κάτι τέτοιο επιβάλλει ότι το \(s \) και το \(y \) θα αποθηκεύονται στη μνήμη μετά από κάθε επανάληψη.

5.5.8 Η μέθοδος BFGS περιορισμένης μνήμης με νόρμα Huber

Όπως είδαμε και παραπάνω η μέθοδος BFGS μπορεί να αντιμετωπίσει προβλήματα αποθήκευσης και ζήτησης πόρων μνήμης και να δημιουργήσει καθυστερήσεις ακόμη και σε σύγχρονα υπολογιστικά συστήματα. Ένας τρόπος για να αποφύγουμε τυχόν προβλήματα είναι αντί της αποθήκευσης των \(s \) και \(y \) από τις προηγούμενες επαναλήψεις να ανανεώσουμε την εσσιανή από τις \(I \) το πλήθος προηγούμενες επαναλήψεις, οπου το \(I \) θα καθορίζεται από το χρήστη.

Έτσι όταν ο αριθμός των επαναλήψεων είναι μικρότερος του 1 τότε έχουμε την απλή μέθοδο BFGS ενώ όταν είναι μεγαλύτερος χρησιμοποιούμε την L-BFGS (limited BFGS), περιορισμένης μνήμης.

Ακολουθούμε τη μέθοδο όπως διατυπώθηκε από τον Nocedal (1980), και δίνουμε τους τύπους των εσσιανών ανανεώσεων. Ας υποθέσουμε ότι η διεύθυνση της αναζήτησης \(P_k \) στο επίπεδο \(k \) δίνεται από τη λύση της νευτώνειας εξίσωσης:
\[B_k p_k = -\nabla f(x_k) \cdot (5.5.8.1) \]

όπου \(x \) η υπόθεσή μας, \(B \) ο προσεγγιστικός Εσσιανός πίνακας και \(f \) η νευτώνεια εξίσωση.

Χρησιμοποιούμε μια γραμμή αναζήτησης για να βρούμε το επόμενο σημείο

\[x_{k+1} \]

Αντί να χρησιμοποιήσουμε τον πλήρη Εσσιανό πίνακα \(B_{k+1} \), τον προσεγγίζουμε χρησιμοποιώντας τον Εσσιανό του προηγούμενου βήματος και έτσι παίρνουμε:

\[B_{k+1} = B_k + U_k + V_k \cdot (5.5.8.2) \]

Τόσο το \(U_k \) όσο και το \(V_k \) είναι πίνακες με μοναδιαίο rank αλλά έχουν διαφορετικές βάσεις. Έτσι, τα \(U_k \) και \(V_k \) σχηματίζουν ένα νέο διάνυσμα με \(\text{rank}=2 \) το οποίο και δίνει ικανοποιητικά αποτελέσματα καταλήγοντας έτσι ότι:

\[B_{k+1}(x_{k+1} - x_k) = \nabla f(x_{k+1}) - \nabla f(x_k) \cdot (5.5.8.3) \]

5.6 Η κανονικοποιημένη αντιστροφή στον αλγόριθμο μας

Ο στόχος μας είναι να πάρουμε ένα ρεαλιστικό μοντέλο που θα ανταποκρίνεται στην πραγματικότητα και τα δεδομένα που έχουν ληφθεί. Εξαιτίας της υψηλής μη-
γραμμικότητας του αντιστρόφου προβλήματος, οι ακτίνες διαδρομής εξαρτώνται κατά πολύ από το μοντέλο ταχυτήτων και ο αλγόριθμος ακολουθεί μια επαναληπτική διαδικασία. Σαν επαναληπτική διαδικασία, απαιτείται ένα αρχικό μοντέλο και οι νέες ακτίνες διαδρομής υπολογίζονται σε κάθε επανάληψη. Καθώς το αντίστροφο πρόβλημα, σε περιπτώσεις σαν και αυτές με τις οποίες καταπιεζόμαστε, είναι κακώς ορισμένο (underdetermined), χρησιμοποιούμε την κανονικοποιημένη αντιστροφή με περιορισμούς που ορίζει ο χρήστης και οι οποίοι έχουν σχέση με το πόσο λείο, επίπεδο και μικρό είναι το μοντέλο που παίρνουμε.

Οι περιορισμοί αυτοί εφαρμόζονται στον αλγόριθμο έχοντας πάντα υπ’όψιν το αρχικό μοντέλο. Στην περίπτωσή μας, η αντιστροφή ελαχιστοποιεί μια συνάρτηση Φ, η οποία όπως είδαμε και παραπάνω μετρά την τραχύτητα του μοντέλου αλλά και το πόσο κοντά βρίσκονται τα δεδομένα στην πραγματικότητα. Η συνάρτηση αυτή δίνεται από τον ακόλουθο τύπο:

\[\Phi(m) = \delta T C_{d}^{-1} \delta t + \lambda (m^{T} C_{h}^{-1} m + s_{2} m^{T} C_{c}^{-1} m) \]

(5.25)

όπου \(\delta t \) είναι το διάνυσμα που συναντήσαμε παραπάνω ως \(r \), \(C_{d} \) ο πίνακας συνδιακύμανσης των δεδομένων, δηλαδή ένας διαγώνιος πίνακας με στοιχεία \(\sigma_{ii}^2 \), όπου \(\sigma_{ii} \) η αβεβαιότητα του i-χρόνου διαδρομής. Το \(C_{h} \) αντιστοιχεί στον πίνακα που εκφράζει την οριζόντια τραχύτητα του μοντέλου. Κάθε γραμμή του πίνακα \(C_{h} \) περιλαμβάνει πέντε μη-μηδενικούς λατπλασιανούς τελεστές της μορφής:
όπου \(s_j \) η βραδύτητα (slowness) του \(j \)-κελιού, με τα στοιχεία αυτά να αντιστοιχούν σε ένα κεντρικό κελί και τέσσερα παρακείμενα κελιά στην διεύθυνση \(x-y \). Ομοίως, το \(C_v \) αντιστοιχεί σε πίνακα που εκφράζει την κάθετη τραχύτητα του μοντέλου. Όπως και προηγουμένως, κάθε γραμμή του \(C_v \) περιέχει τρία μη-μηδενικά στοιχεία που αντιστοιχούν σε τρία γειτονικά κελιά στη \(z \)-διεύθυνση:

\[
\frac{1}{s_j}, -2\frac{1}{s_j}, \frac{1}{s_j}
\]

Τέλος, το \(\lambda \) αντιστοιχεί σε μια παράμετρο η οποία ελέγχει το ποσοστό της κανονικοποίησης που θα εφαρμοσθεί κατά την αντιστροφή. Η παράμετρος αυτή ουσιαστικά ελέγχει την απόκλιση μεταξύ του \(r \) και ενός λείου μοντέλου. Ο συντελεστής \(s_z \) καθορίζει τη βαρύτητα των οριζόντιων περιορισμών σε σχέση με τους κάθετους και πρέπει να είναι μεγαλύτερος ή ίσος του μηδενός. Έτσι, καταλήγουμε στο ακόλουθο τομογραφικό σύστημα:

\[
\begin{bmatrix}
C_d^{-1/2} L \\
\lambda C_k \\
s_z \lambda C_v
\end{bmatrix}
\delta m =
\begin{bmatrix}
C_d^{-1/2} \delta t \\
-\lambda C_k m_0 \\
-s_z \lambda C_v m_0
\end{bmatrix}
\tag{5.26}
\]

όπου \(m_0 \) το μοντέλο που έχουμε εκείνη τη χρονική στιγμή, δηλαδή η διαταραχή του μοντέλου και το \(m \) δίνεται από τον ακόλουθο τύπο:
\[m = m_0 + \delta m \quad (5.27) \]

Το σύστημα (5.26) επιλύεται χρησιμοποιώντας τη μέθοδο ελαχίστων τετραγωνων που περιγράψαμε παραπάνω (Paige και Saunders, 1982; Nolet, 1987).

Αν και η κανονικοποίηση εξαρτάται από το σύστημα (5.26), στην πραγματικότητα οι πίνακες με τους οποίους ασχολούμαστε σε αληθινά προβλήματα είναι πολύ αραιοί και σχετικά εύκολοι στην επίλυση. Συνήθως, το ποσοστό των μη-μηδενικών στοιχείων των πινάκων αυτών δεν ξεπερνά το 0.5%.
6. Διακινδύνευση και ανάλυση αβεβαιοτήτων στα δεδομένα και το μοντέλο

Καθώς η τομογραφία για να δώσει εικόνες του εσωτερικού της γης βασίζεται σε μαθηματικές αναπαραστάσεις, πιο απλά σε μοντέλα ή πρότυπα, φυσικών συστημάτων, δεν είναι αυτό που θα ονομάζαμε μια ακριβής μέθοδος, αλλά περισσότερο προσεγγιστική. Προσπαθεί δηλαδή να πλησιάσει κατά το μέγιστο την αλήθεια, αφού περιορίζεται από ενδογενείς και εξωγενείς συνθήκες που θα δούμε και θα αναλύσουμε παρακάτω. Έτσι, υπάρχει πάντα ο κίνδυνος να δώσουμε αποτελέσματα που θα διαφέρουν πολύ από την πραγματικότητα αν δεν δωθεί ιδιαίτερη προσοχή και μέριμνα στο συγκεκριμένο μέρος της μεθόδου.

Στα γεωφυσικά προβλήματα, και αναφερόμαστε σε αυτή τη διατριβή ειδικότερα σε προβλήματα τρισδιάστατης σεισμικής δρομοχρονικής τομογραφίας, τα μοντέλα είναι συναρτήσεις χωρικές και κατά συνέπεια στοιχεία ενός απειροδιάστατου διανυσματικού χώρου. Καθώς η τομογραφία αποτελείται ουσιαστικά από δύο βασικά στάδια, το ευθύ και το αντίστροφο, φέρνει μαζί της όλα τα προβλήματα που αντιμετωπίζουν οι μέθοδοι αντιστροφής. Ως π.χ. το πρόβλημα της μη-μοναδικότητας (Ramm, 1995, Vasco et al., 1996) πέρα από σημαντική αβεβαιότητα
που υπάρχει στα δεδομένα και τα μοντέλα. Έτσι, κρίνεται απαραίτητο, να ελέγχουμε πριν από κάθε τομογραφική διαδικασία, την εγκυρότητα και καταλληλότητα των δεδομένων και των μοντέλων μας, αν θέλουμε να έχουμε αξιόπιστα και ακριβή αποτελέσματα.

Η ανάλυση των αβεβαιοτήτων εστιάζει κυρίως στην ποιοτική επεξήγηση του πόσο ακριβή είναι τα δεδομένα που έχουμε, πόσο ακριβής είναι η προτυποποίηση των φυσικών συστημάτων που ακολουθούμε και πόσο λογικό είναι το τελικό μοντέλο. Στην πραγματικότητα, η εξέταση των αβεβαιοτήτων στα δεδομένα δεν είναι και τόσο διαδεδομένη και συνήθως το ερώτημα πόσο ακριβή είναι τα δεδομένα που έχουμε αντικαθίσταται από την βελτιστοποίηση μιας συνάρτησης που αποτελεί και μέτρο απώλειας ακρίβειας (data misfit equation), όπως π.χ. η συνάρτηση χ-τετράγωνο. Αξιοσημείωτο είναι ότι στη μεγάλη πλειονότητα των πειραμάτων, το πρόβλημα αυτό είτε αγνοείται, υπολογίζοντας απλά τη διαφορά ανάμεσα στους παρατηρηθέντες και τους υπολογισθέντες χρόνους διαδρομής, ή επιλύεται μερικώς επιλέγοντας αρχικά τα σφάλματα στα δεδομένα.

6.1 Είδη διακινδύνευσης στη σεισμική τομογραφία

Θα μπορούσε να γίνει μια ποιοτική διάκριση ανάμεσα στα διαφορετικά είδη διακινδύνευσης (risk) στη χρήση της τομογραφικής μεθόδου. Μια πρώτη προσέγγιση είναι ο διαχωρισμός σε διακινδύνευση πριν και μετά τη λήψη δεδομένων. Η πριν τη λήψη δεδομένων (pre-acquisition risk) έχει να κάνει κυρίως με την επιλογή της υπό
εξέτασης περιοχής, με άλλα λόγια κατά πόσο μπορούμε να εκτιμήσουμε ότι ο συγκεκριμένος χώρος κρύβει οντός το στόχο που θέλουμε να εντοπίσουμε.

Ειδικότερα για την περίπτωση των γεωαρχαιολογικών ή γεωτεχνικών εφαρμογών, η διακινδύνευση αυτή είναι ιδιαίτερα αυξημένη αφού σε ορισμένες περιπτώσεις βασιζόμαστε σε μερικής ακρίβειας πληροφορίες από ιστορικές πηγές ή σε οπτική εκτίμηση της περιοχής αν πρόκειται για γεωτεχνικά προβλήματα ενώ υπάρχουν και περιπτώσεις όπου οι ιδιες οι πηγές είναι ή ανεπιβεβαίωτες ή ανύπαρκτες, οπότε στηρίζομαστε σε πιθανές φημολογίες.

Η διακινδύνευση που εμφανίζεται με ή μετά τη λήψη των δεδομένων (post-acquisition risk) είναι ιδιαίτερα πολύπλοκη, ποικιλόμορφη και έχει να κάνει τόσο με τη μέθοδο σε θεωρητικό πλαίσιο όσο και με την πρακτική εφαρμογή της. Σε μια αυξημένη τέτοια διακινδύνευση συμβάλλουν κατά κύριο λόγο οι συνθήκες εκτέλεσης του πειράματος, όπως π.χ. η πυκνότητα του δικτύου, η διάταξη χτυπημάτων-γεωφώνων, ο λόγος ωφέλιμου σήματος προς θόρυβο (S/N), ο εξοπλισμός καταγραφής, η αποθήκευση των δεδομένων, αλλά και η επεξεργασία των δεδομένων που ακολουθεί, όπως π.χ. τι κάλυψη με ακτίνες έχουμε (ray-coverage), η επιλογή καννάβου, ο περιορισμός λόγω ανισοτροπίας των μεθόδων ray-tracing, η επίλυση του αντίστροφου προβλήματος, η επιλογή ενός ικανού τελικού μοντέλου και η ερμηνεία των αποτελεσμάτων.
6.2 Διακινδύνευση στο Αντίστροφο πρόβλημα

Συμβολίζουμε με d τα δεδομένα που έχουμε λάβει από το πείραμά μας, όπου $d \in \mathbb{R}^n$, n φυσικός αριθμός, και με m το αντίστοιχο, όπου m απειροδιάστατο διάνυσμα με $m \in S$. Με S συμβολίζουμε τον απειροδιάστατο χώρο των μοντέλων και με d και m τους εκτιμητές για τα δεδομένα και το μοντέλο αντίστοιχα.

Η εκτίμηση των δεδομένων είναι ουσιαστικά μια διαδικασία αναπαράστασης (μια συνάρτηση δηλαδή) από τον χώρο των μοντέλων στο χώρο των δεδομένων.

Έστω ότι έχουμε συλλέξει n το πλήθος δεδομένα, ορίζουμε μια συνάρτηση f, η οποία απεικονίζει αυτά τα μοντέλα στο χώρο των δεδομένων. Τη συνάρτηση f την ονομάζουμε ευθεία3 συνάρτηση.

Στο σημείο αυτό πρέπει να προσέξουμε ότι η συνάρτηση f ουσιαστικά μεταβάινει από έναν απειροδιάστατο σε έναν πεπερασμένο χώρο, κάτι που θα αναλύσουμε περισσότερο παρακάτω όταν θα αναφερθούμε σε γραμμικές συναρτήσεις. Μια τέτοια συνάρτηση είναι πάντα προσεγγιστική και έτσι εισάγει ένα συστηματικό σφάλμα k, όπου k ένα n-διάστατο διάνυσμα.

Το συστηματικό σφάλμα συνίσταται περισσότερο στον τρόπο με τον οποίο έχουμε επιλέξει το μοντέλο μας, κατα πόσο «σωστό» είναι ή όχι, αλλά και σε πιθανές καταστάσεις που, για κάποιους λόγους, δεν καταφέραμε να τις εντάξουμε κάτω από ένα πρότυπο. Η εξίσωση που συνδέει δεδομένα και μοντέλα έχει ως εξής:

3 Ευθεία με την έννοια ότι αναφέρεται στο ευθύ πρόβλημα (forward function).
\[d = \varphi(m) + \varepsilon + k \quad (6.1) \]

όπου \(\varepsilon \) n-διάστατο διάνυσμα που σχετίζεται με τυχαία λάθη μετρήσεων. Επειδή αυτά είναι τυχαία και οφείλονται στις εκάστοτε συνθήκες του πειράματος, θεωρούμε ότι δεν αναπαράγονται στα δεδομένα. Στην περίπτωση δε που η ευθεία συνάρτηση \(\varphi \) είναι γραμμική, τότε η (6.1) μπορεί να γραφεί σαν μια ακολουθία των στοιχείων \(m = \{m_i\} \):

\[d = Lm + \varepsilon \quad (6.2) \]

Εδώ παρατηρούμε ότι η ευθεία συνάρτηση αντικαθίσταται από το \(L \), που θα το ονομάζουμε εφεξής γραμμική ευθεία συνάρτηση, με \(L \in \mathbb{R}^{n \times m} \).

Παρατηρούμε ότι στην εξίσωση (6.2) έχουμε ανοιχτές το συστηματικό σφάλμα \(k \), επειδή θεωρούμε την \(L \) ακριβή. Κάτι τέτοιο στην πραγματικότητα δεν συμβαίνει για αυτό και είναι σπάνιες οι περιπτώσεις που η ευθεία συνάρτηση είναι γραμμική. Παρόλα αυτά μια τέτοια συνάρτηση είναι ιδιαίτερα βολική για να μας βοηθήσει να κατανοήσουμε καλύτερα το πρόβλημα. Σύμφωνα με τους Trampert και Snieder (1996), μπορούμε να μεταγράψουμε την εξίσωση (6.2) θεωρώντας ένα πεπερασμένο διάνυσμα \(m \), το οποίο θα περιέχει τα πρώτα \(i \) στοιχεία και την ακολουθία \(N^{\infty} \) που περιέχει τα υπόλοιπα στοιχεία:
\[d = L \cdot m + L \cdot N + \varepsilon \quad (6.3) \]

Στην εξίσωση (6.3) μπορούμε να θεωρήσουμε τον παράγοντα \(L \cdot N \) σαν το συστηματικό σφάλμα \(k \). Όταν προείπαμε, καθώς η συνάρτηση \(L \) απεικονίζει έναν άπειροδιάστατο χώρο σε έναν πεπερασμένο, ο πυρήνας του ευθύ συντελεστή \(\phi \), \(\text{Ker}(\phi) \), θα είναι \(\mu \)-τετριμμένος, με αποτέλεσμα να δίνει πολλά μοντέλα τα οποία ταιριάζουν στα δεδομένα μας εξίσου καλά. Αντιμετωπίζουμε δηλαδή το πρόβλημα της \(\mu \)-μοναδικότητας. Το γεγονός αυτό μας οδηγεί σε συγκεκριμένα επίπεδα αβεβαιότητας για την ορθότητα και την επιλογή του τελικού μοντέλου. Μια πρώτη λύση στο πρόβλημα είναι η εισαγωγή \(\text{a priori} \) πληροφορίας \(\pi.\chi \) με τη μορφή περιορισμών \(\Xi \) έτσι ώστε να περιορίσουμε το εύρος των πιθανών τελικών μοντέλων.

Για να εκτιμήσουμε την αβεβαιότητα που προκύπτει χρησιμοποιούμε \(\text{a priori} \) πληροφορία για την Μπεύσιανη \(\pi.\chi \) Tarantola, 1987) και τη συχνοτική \(\pi.\chi \) Parker, 1994). Η Μπεύσιανη, η πιο δημοφιλής των δύο για γεωφυσικά προβλήματα αντιστροφής, βασίζεται σε \(\text{a priori} \) προβλήματα και \(\text{a priori} \) προβλήματα πιθανοτήτων, δηλαδή όταν γνωρίζουμε για το μοντέλο πριν συλλέξουμε δεδομένα. Η συχνοτική από την άλλη, συναντάται πιο σπάνια, και βασίζεται στην ερμηνεία της πιθανότητας \(\text{a priori} \) προβλήματα και \(\text{a priori} \) προβλήματα από την συχνότητα των αποτελεσμάτων.

Η Μπεύσιανη στηρίζεται σε πληροφορία πριν τη συλλογή δεδομένων, θα λέγαμε λοιπόν ότι εξαρτάται και επηρεάζει αντίστοιχα την διακεκριμένη τύπου \(\text{pre-acquisition} \). Η συχνοτική επιλέγει πληροφορία μετά τη λήψη δεδομένων. Το ερώτημα που τίθεται είναι πόσο ακριβές μπορεί να είναι \(\text{a priori} \) μοντέλο;
Στη σεισμική δρομοχρονική τομογραφία τριών-διαστάσεων, και ιδιαίτερα σε πειράματα μικρού βάθους, η επιλογή ενός τέτοιου μοντέλου μπορεί να είναι ιδιαίτερα δύσκολη και επίπονη. Πώς λοιπόν να το εμπιστευτεύουμε όταν τις περισσότερες φορές η a priori γνώση που έχουμε είναι ιδιαίτερα περιορισμένη; Πώς να το εμπιστευτεύουμε όταν η μετατροπή της ντετερμινιστικής πληροφορίας (π.χ. περιορισμοί) σε πιθανότητα δεν είναι πάντα εύκολη; Στην πραγματικότητα, το a priori μοντέλο, μέσα από μια ακολουθία υπολογισμών, τείνει να κανονικοποιήσει την a posteriori λύση.

Στη διατριβή αυτή θα υιοθετήσουμε την Μπεϋσιανή προσέγγιση.

6.3 Η Μπεϋσιανή προσέγγιση

Πριν εφαρμόσουμε την Μπεϋσιανή μέθοδο πρέπει να ελέγξουμε με ποιο τρόπο θα αναπαραστήσουμε την a priori πληροφορία και πώς την a posteriori. Η a priori πληροφορία, την οποία από εδώ και στο εξής θα ονομάζουμε πρώτη ή αρχική πληροφορία, είναι μια καθαρά υποκειμενική επιλογή, που αντανακλά την εμπειρία που έχουμε για το συγκεκριμένο πρόβλημα και φυσικά εμπεριέχει μεγάλο βαθμό τυχαιότητας. Η επιλογή λοιπόν μόνο εύκολη δεν μπορεί να χαρακτηρισθεί, ειδικά σε μεγάλου εύρους προβλήματα (π.χ. τρισδιάστατη τομογραφία).

Καταφεύγουμε έτσι στην πρακτική μέθοδο των παρατηρήσεων για να εκτιμήσουμε το αρχικό μοντέλο, μέθοδο που θα ονομάσουμε εμπειρική Μπεϋσιανή και αποτελεί μια κατα τι «συντομευμένη» Μπεϋσιανή μέθοδο. Μια πλήρης ιεραρχημένη Μπεϋσιανή ανάλυση εισάγει πρόσθετες εξαρτήσεις από διάφορες παραμέτρους, οι οποίες μπορεί
να απαιτούν πολλαπλά στάδια εφαρμογής της μεθόδου. Η πλήρης μέθοδος σταματά όταν όλες οι παράμετροι του προβλήματος έχουν γίνει γνωστές σε αντίθεση με την εμπειρική Μπεϋσιανή που σταματά την ανάλυση όταν οι τελευταίες παράμετροι διαπιστωθεί ότι δεν μπορούν να γίνουν γνωστές.

6.4 Απόδοση Εκτιμητή και Διακινδύνευση

Είναι σημαντικό να σημειώσουμε ότι κάθε εκτιμητής εξαρτάται από την πρώτη πληροφορία και ότι δεν μπορούμε να ελέγξουμε πόση πρώτη πληροφορία περνά στην posteriori, που από εδώ και στο εξής θα ονομάζουμε ύστερη πληροφορία (Kass και Wasserman, 1996). Η διακινδύνευση εξαρτάται από το επιλεχθέν μοντέλο. Με μ είχαμε συμβολίσει τον εκτιμητή του μοντέλου m. Ορίζουμε τώρα τη συνάρτηση απώλειας L(μ,m). Αυτή ουσιαστικά αποτελεί το μέτρο απόκλισης του επιλεχθέντος μοντέλου (γνωστό) από το πραγματικό (άγνωστο), δηλαδή πόσο καλός είναι ο εκτιμητής μ για το μοντέλο m. Για οποιοδήποτε άλλο μοντέλο n, θα έχουμε L(m,n)>0 and L(m,m)=0. Υπάρχουν πολλές συναρτήσεις απώλειας, αλλά οι πιο συνηθισμένες είναι η τετραγωνική, που δίνεται από τον παρακάτω τύπο:

\[L(\mu,m) = (m - \mu)^2 \] (6.4)

και \[|L_p| - νόμιμη της συνάρτησης απώλειας:

\[L(\mu,m) = |(m - \mu)|^p \] (6.5)
Η διακινδύνευση του εκτιμητή, δηλαδή πόσο μακριά από την πραγματικότητα είναι η εκτίμησή μας, συμβολίζεται με $R(\mu, m)$ και δίνεται από τον ακόλουθο τύπο:

$$R(\mu, m) = E_p(L(\mu, m)) \quad (6.6)$$

όπου με p συμβολίζουμε την κατανομή της πιθανότητας και με E_p τον τελεστή προσδοκίας σύμφωνα με τη κατανομή της πιθανότητας.

6.5 Σύγκριση εκτιμητών

Για να συγκρίνουμε εκτιμητές μπορούμε είτε να χρησιμοποιήσουμε την ύστερη διακινδύνευση, υπολογίζοντας είτε την προσδιορισμένη απώλεια σε σχέση με την ύστερη κατανομή, $p(m|d)$, είτε τη μέση διακινδύνευση, χρησιμοποιώντας την πρώτη κατανομή σαν συνάρτηση βάρους. Η ύστερη διακινδύνευση δίνεται από τον τύπο:

$$r_{m|d} = E_{m|d}(L(m, \mu(\delta))) \quad (6.7)$$

Η μέση διακινδύνευση, γνωστή σαν διακινδύνευση Bayes δίνεται από τον εξής τύπο:

$$r_p = E_p R(m, \mu) \quad (6.8)$$
όπου p είναι η πρώτερη κατανομή του μοντέλου. Ο εκτιμητής με τη μικρότερη διακινδύνευση καλείται εκτιμητής κατά Bayes. Αν f είναι η από κοινού κατανομή των μοντέλων και των δεδομένων μπορούμε να έχουμε την κατανομή των δεδομένων αν ολοκληρώσουμε ως προς όλα τα μοντέλα την f:

$$h(d)=\int_{M} f(m,d) \, dm \quad (6.9)$$

όπου M ο χώρος των μοντέλων. Η ύστερη Μπεϋσιανή κατανομή (υποθετική κατανομή ενός μοντέλου m δεδομένου ότι έχουμε d δεδομένα) σύμφωνα με το θεώρημα του Bayes δίνεται από τον τύπο:

$$p(m|d) = \frac{f(d|m) \, p(m)}{h(d)} \quad (6.10)$$

Η εξίσωση (6.10) ανανεώνει την πρώτερη πληροφορία σύμφωνα με τα δεδομένα. Υπάρχουν πολλοί διαφορετικοί εκτιμητές m που μπορούν να βασιστούν στην $p(m|d)$, όπως αυτή που ελαχιστοποιεί την διακινδύνευση κατα Bayes για μια δεδομένη συνάρτηση απώλειας.

6.6 Εφαρμογή σε ένα τυπικό σεισμικό προφίλ

Σε ένα τυπικό τομογραφικό πρόβλημα ο στόχος είναι να ερμηνευτούν οι καταγραφόμενοι χρόνοι διαδρομής, έτσι ώστε να ανακατασκευαστεί ένα μοντέλο
πειστικό προς αυτό που πραγματικά υπάρχει στην υπό εξέταση περιοχή. Για κάθε παρατήρηση, ο χρόνος διαδρομής δίνεται από τον εξής τύπο:

\[t = \int_{L} \frac{1}{u} dL \]

(6.11)

όπου \(L \) είναι η διαδρομή της ακτίνας και \(u \) η ταχύτητα. Ο παράγοντας \(1/u \) είναι γνωστός σαν βραδύτητα. Δεδομένου ότι ο χρόνος \(t \) είναι γνωστός, θέλουμε να υπολογίσουμε την ταχύτητα \(u \). Καθώς οι ακτίνες δεν είναι ευθείες γραμμές –αν οι γραμμές ήταν ευθείες, η ταχύτητα \(u \) θα ήταν σταθερή- το πρόβλημα είναι μη-γραμμικό. Αν πάρουμε \(N \) το πλήθος παρατηρήσεις έχουμε το ακόλουθο σύστημα:

\[M s = t \]

(6.12)

όπου \(s \) το \(m \)-διάστατο διάνυσμα της βραδύτητας που δίνει την βραδύτητα στο \(j \)-στο κελλί, \(t \) το \(n \)-διάστατο διάνυσμα χρόνου που δίνει το συνολικό χρόνο διαδρομής της \(i \)-ς ακτίνας και \(M \) ο διάστασης \(mxn \)-πίνακας με στοιχεία \(lij \), όπου \(lij \) το \(m \)-κή και \(i \)-\(n \)-το \(m \)-κή \(lij \) διαδρομής της ακτίνας μέσα από το \(j \)-στο κελλί. Στις περισσότερες περιπτώσεις, ο πίνακας \(M \) είναι αραιός, δηλαδή περιέχει πολλά μηδενικά στοιχεία, με ελάχιστα μόνο μη-μηδενικά στοιχεία και είναι ιδιαίτερα «overdetermined», δηλαδή έχει περισσότερους γνωστούς από αγνώστους, το οποίο σημαίνει ότι \(y(t) >> \psi(s) \), όπου:

\[\gamma(t) = \dim(<t^{(1)}, ..., t^{(m)}>) \]
ΚΑΙ

\[\psi(s) = \dim(\langle s_1, \ldots, s_n \rangle) \] (6.13)

Η ευθεία συνάτηση μοντελοποιήσης \(\phi(m) \), που απεικονίζει το μοντέλο στον χώρο των δεδομένων, είναι το εσωτερικό γινόμενο του πίνακα \(M \) και του διανύσματος \(s \) της βραδύτητας. Έστω \(t_1^0 \) ο χρόνος διαδρομής που παίρνουμε από την \(i \)-στη παρατήρηση και \(t_1^C \) ο χρόνος από τον \(i \)-στο χρόνο που υπολογίζουμε. Ο όρος, \(t_1^C \), είναι συνάρτηση της βραδύτητας \(s \). Αν \(e_i \) είναι ο θόρυβος από την \(i \)-στη παρατήρηση, παίρνουμε το ακόλουθο:

\[t_1^o = t_1^C + e_i \] (6.14)

Ο όρος \(e_i \) έχει, θεωρητικά, μηδέν μέση τιμή και διασπορά \(\sigma_i^2 \). Όπως έχουμε ήδη σημειώσει, το σύστημα της εξίσωσης (6.13) έχει περισσότερους γνωστούς από αγνώστους, όμως την ιδιαίτερη είναι «underdetermined», αφού \(\text{rank}(M) < \psi(s) \). Αυτό πρακτικά σημαίνει ότι δεν υπάρχει \(s \) που να ικανοποιεί την (6.13) πλήρως. Στην περίπτωση που \(\text{rank}(M) = \psi(s) \), τότε η (6.13) έχει μοναδική λύση.

Η προσέγγισή μας έγκειται στο να προσδιορίσουμε τις τιμές της βραδύτητας \(s \), που θα περιορίζουν μια συνάρτηση σφάλματος σε ένα όριο που εμείς προσδιορίζουμε (αριθμητική ανοχή). Με άλλα λόγια, αναζητούμε διάνυσμα \(s \), το οποίο θα ελαχιστοποιεί την \(\|Ms - t\| \) (6.15), όπου \(\| \| \) η Ευκλείδεια νόμιμη. Καθώς \(\text{rank}(M) < \psi(s) \),
υπάρχουν άπειρα s τα οποία ικανοποιούν το κριτήριο ελαχίστων τετραγώνων. Με το πρόβλημα των ελαχίστων τετραγώνων καταπιάνονται αναλυτικά οι A. Van der Sluis και H.A. van der Vorst (1987). Μια ευρέως χρησιμοποιούμενη συνάρτηση σφάλματος είναι η συνάρτηση χ-τετράγωνο:

\[
\chi^2(s) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{t_i^c - t_i^o}{\sigma_i} \right)^2
\]

(6.16)

Εναλλακτικά μπορεί να χρησιμοποιηθεί και η κανονικοποιημένη συνάρτηση χ-τετράγωνο, η οποία δίνεται από τον τύπο:

\[
\chi^2 = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\sum_{j} L_{ij} m_j - d_i}{\sigma_i} \right)^2
\]

(6.17)

όπου, \(m_j \) είναι το j-στο μοντέλο και \(d_i \) τα δεδομένα για το i-στο στοιχείο.

Έπειτα από επιλογή απορρίπτουμε όλες τις τιμές της βραδύτητας \(s \), που δεν πληρούν ή δεν βρίσκονται κοντά στο κριτήριο \(\chi^2 = 1 \).

6.7 Επιλογή κελιών και κόμβων

Το μέγεθος των κελιών είναι μια επιλογή η οποία καθορίζει πολλές φορές την αξιοπιστία ενός τομογραφικού αποτελέσματος. Όπως έχουμε ήδη πεί, τα κελιά κατά
τη διάρκεια του αντίστροφου προβλήματος μετατρέπονται σε πλέγμα που βασίζεται σε κόμβους, με οχτώ κελιά γύρω από κάθε κόμβο στα προβλήματα τριών διαστάσεων. Το μέγεθος των κελιών στους σύγχρονους αλγορίθμους μπορεί να καθορισθεί από τον χρήστη και εκτελεστεί με το πρόβλημα που έχει να αντιμετωπίσει. Επιλέγοντας κάνναβο με μικρά κελιά αυξάνουμε την ποιότητα του αποτελέσματος αλλά και το χρόνο που απαιτείται για τον υπολογισμό. Διαφορετικά, αν τα κελιά ήταν μεγαλύτερα, ο κίνδυνος να πάρουμε κάθετα λείες δομές είναι ιδιαίτερα μεγάλος.

Η απόσταση ανάμεσα στους κόμβους είναι κάτι το οποίο πρέπει να προσεχθεί ιδιαίτερα. Η απόσταση αυτή πρέπει να είναι τόσο μικρή ώστε να επιτρέπεται στις πρώτες αφίξεις να υπολογισθούν με ακρίβεια. Συνεχής πειράματα με διαφορετικά κελιά πρέπει να γίνονται από το χρήστη ώστε να πεισθεί πώς το πλέγμα που επιλέγει θα τον οδηγήσει στα σωστά αποτελέσματα. Συνήθως, μια μέση απόσταση μεταξύ των κόμβων καθορίζεται από την πολυπλοκότητα της υπεδαφικής δομής που θέλουμε να εξετάσουμε. Αν το επίπεδο πολυπλοκότητας είναι υψηλό τότε επιλέγουμε όσο το δυνατό πιο πυκνό πλέγμα με μικρά κελιά. Για να επιλέξουμε όσο το δυνατό καταλληλότερο πλέγμα κάναμε διάφορες δοκιμές με συνθετικά δεδομένα όπου η ταχύτητα είχε την εξής μορφή:

\[u = u_0 + \beta z \] \hspace{1cm} (6.18)

όπου \(u_0 \) η ταχύτητα στο σημείο από το οποίο ξεκινούμε, \(\beta \) ο συντελεστής αλλαγής της ταχύτητας στην κατακόρυφη διεύθυνση και \(z \) το βάθος. Μπορούμε έτσι να
ορίσουμε το βήμα που θα χρησιμοποιήσουμε στο ευθύ πρόβλημα συγκρίνοντας το χρόνο που υπολογίζουμε μέσω της τροποποιημένης μεθόδου των πεπερασμένων διαφορών, η οποία αναλύθηκε εκτενώς στο τρίτο κεφάλαιο, με το θεωρητικό χρόνο που προκύπτει από την εξίσωση (6.18). Η μείωση της απόστασης μεταξύ των κόμβων απαιτεί ιδιαίτερα μεγάλο χρόνο υπολογισμού και πολλούς περισσότερους κόμβους να υπολογισθούν. Συμπερασματικά, ο χρήστης πρέπει να επιλέξει το κατάλληλο διάστημα ανάμεσα στους κόμβους που θα συνδυάζει με το βέλτιστο τρόπο την ακρίβεια με τον υπολογιστικό χρόνο που δαπανάται.

6.8 Επιλογή παραμέτρων

Η επιλογή των παραμέτρων που καθορίζουν τον αλγόριθμό, στην περίπτωσή μας την κανονικοποιημένη αντιστροφή, είναι ένας πολύ σημαντικός παράγοντας που πρέπει να ληφθεί υπόψη κατά την ανάλυση αβεβαιοτήτων. Οι περισσότεροι αλγόριθμοι στο παρελθόν δεν έδιναν τη δυνατότητα στο χρήστη να επιλέξει τις τιμές των παραμέτρων παρά μόνο να καθορίσει το αρχικό μοντέλο ταχυτήτων και σε κάποιες περιπτώσεις να ορίσει τον κάναβο.

Έγιναν πολλές δοκιμές με συνθετικά αλλά και πραγματικά δεδομένα μέχρι να αναλυθεί σε λεπτομέρεια η συμπεριφορά των παραμέτρων στον αλγόριθμο αλλά και ο τρόπος με τον οποίο επηρεάζουν το τελικό μοντέλο. Οι δοκιμές έγιναν για να προσδιορισθούν οι βέλτιστες τιμές των λεγόμενων ελεύθερων παραμέτρων, δηλαδή των παραμέτρων sz, l και του μεταβλητού βάρους της κανονικοποιήσης σε σχέση με το βάθος. Ένα από τα μειονεκτήματα των γνωστών μεθόδων κανονικοποιήσης είναι η
αυθαίρετότητα στις τιμές των παραμέτρων (Zelt και Barton, 1998) για αυτό και είναι σημαντικό να ελέγξουμε με ποιό τρόπο αυτές επηρεάζουν το τελικό μοντέλο.

Το πρώτο που ελέγξαμε είναι τους περιορισμούς (smoothing ή flatness) που δίνουν το καλύτερο τελικό μοντέλο. Για την καλύτερη διεξαγωγή των πειραμάτων κατασκευάσαμε συνθετικά μοντέλα σύμφωνα με το ευθύ πρόβλημα, τον τροποποιημένο δηλαδή αλγόριθμο του Vidale, και χρησιμοποίησαμε αρχικά μοντέλα ταχυτήτων που ταίριαζαν κατά πολύ στην αληθινή εικόνα των ταχυτήτων για τα πραγματικά δεδομένα μας. Παρατηρήσαμε, ότι οι περιορισμοί για το πόσο λείο είναι το μοντέλο δίνουν καλύτερα στατιστικά αποτελέσματα σε σχέση με τους περιορισμούς για το πόσο επίπεδο θα είναι. Αξιοσημείωτο είναι ότι συμβαίνουν σχεδόν αμελητέες αλλαγές στο τελικό μοντέλο όταν υιοθετούμε μεταβλητό βάρος στην κανονικοποίηση.

Ένας πολύ σημαντικός παράγοντας είναι η παράμετρος \(sz \). Όπως είδαμε και στο προηγούμενο κεφάλαιο η παράμετρος αυτή καθορίζει την βαρύτητα των περιορισμών στο οριζόντιο προς αυτών στο κάθετο επίπεδο. Η \(sz \) παράμετρος είναι ιδιαίτερα χρήσιμη αν γνωρίζουμε την κατανομή των ταχυτήτων του μοντέλου. Αν η ταχύτητα αλλάζει αργά στην οριζόντια διεύθυνση αλλά γρηγορότερα στην κάθετη, τότε πρέπει να επιλέξουμε μικρή τιμή για την \(sz \), κυρίως τιμές \(sz < 0.5 \), και αντίστροφα (Morgan et al., 2002). Αν η τιμή \(sz \geq 0 \), για παράδειγμα \(sz \geq 5 \), τότε ο αλγόριθμος δίνει λεία μοντέλα κατά την κατακόρυφη, χωρίς ασυνέχειες ταχυτήτων και διαφορετικά στρώματα μπορούν να εμφανίζονται σαν ενιαία. Στον πίνακα 6.1 παρατηρούμε την εναλλαγή των τελικών μοντέλων σε σχέση με την παράμετρο \(sz \).
Πίνακας 6.1: Η σχέση της παραμέτρου sz και το τελικό μοντέλο

<table>
<thead>
<tr>
<th>Στάνταρ Σμίθ</th>
<th>Επαναλήψεις</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>2.2677</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1.2560</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1.2670</td>
</tr>
</tbody>
</table>

Για να αποφύγουμε πλευρικά φαινόμενα, ειδικά όταν χρησιμοποιούμε παραμέτρους smoothing, πρέπει να ορίσουμε παράμετρο η οποία θα περιορίζει αυτά τα φαινόμενα και θα μας οδηγεί σε όσο το δυνατό πιο αληθή μοντέλα. Μια τέτοια παράμετρος που εισάγει περιορισμούς είναι η sedge η οποία χρησιμοποιείται για πρώτη φορά από τους Zelt και Barton (1998) και ουσιαστικά είναι το βάρος που δίνουμε στους περιορισμούς ώστε να ελεγχθούν τυχόν πλευρικά φαινόμενα που μπορεί να παρουσιαστούν από το smoothing. Παρατηρούμε ότι για μικρές τιμές της παραμέτρου, για παράδειγμα τιμές μικρότερες από 50, ο αλγόριθμος δεν είναι σε θέση να δώσει τελικό μοντέλο και τα στατιστικά κριτήρια δεν δίνουν πραγματικό αριθμό. Οπως φαίνεται και από τον πίνακα 6.2 όσο μεγαλώνουμε την τιμή της παραμέτρου τόσο τα στατιστικά κριτήρια συγκλίνουν προς τη μονάδα και τα τελικά μοντέλα που παίρνουμε πλησιάζουν κατά το δυνατό τη πραγματικότητα.
Πίνακας 6.2: Ο τρόπος με τον επηρεάζει η παράμετρος Sedge το τελικό μοντέλο. Σημειώνεται ότι το ακρωνύμιο NaN (Not a Number) σημαίνει ότι ο αλγόριθμος δεν κατάφερε να δώσει στα στατιστικά κριτήρια πραγματικό αριθμό.

<table>
<thead>
<tr>
<th>Sedge</th>
<th>Επαναλήψεις</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>NaN</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>NaN</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>2.280</td>
</tr>
<tr>
<td>1000</td>
<td>4</td>
<td>1.380</td>
</tr>
</tbody>
</table>

Εξίσου σημαντική με την προηγούμενη παράμετρο κρίνεται και η παράμετρος α (alpha). Αποτελεί ουσιαστικά μια παράμετρο που ελέγχει το σχετικό βάρος ανάμεσα στη σύγκλιση των δεδομένων με ένα ελάχιστα διαταραγμένο μοντέλο και ένα λείο μοντέλο. Η τιμή της παραμέτρου a εξορισμού κυμαίνεται από 0≤alpha≤1. Για παράδειγμα αν alpha=0, τότε ο αλγόριθμος εφαρμόζει κανονικοποιήση με τη μικρότερη διαταραχή ενώ αν alpha=1, τότε εφαρμόζει κανονικοποιήση μόνο με smoothing.

Συνήθως χρησιμοποιούμε μεγάλες τιμές στην παράμετρο, π.χ. alpha>0.7, όταν γνωρίζουμε από προηγούμενες αναλύσεις ότι υπάρχει μια ανωμαλία ταχυτήτων στην περιοχή ενδιαφέροντος και η οποία θα μπορούσε να αποδωθεί με κακό τρόπο ή ακόμη και να μη διακρινόταν καθόλου αν οι περιορισμοί της διαταραχής ήταν πολύ ισχυροί. Στον πίνακα 6.3 περιγράφονται με αναλυτικό τρόπο κάποια από τα
πειράματα που έγιναν σχετικά με τον τρόπο που επηρεάζει η παράμετρος alpha το τελικό μοντέλο.

<table>
<thead>
<tr>
<th>Alpha</th>
<th>Επαναλήψεις</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>4</td>
<td>2.296</td>
</tr>
<tr>
<td>0.7</td>
<td>4</td>
<td>1.280</td>
</tr>
</tbody>
</table>

Πίνακας 6.3: Ο τρόπος που επηρεάζει η παράμετρος alpha το τελικό μοντέλο

Τέλος, ιδιαίτερα σημαντικό ρόλο παίζει η παράμετρος λ, ο αριθμός των τιμών λ που θα ελέγχονται σε κάθε επανάληψη καθώς και η τιμή λ_{max} δηλαδή η αρχική τιμή της παραμέτρου λ. Όπως έχουμε ήδη αναφέρει η παράμετρος λ ελέγχει το ποσοστό της κανονικοποιήσης που θα εφαρμοσθεί κατά την αντιστροφή.

Σημαντικό ρόλο εκτός από την καθ'εαυτό τιμή της παραμέτρου λ παίζει και ο αριθμός των παραμέτρων που θα ελέγχθει από τον αλγόριθμο κατά τις επαναλήψεις. Αν για παράδειγμα ο αριθμός των λ που θα ελέγχει ο αλγόριθμος κατά τις επαναλήψεις είναι μικρός τότε παρουσιάζονται φαινόμενα μη-μοναδικότητας. Από την άλλη πλευρά, αν ο αριθμός είναι μεγάλος τότε ο αλγόριθμος αδυνατεί να προκαλέσει διαταραχή στο αρχικό μοντέλο ταχυτήτων, με αποτέλεσμα τα τελικά μοντέλα να είναι ιδιαίτερα λεία.

Για να αποφύγουμε τέτοιου είδους προβλήματα αλλά και καθυστερήσεις στην επαναληπτική διαδικασία, είναι προτιμότερο να ελέγχουμε κάθε φορά ένα μικρό
αριθμό τιμών \(\lambda \) σε κάθε επανάληψη, για παράδειγμα της τάξης των 2-5. Ο αριθμός αυτός εξαρτάται βέβαια και από την αρχική τιμή του \(\lambda \), \(\lambda_{\text{max}} \). Για παράδειγμα, μικρή τιμή στην παράμετρο \(\lambda_{\text{max}} \) σε συνδυασμό με μεγάλο αριθμό τιμών \(\lambda \) που εξετάζονται σε κάθε επανάληψη οδηγεί σε λάθη και σε αδυναμία του αλγορίθμου να επιλύσει το πρόβλημα. Γενικά, μια καλή τακτική είναι, όταν δεν μπορεί να υπάρξει πρώτη εκτίμηση, η αρχική τιμή της παραμέτρου \(\lambda \) να ορίζεται αρκετά μεγάλη, της τάξης των 100-200. Μεγαλύτερος αριθμός μπορεί να προκαλέσει καθυστερήσεις και αργή σύγκλιση.

Εικ. 6.1α: Οι τιμές του στατιστικού μέτρου RMS (root mean square – μέσο τετραγωνικό σφάλμα) σε σχέση με την αρχική τιμή της παραμέτρου \(\lambda \), δηλαδή της \(\lambda_{\text{max}} \), σε συνθετικά δεδομένα. Τα αποτελέσματα δοκιμάστηκαν μετά από 4 επαναλήψεις και ελέχθησαν 4 τιμές \(\lambda \) σε κάθε επανάληψη.
Εικ.6.1.8: Οι τιμές του στατιστικού μέτρου RMS (root mean square – μέσο τετραγωνικό σφάλμα) σε σχέση με την αρχική τιμή της παραμέτρου λ, δηλαδή της λαμβδα0, σε πραγματικά δεδομένα. Τα αποτελέσματα δοκιμάστηκαν μετά από 4 επαναλήψεις και ελέχθησαν 4 τιμές λ σε κάθε επανάληψη.

Μια καλή τεχνική για να εξασφαλίσουμε ότι έχει επιλεγεί καλή τιμή για την παράμετρο λαμβδα0 είναι να επιλέξουμε πρώτα μια μεγάλη τιμή για το λαμβδα0 (π.χ. 200) και σχετικά πολλές τιμές λ για κάθε επανάληψη (π.χ. 10). Επειτα η καλύτερη τιμή του λ που προκύπτει από τις επαναλήψεις τίθεται ως η νέα τιμή λαμβδα0 και μειώνουμε αισθητά τον αριθμό των τιμών λ που ελέγχει ο αλγόριθμος σε κάθε επανάληψη (π.χ. 4).

Στα πρώτα στάδια της αντιστροφής προσδιορίζονται, αν η τιμή του λ είναι μεγάλη, οι διαταραχές από κύματα μεγάλου μήκους. Καθώς η τιμή του λ μειώνεται, σε ύστερες επαναλήψεις, προσδιορίζονται οι διαταραχές από κύματα μικρότερου μήκους.
Κάναμε διάφορες δοκιμές με συνθετικά αλλά και πραγματικά δεδομένα για να βρούμε και να μελετήσουμε τη συμπεριφορά των παραμέτρων. Παράδειγμα απότελεσμα τα σχήματα των εικόνων 6.1 και 6.2, όπου παρουσιάζονται τομογράμματα από αυτά τα πειράματα.

Εικ. 6.2 (α) και (β): Τομογράμματα βασισμένα στο ίδιο αρχικό μοντέλο αλλά το πρώτο ξεκινούσε με τιμή $\lambda_0=250$ και το δεύτερο με τιμή $\lambda_0=10$.
6.9 Επιλογή αρχικού μοντέλου

Η επιλογή αρχικού μοντέλου είναι ιδιαίτερα σημαντική στο τομογραφικό πρόβλημα, αφού από αυτήν εξαρτάται κατά πολύ η πιστότητα του τελικού μοντέλου (Kissling et al., 1994, Zelt και Barton, 1998). Χρησιμοποιώντας κανονικοποιημένη αντιστροφή και κυρίως μεθόδους που δεν εμπλέκουν καθοδήγηση του μοντέλου ταχυτήτων, μπορούμε να μειώσουμε την εξάρτηση από το αρχικό μοντέλο ταχυτήτων. Ελέγξαμε την πιστότητα των αλγορίθμων χρησιμοποιώντας διαφορετικά αρχικά μοντέλα λαμβάνοντας υπ’ώψιν την μη-μοναδικότητα καθώς και τα πιθανά λάθη στα δεδομένα (π.χ. θόρυβος κτλ.), το οποίο μας περιορίζει στα πρώτα πληροφορία όσο το δυνατό πιο κοντά στο αληθινό μοντέλο.

Σε διαφορετική περίπτωση αν το αρχικό μοντέλο που επιλέξαμε δεν προσεγγίζει το πραγματικό μοντέλο τα τελικά αποτελέσματα που λαμβάνουμε απέχουν πολύ από την πραγματικότητα. Επιπλέον, η γραμμικοποίηση την οποία εφαρμόζουμε κατά την αντιστροφή του μοντέλου είναι έγκυρη μόνο για μικρές διαφορές σε σχέση με το αρχικό μοντέλο, με λίγα λόγια δηλαδή το το αρχικό μοντέλο δεν πρέπει να διαφέρει κατά πολύ από το τελικό μοντέλο. Γενικά, μικρές αλλαγές στην ταχύτητα (στους κόμβους ή στην καμπυλότητα) αλλάζει κατά πολύ την ακρίβεια των δεδομένων που λαμβάνουμε και κυρίως μεγαλώνει το στατιστικό σφάλμα χ-τετράγωνο. Όπως παρατηρεί και ο Schlidwein et al.(2003), μικρές διαφορές στα εναλλακτικά αρχικά μοντέλα ταχυτήτων οδηγούν σε σημαντικές αλλαγές στους χρόνους διαδρομής που υπολογίζει ο αλγόριθμος.
Πίνακας 6.9.1: Μικρές αλλαγές στις ταχύτητες του αρχικού μοντέλου προκαλούν σημαντική αύξηση του στατιστικού λάθους.

<table>
<thead>
<tr>
<th>Αλλαγή στην Ταχύτητα (%)</th>
<th>Αλλαγή το χ-τετράγωνο (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3%</td>
<td>10,88%</td>
</tr>
<tr>
<td>5%</td>
<td>11,43%</td>
</tr>
</tbody>
</table>

Έτσι με βάση τα γεωλογικά και τεκτονικά δεδομένα μιας περιοχής περιορίζουμε τις ταχύτητες σε συγκεκριμένα πραγματιστικά όρια για να κανονικοποιήσουμε την διαδικασία αντιστροφής. Τα μοντέλα που κατασκευάζουμε μπορεί να είναι μονοδιάστατα (διαφορετικές ταχύτητες αντιστοιχούν σε διαφορετικά βάθη) ή δισδιάστατα (διαφορετικές ταχύτητες αντιστοιχούν σε διαφορετικά σημεία στον άξονα x-z) τα οποία τα κατασκευάζουμε με τον αλγόριθμο RayInvr (Zelt και Smith, 1992). Το μοντέλο έπειτα επεκτείνεται από τον αλγόριθμο στον άξονα y για να μπορούμε να πάρουμε αποτελέσματα σε τρεις διαστάσεις. Κατάλληλα δισδιάστατα μοντέλα είναι όσα δίνουν στατιστικό λάθος σε χ-τετράγωνο και μέσο τετραγωνικό σφάλμα που κυμαίνεται κοντά στο 1. Για να επιτευχθεί αυτό στις τρισδιάστατες μελέτες απαιτείται ιδιαίτερα πυκνό δίκτυο δεδομένων (Deen και Gohl, 2002).

6.10 Συνθετικά δεδομένα

Σημαντικό βήμα πριν την υλοποίηση ή μη ενός αλγορίθμου σε πραγματικά δεδομένα είναι η δοκιμή του σε συνθετικά. Έτσι λοιπόν κατασκευάσαμε συνθετικά δεδομένα για
να ελέγξουμε τόσο το ευθύ πρόβλημα (ray-tracing με γεωμετρία Finsler αλλά και με πεπερασμένες διαφορές) όσο και το αντίστροφο πρόβλημα.

Και με συνθετικά δεδομένα διαπιστώσαμε ότι σε αρχικά μοντέλα ταχύτητων με μεγάλες διακυμάνσεις στην ταχύτητα η μέθοδος με την καμπυλότητα Finsler συγκλίνει γρηγορότερα σε τιμές ρήτρου τετραγωνικού σφάλματος κοντά στο 0.5 από ότι η μέθοδος των πεπερασμένων διαφορών η οποία στον ίδιο αριθμό επαναλήψεων δίνει 1.2821. Διαπιστώσαμε επίσης ότι η μέγιστη διακύμανση σε διαδοχικές ταχύτητες που μπορεί να δεχθεί ο αλγόριθμος με τις πεπερασμένες διαφορές μέσα στο αρχικό μοντέλο ταχυτήτων είναι της τάξης του 70%. Μεγαλύτερες διακυμάνσεις οδήγησαν σε σημαντικά σφάλματα του αλγόριθμου και πολύωρες καθυστερήσεις. Ακόμη και όταν αλλάξαμε τις παραμέτρους για να δώσουμε ελευθερία στο σύστημα, ο αλγόριθμος έδινε ιδιαίτερα υψηλό μέσο τετραγωνικό σφάλμα.
<table>
<thead>
<tr>
<th>Μέθοδος</th>
<th>Μέσο Τετραγωνικό Σφάλμα</th>
<th>Χ- τετράγωνο</th>
</tr>
</thead>
<tbody>
<tr>
<td>Καμπυλότητα Finsler</td>
<td>0.966</td>
<td>0.487</td>
</tr>
<tr>
<td>Πεπερασμένες διαφορές</td>
<td>1.2823</td>
<td>1.119</td>
</tr>
</tbody>
</table>

Πίνακας 6.10.1: Σύγκριση των μεθόδων και της αξιοπιστίας τους με βάση τα στατιστικά σφάλματα
Κεφάλαιο 7

7. Δίκτυα Kohonen στη σεισμική τομογραφία

Οι αυτορυθμιζόμενοι χάρτες (Self-Organizing Map - SOM), γνωστοί και αλλιώς σαν δίκτυα Kohonen (Kohonen 1982, Kohonen 2001) είναι μια υπολογιστική μέθοδος για την οπτικοποίηση και την ανάλυση δεδομένων σε μεγάλες διαστάσεις. Τα δίκτυα Kohonen είναι κατάλληλα για δεδομένα και πληροφορία που συλλέγεται μέσα από πειράματα ή πειραματικές διατάξεις. Κάθε τέτοιος χάρτης αποτελεί ένα πλασματικό νευρωνικό δίκτυο το οποίο μπορεί να παράγει μέσα από τυποποιημένες διαδικασίες δισδιάστατες απεικόνισεις. Κάθε χάρτης προσπαθεί να διατηρεί τις τοπολογικές ιδιότητες του χώρου των δεδομένων.

Οι αυτορυθμιζόμενοι χάρτες ορίζουν μια συγκεκριμένη απεικόνιση, ένα είδος προβολής από ένα σύνολο δεδομένων σε ένα ορθογώνιο, συνήθως δισδιάστατο κάναβο. Κάθε μοντέλο τη σχετίζεται με ένα κόμβο του πλέγματος, όπως φαίνεται και στο σχήμα 7.1.
Τα μοντέλα αυτά προκύπτουν από τον αλγόριθμο SOM, όπου κάθε δεδομένο απεικονίζεται στον κόμβο που ομοιάζει περισσότερο με το συγκεκριμένο δεδομένο, όπως για παράδειγμα να υπάρχει κάποια μετρική και αυτή να είναι μικρότερη από συγκεκριμένο αριθμό. Τα μοντέλα που προκύπτουν από τον αλγόριθμο μοιάζουν μεταξύ τους με τα γειτονικά τους και διαφέρουν όσο πιο απομακρυσμένα βρίσκονται στο πλέγμα. Με αυτόν τον τρόπο τα δεδομένα κατασκευάζουν ένα χάρτη ομοιότητας με παρόμοια στοιχεία να τοποθετούνται γειτονικά. Οι SOM αρχικά είχαν σχεδιαστεί για την οπτικοποίηση των μετρικών διανυσμάτων και της διάδοσής τους στον χώρο αλλά αποδείχτηκε ότι μπορούν να χρησιμεύσουν για κάθε τύπο δεδομένων (Kohonen και Somervuo 2002), άρα και για τομογραφικά γεωφυσικά δεδομένα.

7.1 Ιστορική Αναδρομή

Οι αλγόριθμοι SOM ξεκίνησαν από τα νευρωνικά δίκτυα και ειδικότερα από μοντέλα συνεργατικής μνήμης και προσαρμοστικής εκμάθησης (Kohonen, 1984). Ο λόγος που αναπτύχθηκαν ήταν για να εξηγηθεί η οργάνωση στο χώρο των λειτουργιών του εγκεφάλου, όπως αυτές παρατηρούνται μέσα στον εγκεφαλικό φλοιό. Σε αυτές τις μελέτες σημαντικές είναι οι εργασίες των von der Malsburg (1973) και το μοντέλο νευρώνων από τον Amari (1980). Η σημαντική καινοτομία του Kohonen ήταν η εισαγωγή ενός μοντέλου συστήματος που αποτελείται από δύο τουλάχιστον αλληλεπιδρώντα υποσυστήματα διαφορετικής φύσης. Το ένα από αυτά είναι ένα ανταγωνιστικό νευρωνικό δίκτυο που περιέχει τη συνάρτηση winning και το άλλο είναι ένα υποσύστημα ελεγχόμενο από το κεντρικό νευρωνικό δίκτυο και το οποίο καθορίζει την τοπική ελαστικότητα των νευρώνων που βρίσκονται σε διαδικασία
Η μάθηση περιορίζεται χωρικά σε μια γειτονιά των πιο δραστήριων νευρώνων. Το δεύτερο υποσύστημα θα μπορούσε να βασίζεται σε μη καθορισμένες νευρωνικές διαδράσεις αλλά κυρίως πρόκειται για χημικές διεργασίες.

Αν και καθαρά ιατρική η πρώτη χρήση των SOM, οι αρχές τους μπορούν να εκφραστούν μαθηματικά και να συσχετιστούν και με άλλες επιστήμες όπως η γεωφυσική. Η πρώτη εφαρμογή των SOM αφορούσε την αναγνώριση φωνής ενώ χρησιμοποιήθηκε ευρέως και στην ανάλυση δεδομένων αλλά και στην αναζήτηση δεδομένων (Kaski et al. 1998, Oja et al. 2003, Pöllä et al. 2007, Tselentis et al. 2007).

7.2 Μαθηματική τυποποίηση

Ας θεωρήσουμε ότι τα δεδομένα που έχουμε είναι \(n \)-διάστατα ευκλείδεια διανύσματα

\[
x(t) = [\xi_1(t), \xi_2(t), \ldots, \xi_n(t)]
\]

όπου \(t \) είναι το περιεχόμενο ενός αντικειμένου πληροφορίας σε μια δεδομένη ακολουθία. Ας θεωρήσουμε ότι το \(i \)-στο μοντέλο είναι το:

\[
m_i(t) = [\mu_{i1}(t), \mu_{i2}(t), \ldots, \mu_{in}(t)]
\]

όπου τώρα το \(t \) δηλώνει το περιεχόμενο στην ακολουθία όπου δημιουργούνται τα μοντέλα. Αυτή η ακολουθία δηλώνεται σαν μια διαδικασία όπου η νέα τιμή

\[
m_i(t + 1)
\]
υπολογίζεται αναδρομικά από την παλιά τιμή

\[m_i(t) \]

και τα νέα δεδομένα

\[x(t) \]

ακολουθούν τον τύπο:

\[m_i(t + 1) = m_i(t) + \alpha(t) h_{ct}(t) [x(t) - m_i(t)]. \]

όπου \(\alpha(t) \) είναι ο διανυσματικός τελεστής που ορίζει το μέγεθος της διόρθωσης και μειώνεται με βήμα \(t \).

Το περιεχόμενο \(i \) αναφέρεται στα υπο επεξεργασία μοντέλα και το \(c \) είναι το περιεχόμενο του μοντέλου που έχει την μικρότερη απόσταση \(x(t) \) στον Ευκλείδειο χώρο.

Ο τελεστής:

\[h_{ct}(t) \]

είναι ένα είδος πυρήνα που αποκαλείται η γειτονική συνάρτηση. Ισούται με 1 όταν \(i = c \) και η τιμή του μειώνεται όταν η απόσταση ανάμεσα στα μοντέλα \(m_i \) και \(m_c \) στον κάναβο μειώνεται. Επιπλέον, το χωρικό πλάτος του πυρήνα πάνω στον κάναβο μειώνεται με βήμα \(t \).
Αν και ο παραπάνω επαναληπτικός αλγόριθμος χρησιμοποιήθηκε με επιτυχία σε πολλές εφαρμογές, βρέθηκε ότι ο αλγόριθμος που ονομάστηκε `Batch Map` δίνει τα ίδια αποτελέσματα με μεγαλύτερη ταχύτητα. Η βασική ιδέα αυτού είναι ότι για κάθε κόμβο `j` του κανάβου, ο μέσος

\[\bar{x}_j \]

όλων των δεδομένων `x(t)` μπορεί να σχηματιστεί ώστε να έχουν το

\[m_j \]

σαν το πλησιέστερο μοντέλο. Τα νέα μοντέλα που προκύπτουν υπολογίζονται με βάση τον τύπο:

\[m_i = \sum_j n_j h_{ji} \bar{x}_j / \sum_j n_j h_{ji} \]

όπου το

\[n_j \]

είναι ο αριθμός των εισερχόμενων δεδομένων που απεικονίζονται στον κόμβο `j` και το περιεχόμενο `j` διατρέχει τος κόμβους στη γειτονιά του κόμβου `i`. Για το νέο

\[m_i \]
που προκύπτει αυτή η διαδικασία επαναλαμβάνεται μερικές φορές ακόμη, πάντοτε όμως χρησιμοποιώντας το ίδιο πλήθος εισερχόμενων δεδομένων για να προσδιορίσουμε το νέο

\[\mathbf{x}_j \]

Τα μαθηματικά των SOM είναι γενικά πολύ σύνθετα και μόνο η μονοδιάστατη πλυρά έχει αναλυθεί εντελώς (Fort 2006). Μέχρι σήμερα οι SOM ανήκουν στα δύσκολα προβλήματα των μαθηματικών.

Χρειάζεται προσοχή για να πάρουμε χάρτες που θα είναι σταθεροί, καλά ορισμένοι και τοπολογικά σωστοί. Έτσι επιλέγουμε συνήθως ένα εξαγωνικό πλέγμα. Οι ακμές του πλέγματος πρέπει να είναι ορθογώνιες και όχι τετράγωνες από την αιτία του «ελαστικού δικτύου» που σχηματίζεται από τα μοντέλα m και πρέπει να είναι προσανατολισμένο κατά τη φορά της κατανομής των δεδομένων x στον χώρο. Πέρα από τον προσανατολισμό μεγάλο ρόλο παίζει και η κλίμακα των στοιχείων που εισάγονται σαν δεδομένα. Ειδικότερα δε αν τα δεδομένα αναπαριστούν μεταβλητές διαφορετικής φύσεως η κάθε μια δεν υπάρχει κάποιος πρακτικός κανόνας για το πώς θα εισάγουμε αυτά τα δεδομένα στον αλγόριθμο. Μια μέθοδος είναι η ευριστική όπου δοκιμάζοντας διάφορες κλίμακες πετυχαίνεις την καλύτερη για τον αλγόριθμο, όπως π.χ. με τους χάρτες Sammon (Sammon, 1969) ή με το μέσο ποσοτικό σφάλμα.
Σε μερικά προβλήματα επίσης ο αριθμός των εισερχόμενων δεδομένων δεν επαρκεί για να έχουμε καλά στατιστικά αποτελέσματα. Έτσι, αν δεν έχουμε δεδομένα μπορούμε να χρησιμοποιούμε με επαναληπτικές διαδικασίες τα δείγματα που έχουν ήδη μπει στον αλγόριθμο και να χρησιμοποιούμε τα εξερχόμενα δεδομένα ως εισερχόμενα σε μια επαναληπτική διαδικασία. Τα δείγματα αυτά μπορούν να εφαρμοστούν με κυκλικό τρόπο ή να επιλεχθούν τυχαία από το βασικό σύνολο των δεδομένων. Η διαδικασία αυτή ονομάζεται bootstrap learning. Έχει αποδειχθεί ότι η κυκλική επιλογή δειγμάτων σαν και αυτή που περιγράψαμε δίνει εξίσου σωστά αποτελέσματα με τις άλλες μεθόδους.

7.3 Ποιότητα Εκμάθησης

Διαφορετικές διαδικασίες εκμάθησης επιλέγονται όταν ξεκινάμε με διαφορετικές αρχικές τιμές m, και όταν εφαρμόζουμε διαφορετικές ακολουθίες των διανυσμάτων εκμάθησης x(t) αλλά και όταν έχουμε διαφορετικές παραμέτρους εκμάθησης. Αυτό που επιθυμούμε είναι ο τελικός χάρτης να είναι όσο πιο κοντά γίνεται στο αληθινό μοντέλο που επιθυμούμε να περιγράψουμε. Συγκρίνοντας λοιπόν χάρτες με την ίδια δομή διανυσμάτων και τον ίδιο ορισμό

\[h_{c(t)} \]

ο μέσος

\[\| x - m_c \| \]
μας δείχνει κατά πόσο σωστός είναι ο τελικός χάρτης. Για να συγκρίνουμε χάρτες όμως πρέπει η δομή των χαρτών να είναι ίδια.

7.4 Εφαρμογή SOM στη γεωφυσική

Από τη στιγμή που ένας SOM είναι «εκπαιδευμένος» για ένα συγκεκριμένο σύνολο δεδομένων μπορεί να εφαρμοσθεί και σε άλλα παραπλήσια σύνολα. Τα διανύσματα που δημιουργεί ο SOM μπορούν να διατηρούν την τοπολογία ενός συνόλου δεδομένων (Villman et al., 1997).

Έτσι κάθε στρώμα που θέλουμε να εισάγουμε στα δεδομένα μας μπορεί να θεωρηθεί σαν ένα διάνυσμα και σε αυτό μπορούμε να βάλουμε διαφορετικά βάρη ή συντεταγμένες. Για να εκπαιδεύσουμε έναν SOM στη τομογραφία υπολογίζουμε την απόσταση ανάμεσα στο πρότυπο μοντέλο και κάθε μία μονάδα στο δίκτυο και επιλέγουμε την πλησιέστερη στην καλύτερη μονάδα του δικτύου.

Η σύγκλιση αυτών των διανυσμάτων του μοντέλου γίνεται με σταδιακή μείωση και το καλύτερο ταίρι για κάθε δείγμα πρέπει να τηρεί την ακόλουθη συνθήκη:

\[\forall i, \| x(t) - m_i(t) \| \leq \| x(t) - m_j(t) \| \]
όπου ι το βήμα για κάθε δείγμα \(x \), \(m \) το μοντέλο και \(c \) ο κόμβος. Τότε όλα τα
dιανύσματα του μοντέλου που ανήκουν σε κόμβους γειτονικούς του \(c=c(x) \) θα
ανανεώνονται με βάση την παρακάτω σχέση:

\[
m_{i}(t+1) = m_{i}(t) + h_{c(x,i)}[x(t) - m_{i}(t)]
\]

όπου \(h_{c(x,i)} \) η συνάρτηση γειτονίας που φθίνει όσο μεγαλώνει το άνοιγμα ανάμεσα
στον \(i \) και τον \(c \) κόμβο. Αυτή η μείωση ακολουθείται ξανά μέχρι να βρεθεί το βέλτιστο
\(c \).
Κεφάλαιο 8

8. Εφαρμογή της μεθόδου σε πραγματικά δεδομένα

Έχοντας υπ’ οψιν όλα τα παραπάνω, τους περιορισμούς αλλά και τις δυνατότητες της τρισδιάστατης σεισμικής τομογραφίας διάθλασης, εφαρμόζαμε τη μέθοδο σε ένα ιδιαίτερα δύσκολο, από πολλές απόψεις γεωτεχνικό πρόβλημα. Με εξοπλισμό από το εργαστήριο σεισμολογίας του Πανεπιστημίου Πατρών συλλέχθηκαν σεισμικά, αλλά και ηλεκτρικά, δεδομένα από περιοχή της Σαουδικής Αραβίας.

Σκοπός της έρευνας ήταν η υπεδαφική χαρτογράφηση της περιοχής αλλά και των αρχαίων ορυγμάτων του αποχετευτικού συστήματος της Μέκκα, ώστε αυτά να σταθεροποιηθούν. Η χαρτογράφηση περιέλαβε πλήρη απεικόνιση σε τρεις διαστάσεις πάνω από τα δύο αρχαία ορύγματα, με δεκαοχτώ συνολικά σεισμικές γραμμές. Η περιοχή μελέτης καλύπτει συνολικά μια έκταση συνολικού μήκους 13.972 μέτρων, μέσα σε αστικό περιβάλλον, με ιδιαίτερα δυσχερείς συνθήκες λήψης δεδομένων και πολύ υψηλά όρια θορύβου. Τα δύο ορύγματα στην διατριβή ονομάζονται 1B/10 το πρώτο και 1A/26 το δεύτερο. Και τα δύο ορύγματα βρίσκονταν στην περιοχή Wadi Ibrahim.
Η συλλογή των δεδομένων ξεκίνησε τον Νοέμβριο του 2004 και ολοκληρώθηκε τον Μάρτιο του 2005. Τα δεδομένα ελέγθηκαν ποιοτικά πριν την επεξεργασία τους με βάση τις Μπεϋσιανές μεθόδους. Τέλος, για την καλύτερη ερμηνεία των αποτελεσμάτων επεξεργαστήκαμε και ηλεκτρικά προφίλ, ενώ πήραμε και δεδομένα από γεωτρήσεις.
Εικ. 8.2: Λήψη δεδομένων μέσα σε αστικό περιβάλλον

Ο σκοπός της επιτόπιας αυτής έρευνας ήταν να προσδιορισθεί η υπεδαφική δομή στην περιοχή γύρω από τα ορύγματα, αλλά και να βρεθεί η ανύψωση της κορεσμένης δομής μέσα στο υπόστρωμα. Επίσης, εντοπίσθηκε η θέση των ασθενών ζωνών και υπολογίσθηκε το βάθος της βάσης του αλλουβιακού και κορεσμένου βραχώδους στρώματος.

Οι υπεδαφικές συνθήκες της υπο-εξέταση περιοχής, συνήθως αποτελούνταν από ανθρωπογενή υλικά και προσχώσεις καθώς και αλλουβιακούς σχηματισμούς, με ένα μέσο πάχος της τάξης των 10-15 μέτρων φθάνοντας τοπικά και τα 30 μέτρα. Σαφθρά διοριτικά πετρώματα και ελαφρώς μεταμορφωμένοι χαλαζίες καθώς και διορίτες γνεύσιο βρισκόταν κάτω από τους αλλουβιακούς σχηματισμούς. Τα διοριτικά
πετρώματα, περιελάμβαναν και ενδιάμεσα πετρώματα καθώς και εκρηξιγενή πετρώματα. Οι τεκτονικές ζώνες διάτμησης φαίνεται να έχουν γίνει αργότερα από τους σχηματισμούς εκρηξιγενών πετρωμάτων, χωρίς κάποια προτίμηση στον τύπο πετρώματος. Τέλος, οι μεγαλύτερες οι ζώνες διάτμησης εμφανίζονται κυρίως στα διοριτικά πετρώματα.

Τα γεωφυσικά δεδομένα που συλλέξαμε και επεξεργαστήκαμε υποδεικνύουν την παρουσία 4 διακριτών σεισμικών περιοχών με ταχύτητες που κυμαίνονται από 800 ως 7000 m/s. Η γεωλογική ερμηνεία των αντίστοιχων δεδομένων μας έδωσε τους ακόλουθους γεωλογικούς σχηματισμούς: ιζήματα και ανθρωπογενείς προσχώσεις, ιδιαίτερα αποσαρθρωμένο βραχώδες υπόστρωμα, θραυσμένα κρυσταλλικά υποστρώματα καθώς και κρυσταλλικά υποστρώματα.

8.1 Μεθοδολογία της Έρευνας

Σύμφωνα με τον σκοπό της ερευνας, αποφασίστηκε να ληφθούν διαφορετικά είδη δεδομένων για πληρέστερη καταγραφή και περιγραφή της υποεξέταση περιοχής. Έτσι, πήραμε δεδομένα:

1. Υψηλής διακριτικής ικανότητας δεδομένα σεισμικής διάθλασης μικρού βάθους και κάποια δεδομένα ανάκλασης. Έτσι, μπορέσαμε να μετρήσουμε διάφορες γεωφυσικές ιδιότητες όπως ταχύτητα σεισμικών κυμάτων, πυκνότητα, πορώδες κτλ. Χάρη σε αυτά μπορέσαμε να διακρίνουμε τις διαφορετικές επιφάνειες και τους ανακλαστήρες.
2. Γεωηλεκτρικά δεδομένα, χρησιμοποιώντας διάταξη κατά Schlumberger ή Wenner. Για να πάρουμε ενοποιημένα προφίλ κατά μήκος των γραμμών, ακολουθήσαμε μια νέα μέθοδο που είναι γνωστή σαν δισδιάστατη πολυκαλωδιακή (2D multicable). Αυτή, χρησιμοποιεί μια συστάδα από ηλεκτρόδια, αντί για τα συνηθισμένα τέσσερα (ζεύγη τάσης – δυναμικού) σε συνδυασμό με συστάδες Wenner-Schlumberger. Το σημαντικό πλεονέκτημα της συγκεκριμένης μεθόδου, πέραν της ταχύτητας της, είναι ο εύκολος τρόπος προσδιορισμού τιμών για τα αποτελέσματα αλλά και η αυτόματη επανάληψη των μετρήσεων έτσι ώστε να αφαιρεθεί όσο το δυνατό περισσότερος θόρυβος ή ακόμη και να εξαλειφθεί εντελώς.

3. Τομογραφία cross-hole για την καταγραφή με λεπτομέρεια όχι μόνο συγκεκριμένων σχηματισμών αλλά και της μορφολογίας αυτών καθώς και των δομικών συνθηκών τους. Η συγκεκριμένη μέθοδος χρησιμοποιήθηκε μόνο επαληθευτικά σε κάποιες περιπτώσεις.

Έτσι ξεκινήσαμε την λήψη των δεδομένων με σεισμικά δεδομένα διαθλασης και ηλεκτρικά. Δεδομένου ότι η υπό εξέταση περιοχή είναι πυκνοκατοικημένη, ένα υψηλό επίπεδο βιομηχανικού αλλά και ηλεκτρικού θορύβου ήταν αναμενόμενο να υπεισέρθει στα δεδομένα. Κατά την πρώτη περίοδο της λήψης των δεδομένων αντιμετωπίσαμε τα ακόλουθα προβλήματα, τα οποία συνδέονται με τα γεωλογικά χαρακτηριστικά της υπεδαφικής δομής, και τα οποία στην αρχή τουλάχιστον, είναι άγνωστα:
• Το κρυσταλλικό πέτρωμα και η ζώνη αποσάρθωσης είναι πολύ ρηχές με μέσο βάθος τα 15-20 μέτρα, και ως εκ τούτου δεν μπορούσαμε να πάρουμε τους ανακλαστήρες ώστε να προσδιορίσουμε την διεπιφάνεια ή την μορφολογία των σημαντικότερων οριακών σημείων των τομών που ελέγχαμε.

• Υπήρχαν κρυσταλλικά πετρώματα από 100% γρανοδιορίτη, ο οποίος δεν επιτρέπει την βαθιά διείσδυση των σεισμικών ακτίνων. Με απλά λόγια, ο μέσος λόγος ανάμεσα στο βάθος διείσδυσης των σεισμικών ακτίνων και το επιφανειακό άνοιγμα (offset) βρισκόταν στο 1/5, όταν συνήθως είναι στο 1/3.

• Τα επίπεδα θορύβου ήταν πολύ υψηλά, με αποτέλεσμα σε πολλά σημεία το stacking να αυξάνεται σε 10-15 χτυπήματα, μέχρι να έχουμε καλό σήμα. Αυτό το υψηλό επίπεδο θορύβου έκανε σχεδόν αδύνατο να αυξήσουμε το επιφανειακό άνοιγμα, για να πάμε βαθύτερα, αφού μεγαλώνοντας το επιφανειακό άνοιγμα επηρεάζεται η ενέργεια της σεισμικής πηγής και δεν ήταν δυνατό να καλύψει το θόρυβο.

• Κατά τη διάρκεια λήψης των ηλεκτρικών δεδομένων, αντιμετωπίσαμε πολλά προβλήματα λόγω του εργοστασιακού θορύβου και των ηλεκτρικών χαρακτηριστικών του υπεδαφικού πετρώματος.
8.1.1 Μεθοδολογία λήψης δεδομένων

8.1.1.α Εξοπλισμός λήψης δεδομένων

Για την σεισμική έρευνα χρησιμοποιήθηκε ο παρακάτω εξοπλισμός:
(a) Bison Jupiter 124 channel (250 Rolling) 24-bit σεισμογράφος
(b) EWGII σεισμική πηγή
(c) Εξοπλισμός ελέγχου και ποιότητας των σεισμικών γραμμών
(d) Γεώφωνα 60Hz και ειδικά καλώδια
(e) Σύστημα απομακρυσμένου ελέγχου για τον χειρισμό της σεισμικής πηγής και το triggering του σεισμογράφου.

Εικ. 8.2.α: Το σύστημα ποιότητας και ελέγχου των σεισμικών δεδομένων του εργαστηρίου
Σεισμολογίας του Πανεπιστημίου Πατρών
Όλος ο εξοπλισμός μπορούσε να μεταφερθεί εύκολα και απλά σε ένα φορτηγό και έτσι να παίρνουμε μετρήσεις χωρίς ιδιαίτερες χρονοτριβές. Επειδή, οι σεισμικές μετρήσεις έγιναν σε αστικό περιβάλλον, και μάλλον ιδιαίτερα πυκνοκατοικημένο και με μεγάλα επίπεδα θορύβου, έπρεπε αφενός να έχουμε όσο το δυνατόν καλύτερο σήμα και αφετέρου η πηγή που θα χρησιμοποιούσαμε να μην προκαλούσε καταστροφές στο δρόμο ή οπουδήποτε αλλού τη χρησιμοποιούσαμε. Επιλέξαμε έτσι σαν πηγή την EWGII (Elastic Wave Generator II), μια αποτελεσματική και αξιόπιστη πηγή, με επιταχυνόμενο πίπτον βάρος.

Εικ.8.2.β: Η σεισμική πηγή κατά τη λήψη των δεδομένων.

Το σύστημα επιτρέπει την παραγωγή υψηλής συχνότητας, υψηλής ενέργειας σεισμικού σήματος και το βάθος που μπορεί να φθάσει είναι τα περίπου 1700m χρησιμοποιώντας την τεχνική της διάθλασης, ενώ ξεπερνά τα 15Km αν
χρησιμοποιήσουμε ανάκλαση. Ένας μηχανισμός μπορεί να ρυθμισθεί ώστε να αφήνει το βάρος από διάφορα ύψη, ανάλογα με τον περίοδο που θέλουμε και την ενέργεια που θέλουμε να παρουμε.

8.1.1.β Μεθοδολογία
Για να πάρουμε τα σεισμικά δεδομένα σχεδιάσαμε τις γραμμές με τέτοιο τρόπο ώστε να έχουμε τη μέγιστη δυνατή διακριτική ικανότητα. Σύμφωνα με τις υπεδαφικές συνθήκες και τα αποτελέσματα ενός παραμετρικού ελέγχου που πραγματοποιήσαμε, επιλέξαμε το κυλιόμενο μοντέλο γύρω από τα γεώφωνα. Το διάστημα ανάμεσα στα γεώφωνα ήταν 3 μέτρα και το διάστημα ανάμεσα στα σημεία των χτυπημάτων ήταν 6 μέτρα. Χρησιμοποιώντας αυτές τις παραμέτρους, περιορίστηκε το φαινόμενο του σεισμικού εδαφικού θορύβου (ground roll) και η τελική κάλυψη από ακτίνες αυξήθηκε κατά πολύ.

Επιπλέον, κατά τη λήψη των σεισμικών δεδομένων, χρησιμοποιήθηκε και η μέθοδος μεταβλητού “split-spread”. Σύμφωνα με αυτή, τα γεώφωνα τοποθετήθηκαν σε προεπιλεγμένα σημεία και συνδέθηκαν με σεισμικά καλώδια που μετέφεραν τα δεδομένα στη μονάδα καταγραφής. Αν και ο αριθμός των καναλιών είναι 120, ο συνολικός αριθμός των γεωφώνων που συνδέσαμε ήταν 144 ή 168 κάθε φορά, ανάλογα με τις συνθήκες της περιοχής που ελέγχαμε. Τα 120 κανάλια που έγραφαν, αποκαλούνται ενεργά κανάλια και αυτά «κυλούσαν» πάνω στη γραμμή μας. Δηλαδή, όταν τελειώσουμε για παράδειγμα με μια γραμμή 144 γεωφώνων και έχουμε κάνει όλους τους ποιοτικούς ελέγχους των δεδομένων, τότε η σεισμική πηγή τοποθετείται σε
μια θέση που έχει από τη μια πλευρά 48 γεώφωνα και από την άλλη 72 γεώφωνα, δηλαδή 120 κανάλια καταγραφής συνολικά. Η πηγή παραμένει στο σημείο μέχρι να πάρουμε ικανοποιητικό σήμα. Για παράδειγμα σε περιοχές χαμηλού θορύβου, δύο «χτυπήματα» είναι αρκετές. Σε αντίθεση, σε θορυβώδεις περιοχές απαιτούνται πολλές φορές 8-10 «χτυπήματα». Όταν η καταγραφή τελειώσει, η πηγή μετακινείται 6 μέτρα στην επόμενη θέση. Έχοντας υπόψιν ότι η προηγούμενη θέση καταγραφής ήταν για τα γεώφωνα, για παράδειγμα 1-120, στην επόμενη θέση τα ενεργά κανάλια θα είναι τα 3-122, ώστε να διατηρηθεί το άνοιγμα 48/72. Η διαδικασία συνεχίζεται μέχρι το τελευταίο γεώφωνο να είναι το 144ο. Σε αυτό το σημείο τα πρώτα 24 γεώφωνα της γραμμής είναι ελεύθερα και μπορούν να μετακινηθούν και να τοποθετηθούν μπροστά από το 144ο γεώφωνο.

Εικ 8.3: Οπτική αναπαράσταση της μεθόδου “split and spread”
8.1.2 Λήψη δεδομένων

Χρησιμοποιώντας θεωρητικούς υπολογισμούς και διάφορους ελέγχους στο πεδίο καταλήξαμε στις βέλτιστες παραμέτρους καταγραφής για τα σεισμικά δεδομένα. Όπως αναφέραμε και προηγουμένως η μέθοδος που χρησιμοποιήθηκε για την λήψη των δεδομένων ήταν η “split spread”, αφού ταίριαζε καλύτερα στο χαμηλό βάθος των στόχων που θέλαμε να εντοπίσουμε.

Το διάστημα ανάμεσα στα γεώφωνα ήταν 3 μέτρα και το διάστημα ανάμεσα στα σημεία όπου είχαμε «χτύπημα» ήταν 6 μέτρα. Οι δοκιμές που πραγματοποιήσαμε στο
ύπαθρο έδειξαν ότι η σεισμική πηγή παρείχε αρκετή ενέργεια για ένα καλό σήμα. Οι καταγραφές που συγκεντρώσαμε ήταν ιδιαίτερα ικανοποιητικές για ένα stacking της τάξης των 4-6 «χτυπημάτων» σε κάθε σημείο. Ο αριθμός αυτός αυξανόταν σε περίπτωση που το σήμα που παίρναμε δεν ήταν ικανοποιητικό.

Εικ.8.5: Η σεισμική πηγή που χρησιμοποιήθηκε κατά την έρευνα
Συνοψίζοντας, οι παράμετροι λήψης δεδομένων ήταν οι εξής:

<table>
<thead>
<tr>
<th>Καταγραφέας</th>
<th>Bison Jupiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τύπος γεωφώνου</td>
<td>Mark Products L-40-A, 60 Hz</td>
</tr>
<tr>
<td>Σεισμική πηγή</td>
<td>Πίτπων βάρος, σφύρα</td>
</tr>
<tr>
<td>Αριθμός Γεωφώνων καταγραφής</td>
<td>120</td>
</tr>
<tr>
<td>Ρυθμός δειγματοληψίας</td>
<td>0.25 msec</td>
</tr>
<tr>
<td>Συνολικός χρόνος καταγραφής</td>
<td>500 msec</td>
</tr>
<tr>
<td>Διάστημα δεκτών</td>
<td>3m</td>
</tr>
<tr>
<td>Διάστημα πηγών</td>
<td>6m</td>
</tr>
<tr>
<td>Φίλτρο Low Cut</td>
<td>4Hz</td>
</tr>
<tr>
<td>Φίλτρο High Cut</td>
<td>Αυτόματο από το ρυθμό δειγματοληψίας</td>
</tr>
<tr>
<td>Μέθοδος παραγωγής σεισμικού κύματος</td>
<td>Split spread 48/72</td>
</tr>
<tr>
<td>Μέγιστο offset</td>
<td>355m</td>
</tr>
</tbody>
</table>

Ο τρόπος με τον οποίο εργαστήκαμε για την λήψη δεδομένων απεικονίζεται στο παρακάτω διάγραμμα:
Εικ. 8.6: Παρουσίαση της μεθοδολογίας λήψης δεδομένων
8.2 Επεξεργασία δεδομένων και λογισμικό

Η επεξεργασία των δεδομένων έγινε σε υπολογιστή SUN Ultrasparc II και το βασικό λογισμικό που χρησιμοποιήθηκε για την επεξεργασία των σεισμικών δεδομένων ήταν το PROMAX R 98.6 και το STRATA που ανήκουν στο εργαστήριο σεισμολογίας του Πανεπιστημίου Πατρών. Για την τομογραφική αντιστροφή των πρώτων αφίξεων χρησιμοποιήθηκε το πρόγραμμα FAST με μετατροπές στον κώδικα σε κομμάτια που αφορούσαν την εισαγωγή του αρχικού μοντέλου ταχυτήτων, κυρίως σε αυτοματοποιημένα θέματα εισαγωγής ανωμαλίας στο μοντέλο αλλά και αλλαγές στον υπολογισμό της διαδρομής της ακτίνας με βάση τη γεωμετρία Finsler 4.

Το λογισμικό ProMAX αποτελεί μια πλήρης γεωφυσική σουίτα, με διάφορα εργαλεία επεξεργασίας δεδομένων από 2D, 3D και VSP δεδομένα, προσφέροντας τους κατάλληλους αλγορίθμους για επεξεργασία τόσο χερσαίων όσο και θαλάσσιων δεδομένων. Δίνει εξαιρετικούς αλγορίθμους για επιφανειακά πειράματα, ενίσχυση σήματος, μείωση θορύβου, επεξεργασία κυμάτων.

4 Οι αλγόριθμοι παρατίθενται στο παράρτημα
Εικ.8.1: Παράθυρο από το λογισμικό που χρησιμοποιήθηκε ενώ τρέχει σε λειτουργικό σύστημα Windows.

Το ProMAX διευκολύνει την τρισδιάστατη επεξεργασία με αλγόριθμους που δίνουν λύσεις σε προβλήματα γεωμετρίας, σε διάφορα προβλήματα θορυβωδών δεδομένων ενώ διορθώνει επιφανειακά δεδομένα διάθλασης.

Το πρόγραμμα μπορεί να διαχειρισθεί μεγάλο όγκο δεδομένων από έρευνες σε τρεις διαστάσεις και μπορεί να επεξεργαστεί τρισδιάστατα δεδομένα με επιτυχία. Ειδικά σε περιπτώσεις, όπως και η δική μας, όπου επεξεργάζομαστε μεγάλο όγκο τρισδιάστατων δεδομένων χρησιμοποιείται διαδραστική ανάλυση και οπτικοποίηση ώστε να δημιουργηθούν οι κατάλληλες συνθήκες για σίγουρη επιλογή παραμέτρων, όπου σε συνδυασμό με τους βελτιωμένους αλγόριθμους εξασφαλίζουν απρόσκοπτη διαχείριση του έργου και ικανοποιητικά αποτελέσματα.
Παράλληλα με το πακέτο επεξεργασίας PROMAX χρησιμοποιήσαμε και το λογισμικό STRATA 3D από τη Hampson-Russel. Το πρόγραμμα αυτό, φτιαγμένο για σεισμικά δεδομένα ανάκλασης, μας επέτρεψε να πάρουμε μια πολύ καθαρή εικόνα των γεωλογικών σχηματισμών γύρω από την περιοχή των εξεταζομένων ορυγμάτων. Οι δυνατότητες που μας δίνει το λογισμικό STRATA είναι πάρα πολλές και υπογραμμίζοντας τις βασικότερες αναφέρουμε την επεξεργασία σεισμικών δεδομένων και ερμηνεία, επεξεργασία P-stack (post-stack), φιλτράρισμα, υπολογισμός δομών, απαγωγή κυμάτιων, εισαγωγή ορίζοντα από αρχεία ASCII, picking ορίζοντα τόσο χειροκίνητο όσο και αυτόματο, λειανσή ορίζοντα, διαγραφή και παρεμβολή, δυνατότητα εισαγωγής κώδικα σε γλώσσα C, μετασχηματισμοί Hilbert.
Για την τομογραφική αντιστροφή των δεδομένων χρησιμοποιούμε δύο πrogrammata.
To FAST κατασκευασμένο από τον Colin Zelt του Πανεπιστημίου Rice και το GL3D της Hampson-Russel.
Το πρόγραμμα FAST είναι σχεδιασμένο για τομογραφία πρώτων αφίξεων σε 2 ή 3 διαστάσεις. Τα μοντέλα, όπως έχουμε ήδη πει, παραμετροποιούνται σε ομοιόμορφο τετραγωνικό κάνναβο. Για την αντιστροφή χρησιμοποιείται πλέγμα κελιών, με σταθερή διάσταση σε κάθε άξονα αν και οι διαστάσεις μπορούν να αλλάζουν από άξονα σε άξονα, π.χ. συγκεκριμένο μήκος στον άξονα τον χ, διαφορετικό αλλά σταθερό καθ’όλο τον άξονα στον γ κοκ.

Το ευθύ πρόβλημα χρησιμοποιεί την μέθοδο του Vidale (1990) τροποποιημένη ώστε να μπορεί να χειρίζεται μεγάλες αντιθέσεις στην ταχύτητα των σεισμικών κυμάτων (Hole και Zelt, 1995). Οι πηγές και οι δέκτες μπορούν να είναι σε οποιοδήποτε σημείο του μοντέλου, αν και συνήθως βάζουμε παραπάνω κόμβους για να να χτυπούν οι ακτίνες και τις άκρες του μοντέλου και να αποφύγουμε έτσι εκφυλιστικά φαινόμενα (edge effects). Η μέθοδος που χρησιμοποιούμε για την τομογραφική αντιστροφή είναι η κανονικοποιημένη αντιστροφή, όπου ο χρήστης καθορίζει τις παραμέτρους αλλά και τα βάρη αυτών.

Θεωρούμε ένα αρχικό μοντέλο και μέσα από συνεχείς επαναλήψεις υπολογίζουμε νέες διαδρομές για τις ακτίνες σε κάθε επανάληψη. Το αραιό γραμμικό σύστημα που προκύπτει επιλύεται με τη μέθοδο των ελαχίστων τετραγώνων (Nolet, 1987). Επίσης, μπορούμε να θεωρήσουμε κάποια διεπιφάνεια πάνω από την οποία το μοντέλο θα παραμένει σταθερό.

Το πόσο θα αλλάξει η ταχύτητα σε κάθε επανάληψη μπορεί να καθορισθεί από τον χρήστη. Το πακέτο περιλαμβάνει x-window ρουτίνες γραφικών για το πλοτάρισμα των
σεισμικών ακτίνων, των μοντέλων, των διεπιφανειών. Όλοι οι κώδικες είναι γραμμένοι σε γλώσσα FORTRAN εκτός από τις βιβλιοθήκες των γραφικών που είναι γραμμένες σε C.

Επίσης χρησιμοποιήσαμε, για καλύτερη επαλήθευση των αποτελεσμάτων, και το πακέτο σεισμικής ανάλυσης δεδομένων διάθλασης GLI3D από τη Hampson-Russel, το οποίο δίνει υψηλής ποιότητας και ακριβείς τομογραφικές εικόνες από επιφανειακές σεισμικές μετρήσεις. Το GLI3D είναι ένα διαδραστικό σύστημα μοντελοποίησης, το οποίο βασίζεται σε μια ακολουθία σημείων ελέγχου που ορίζει ο χρήστης. Τα σημεία αυτά μπορούν είτε να εισαχθούν από το πρόγραμμα είτε από κάποιο εξωτερικό αρχείο.

Εικ. 8.6.3: Παράθυρο από το λογισμικό GLI3D της Hampson-Russel

Το λογισμικό GLI3D χρησιμοποιεί δύο μεθόδους για την αντιστροφή των δεδομένων, με βάση τις πρώτες αφίξεις σε δύο ή τρεις διαστάσεις. Ο πρώτος, από τον οποίο παίρνει και το όνομά του (Generalized Linear Inversion) είναι η γενικευμένη
αντιστροφή, χρησιμοποιώντας το τυποποιημένο ray-tracing αλγόριθμο. Ο δεύτερος
eίναι η τομογραφία, όπου χρησιμοποιείται κάποιο μέτωπο κύματος για να
ανασκευάσει ένα δισδιάστατο ή τρισδιάστατο μοντέλο ταχυτήτων, χρησιμοποιώντας
tους χρόνους των πρώτων αφίξεων.

8.2.1 Επεξεργασία δεδομένων διάθλασης

Κατά τη διάρκεια της επεξεργασίας των σεισμικών δεδομένων και με σκοπό να
υπολογίσουμε τις πρώτες αφίξεις από τα απευθείας και τα διαθλώμενα κύματα
kάναμε λήψη των χρόνων αυτών σε σεισμογράφια που περιείχαν δεδομένα από
όλα τα κανάλια ταυτόχρονα. Πριν προχωρήσουμε στην επιλογή των χρόνων, κάναμε
φιλτράρισμα των δεδομένων από το θόρυβο. Χρησιμοποιήσαμε φίλτρο ζώνης
συχνοτήτων (bandpass) για να φιλτράρουμε υψηλού και χαμηλού περιεχομένου
συχνότητας ενέργεια και ένα φίλτρο notch 60 Hz για να απομακρύνουμε την επιρροή
από τις γραμμές ρεύματος, οι οποίες εφεραν σημαντικές αλλοιώσεις στο σήμα μας.
Πάνω σε αυτές τις φιλτραρισμένες καταγραφές πήραμε τους χρόνους πρώτης αφίξεις.
Τα κύρια βήματα που ακολουθήσαμε κατά την επεξεργασία των πρώτων αφίξεων
παρουσιάζονται στο ακόλουθο διάγραμμα:
8.2.2 Ποιοτικός Έλεγχος

Η επιλογή των πρώτων αφίξεων (picking) είναι μια αρκετά δύσκολη διαδικασία λόγω του μεγάλου αριθμού αριθμού από ίχνη που πρέπει να εξεταστούν. Επίσης, η ύπαρξη θορύβου κάνει δύσκολη την ακριβή επιλογή των χρόνων πρώτης αφίξης. Για να ελαχιστοποιήσουμε όσο το δυνατό τη πιθανότητα να κάνουμε λάθος επιλογές, οι πρώτες αφίξεις σχεδιάστηκαν σε διάγραμμα με άξονες τη θέση του σταθμού και το χρόνο και εξετάστηκαν προσεκτικά ώστε να μην υπεισέρθουν λάθη. Για όσες επιλογές παρουσιάζουν πρόβλημα είναι δυνατή η διόρθωσή τους πηγαίνοντας στο
προηγούμενο βήμα ή αν αυτό δεν είναι δυνατόν τότε δεν τις λαμβάνουμε υπόψιν μας.
Η διαδικασία επαναλαμβάνεται μέχρι να εξαντληθούν όλα τα δεδομένα.

8.2.3 Δημιουργία Αρχικού μοντέλου

Αφού έχουμε ελέγξει τις επιλογές μας στις πρώτες αφίξεις, μπορούμε να κάνουμε μια αρχική εκτίμηση για το μοντέλο στο επιφανειακό μέρος της τομής μας. Σχεδιάζοντας τις πρώτες αφίξεις σε ένα διάγραμμα χρόνου – offset (T-X διάγραμμα) και βάζοντας ευθείες γραμμές πάνω από τις τιμές που έχουμε επιλέξει (picked), ένα αρχικό μονοδιάστατο μοντέλο για κάθε θέση μπορεί να προσδιορισθεί.

Εικ. 8.8α: Απλοποιημένο διάγραμμα αρχικού μοντέλου

Me την υπόθεση ότι η γη αποτελείται από N στρώματα, εκτιμούμε τις τιμές της ταχύτητας και του βάθους για κάθε στρώμα. Η επιλογή του αρχικού μοντέλου
περιγράφηκε πιο αναλυτικά σε προηγούμενο κεφάλαιο. Αφού προσδιορίσουμε το αρχικό μοντέλο, το βελτιώνουμε μέσω των αλγορίθμων αντιστροφής.

8.2.4 Μετρήσεις σε γεώτρηση για βελτίωση των ταχυτήτων

Οι μετρήσεις downhole seismic (DS) πραγματοποιήθηκαν με σκοπό να δώσουν πληροφορία για τις δυναμικές παραμέτρους του εδάφους και των πετρωμάτων ώστε αυτή να χρησιμοποιηθεί για το σχεδιασμό της έρευνας. Η πληροφορία προσδιορίζει το βάθος των –P και –S κυμάτων ως προς τα προφίλ των ταχυτήτων. Επίσης, μπορούν να εξαχθούν με ευκολία και άλλες παράμετροι όπως το μέτρο Poisson. Η μέθοδος DS χρησιμοποιείται κυρίως για τον προσδιορισμό των υλικών ιδιοτήτων του εδάφους και των πετρωμάτων. Το μεγάλο πλεονέκτημα αυτών των μεθόδων είναι ότι είναι πιο απλές και γρήγορες σε σχέση με τις γνωστές μεθόδους borehole και cross borehole.

Οι μετρήσεις αυτές έγιναν σύμφωνα με τις διεργασίες που περιγράφονται από την ASTM (American Society for Testing and Materials) στην οδηγία υπ’αριθμό D4428 M-00. Αυτές οι διεργασίες περιγράφουν με λεπτομέρεια όλες τις απαραίτητες διαδικασίες που απαιτούνται κατά την λήψη και την επεξεργασία των δεδομένων για να εξασφαλισθεί ο ποιοτικός έλεγχος των καταγραφών.
Η μέθοδος DS χρησιμοποιεί ένα ειδικά σχεδιασμένο ξύλινο μαδέρι το οποίο χτυπάμε με ένα σφυρί για να προκαλέσουμε P και S κύματα. Μια συστοιχία από γεώφωνα τριών συνιστωσών βρίσκεται κάτω από το μαδέρι αρχίζοντας από βάθος 1 μέτρου. Η κατακόρυφη συνιστώσα του γεωφώνου λαμβάνει τα κάθετα διαδιδόμενα P κύματα και η ακτινική εγκάρσια συνιστώσα αντιλαμβάνεται το S κύμα. Για να παράγουμε P κύματα χτυπάμε το μαδέρι κάθετα ενώ για να παράγουμε S κύματα στερεώνουμε το μαδέρι στο έδαφος και το χτυπούμε στις άκρες του σε οριζόντια διεύθυνση. Ο διαχωρισμός P αφιέρων είναι σχετικά έυκολος αφού δεν υπάρχει άλλη ενέργεια αλλά για τα S κύματα είναι δυσκολότερη διαδικασία αφού παρεισφρύει και ενέργεια από
τα Ρ κύματα. Για το λόγο αυτό καταγράφουμε και δύο συνεχόμενα χτυπήματα από την άλλη πλευρά του μαδεριού. Τα SH κύματα που θα παραχθούν θα έχουν διαφορετική πολικότητα και έτσι μπορούν να διαχωρισθούν πιο εύκολα. Τα χτυπήματα καταγράφονται από ένα σεισμογράφο με υψηλή ικανότητα καταγραφής. Το καταγεγραμμένο σήμα αποθηκεύεται στην κατάλληλη ψηφιακή μορφή για μετέπειτα επεξεργασία.

8.2.5 Τεχνικές επεξεργασίας

Η επεξεργασία των δεδομένων έγινε χρησιμοποιώντας το λογισμικό ανάλυσης Promax για να πάρουμε τις αφίξεις. Οι κάθετες συνιστώσες διαχωρίζονται και χρησιμοποιούνται για να πάρουμε τις αφίξεις των Ρ κυμάτων. Οι ισοθέτες συνιστώσες συνδυάζονται και οι δύο καταγραφές, με αντίθετη πολικότητα, χρησιμοποιούνται για να πάρουμε τις αφίξεις των S κυμάτων. Η μέθοδος αυτή μας δίνει την ευχέρεια να επιλέξουμε τις αφίξεις αυτές πιο εύκολα και σίγουρα.
Επειτά το πρόγραμμα βγάζει τους χρόνους αφίξεων σε κατάλληλο φορμά έτσι ώστε να μπορούν να υπολογισθούν ταχύτητες, συντελεστές και λόγοι Poisson. Οι σεισμικές ταχύτητες που υπολογίζονται είναι οι ταχύτητες ανάμεσα στα γεώφωνα που καταγράφουν. Οι ταχύτητες υπολογίζονται προσδιορίζοντας το χρόνο διαδρομής σε σχέση με το βάθος. Δεδομένου ότι οι πυκνότητες είναι γνωστές με ακρίβεια, ο λόγος Poisson καθώς και οι διάφοροι συντελεστές μπορούν να προσδιορισθούν από τις ταχύτητες των κυμάτων σύμφωνα με τις ακόλουθες εξισώσεις:

\[
G = rV_s^2 \quad (8.1)
\]

\[
M = rV_p^2 \quad (8.2)
\]

\[
r = \left[\frac{1}{2} \left(\frac{V_p}{V_s} \right)^2 - 1 \right] \left[\left(\frac{V_p}{V_s} \right)^2 - 1 \right] \quad (8.3)
\]
όπου G είναι το μέτρο διάτμησης, r η πυκνότητα, V_p η ταχύτητα του P κύματος, V_s η ταχύτητα του S κύματος, και V ο λόγος Poisson. Τα κάθετα σεισμικά προφίλ (VSP) δίνουν μια in-situ μέτρηση των χρόνων διαδρομής σε σχέση με το βάθος. Τα δεδομένα VSP τα αντιστρέφουμε χρησιμοποιώντας μια damped μέθοδο ελαχίστων τετραγώνων, όπως αυτή περιγράφηκε σε προηγούμενο κεφάλαιο, και τα λεία μοντέλα ταχύτητας/βάθους είναι πολλές φορές κατάλληλα σαν αρχικά μοντέλα για αντιστροφή ή τομογραφία. Η εφαρμογή της αντιστροφής είναι σχετικά απλή και απαιτεί μόνο τη τιμή της damped παραμέτρου για κάθε γεώφωνο. Το ολοκλήρωμα της ταχύτητας μετράται αρχικά από τον υπολογισμό της απόστασης του κάθε γεωφωνού από την πηγή και τη διαφορά στους χρόνους άφιξης ανάμεσα στα πάνω και τα κάτω γεώφωνα. Η διαφορά αυτή απεικονίζεται σαν γραφική παράσταση, σε συνάρτηση με το βάθος. Εφαρμόζοντας αυτή τη μέθοδο μπορούμε να βελτιώσουμε τη κατανομή των ταχυτήτων σε σχέση με το βάθος όπως αυτές μετρήθηκαν από τα επιφανειακά σεισμικά δεδομένα διάθλασης. Χρησιμοποιούμε αυτή τη συνάρτηση ταχύτητας σαν αρχικό μοντέλο στην τομογραφία μας και έπειτα συγκρίνουμε τα τελικά αποτελέσματα όπως φαίνεται στο ακόλουθο διάγραμμα:
Εικ. 8.88: Αποτύπωση των δεδομένων borehole στην τελική τομογραφική τομή για τη γραμμή 1B10_S2.

Η υπερτύπωση γίνεται για λόγους βελτίωσης των σεισμικών δεδομένων που παίρνουμε από τα επιφανειακά δεδομένα. Είναι εμφανές το καλύτερο ταίριασμα των δεδομένων στη θέση P2 σε σχέση με τη θέση 1B10_BH2 που βρίσκεται 35m πιο πέρα.

Αν οι μετρήσεις έχουν γίνει πολύ κοντά στη γραμμή μπορούμε να θεωρήσουμε ένα μέγιστο παράγοντα βάρους για τη βελτίωση του τελικού μοντέλου και μπορούμε να αποφασίσουμε αν θέλουμε να δείξουμε εμπιστοσύνη στο μοντέλο ή να επαναλάβουμε την αντιστροφή.
Εικ. 8.8: Σύγκριση downhole δεδομένων με τα τελικά τομογραφικά αποτελέσματα της γραμμής 1B10_S2 γύρω από την περιοχή P2. Είναι εμφανές ότι τα αποτελέσματα δείχνουν σχεδόν ίδια.

Αν οι μετρήσεις δεν είναι κοντά στη γραμμή τότε τα αποτελέσματα πρέπει να χρησιμοποιηθούν με σύνεση και προσοχή και ορισμένες φορές ακόμη να μην χρησιμοποιηθούν.
8.2.6 Επιφανειακές γεωηλεκτρικές μετρήσεις

Πέρα από τα σεισμικά δεδομένα και για να έχουμε πληρέστερη εικόνα της υπό εξέταση περιοχής λάβαμε και επεξεργαστήκαμε ηλεκτρικά δεδομένα χρησιμοποιώντας το πλέον σύγχρονο ηλεκτρικό μηχάνημα ARES από την GF Instruments που ανήκει στην Landtech Enterprises S.A., και το οποίο επιτρέπει τη λήψη δεδομένων από δεκάδες ηλεκτρόδια και την αυτόματη ενεργοποίηση τυχαίων ζευγών από αυτά σαν ενεργά ηλεκτρόδια με ταυτόχρονη καταγραφή από τα υπόλοιπα. Έτσι παίρνουμε υψηλής ποιότητας δεδομένα ηλεκτρικής τομογραφίας σε δύο διαστάσεις. Κατά μήκος της επιφάνειας της σεισμικής γραμμής και παράλληλα με τις μετρήσεις των σεισμικών δεδομένων, αναπτύξαμε γεωηλεκτρική διάταξη για όλο το διαθέσιμο μήκος,
χρησιμοποιώντας το μέγιστο αριθμό ηλεκτροδίων με διάστημα μεταξύ τους τα 5 μέτρα. Εξαιτίας του πάχους της ασφάλτου, χρησιμοποιήσαμε ειδικά γεωτρύπανα για να σκάψουμε βαθιές τρύπες ώστε να εξασφαλίσουμε καλή αγωγιμότητα. Επιπλέον, ρίξαμε νερό στις οπές στην περίπτωση που τα ηλεκτρόδια είχαν μεγαλύτερη φαινόμενη αντίσταση από το μέσο όρο. Τα καταγεγραμμένα δεδομένα εξάχθηκαν σε φορμά RES2DINV για να επεξεργαστούν.

8.2.6.1 Περιγραφή της εργασίας πεδίου

Όπως έχουμε ήδη πεί, οι γεωηλεκτρικές μετρήσεις αντιμετώπισαν τεχνικά προβλήματα εξαιτίας του εργοστασιακού θορύβου αλλά και κάποιων υπεδαφικών χαρακτηριστικών. Το σχήμα 8.8. δείχνει ένα παράδειγμα από τη διάταξη των ηλεκτροδίων και την ακολουθία των μετρήσεων που μπορεί να χρησιμοποιηθεί για δισδιάστατη ηλεκτρική τομογραφία.

Εικ. 8.8.η: Η διάταξη των ηλεκτροδίων σε δισδιάστατες ηλεκτρικές μετρήσεις
Το δισδιάστατο μοντέλο που χρησιμοποιείται από το πρόγραμμα της αντιστροφής συνίσταται από έναν αριθμό ορθογώνιων κουτιών. Η διάταξη αυτών των ορθογώνιων συνδέεται με την κατανομή των σημείων των δεδομένων στην ψεύδοτομή. Η κατανομή και το μέγεθος των ορθογώνιων επιλέγεται αυτόματα από το πρόγραμμα χρησιμοποιώντας την κατανομή των σημείων σαν οδηγό. Το βάθος που φθάνει το τελευταίο ορθογώνιο είναι περίπου ίσο με το βάθος της έρευνας (Edwards, 1977). Η έρευνα συνήθως διεξάγεται με ένα σύστημα όπου τα ηλεκτρόδια τοποθετούνται κατά μήκος μιας γραμμής με σταθερό διάστημα μεταξύ των γειτονικών, αν και πολλές φορές μπορεί να επιλεγεί και μη-ομοιόμορφο διάστημα.

8.2.6.2 Επεξεργασία ηλεκτρικών δεδομένων

Χρησιμοποιήσαμε το RES2DINV ένα πρόγραμμα που υπολογίζει αυτόματα το δισδιάστατο (2-D) μοντέλο αντιστάσεων του υπεδάφους από τα ηλεκτρικά δεδομένα που έχουμε συλλέξει (Griffiths και Barker, 1993). Το πρόγραμμα είναι σχεδιασμένο για να αντιστρέφει μεγάλα σύνολα δεδομένων (από περίπου 200 ως 6500 σημεία δεδομένων) τα οποία έχουν συλλεχθεί από ένα σύστημα με μεγάλο αριθμό ηλεκτρόδιων (από περίπου 25 ως 1800 ηλεκτρόδια). Είναι ένα πρόγραμμα που βασίζεται στην πλατφόρμα Windows.
8.3 Εφαρμογή στα ορύγματα

8.3.1 Όρυγμα 1B10

Κατά μήκος του ορύγματος 1B10 πήραμε δεδομένα σεισμικής διάθλασης αλλά και ηλεκτρικά. Η θέση των γραμμών αλλά και τα μήκη τους δίνονται στον πίνακα 8.3.1. Για να μετατρέψουμε τα γεωψυχικά δεδομένα σε γεωλογικούς ή υδρογεωλογικούς όρους, θεωρούμε ως αναφορά τον πίνακα τιμών που παραθέτουμε (πίνακας 8.3.2).

Εκεί βλέπουμε σε χρωματική κλίμακα τη σχέση ανάμεσα στις ταχύτητες των σεισμικών κυμάτων και τους γεωλογικούς σχηματισμούς. Ο πίνακας 8.3.3 δείχνει σε χρωματική κλίμακα τις τιμές της ηλεκτρικής αντίστασης και τη συσχέτιση τους με γεωλογικούς και υδρογεωλογικούς σχηματισμούς. Ωστόσο αναφερόμενα στις σεισμικές τομές, πρέπει να σημειωθεί ότι σε ορισμένες περιπτώσεις οι ταχύτητες των σεισμικών κυμάτων δεν μπορούν να αναπαραστησούν τις αντίστοιχες γεωλογικές δομές λόγω των ειδικών συνθηκών που επικρατούν, π.χ. πολύ σκληρή άργιλος μπορεί να έχει ίδια ή ελαφρά μεγαλύτερη ταχύτητα από το στρώμα αποσαρθρωμένου πετρώματος που βρίσκεται από κάτω. Για αυτό το λόγο χρησιμοποιήσαμε και δεδομένα από χειριστική για να ελαχιστοποιήσουμε την πιθανότητα σφάλματος.

Σε γενικές γραμμές, μπορούμε να συμπεράνουμε τα εξής από την διαδικασία ερμηνείας των αποτελεσμάτων:

- Ταχύτητες με εύρος 800-2800 m/sec αντιστοιχούν σε εδάφη και ιζηματικά αποθέματα. Σε κάποιες περιπτώσεις, πολύ χαμηλές ταχύτητες (της τάξης των
800-1000 m/sec) αντιστοιχούν σε ανθρωπογενείς προσχώσεις και μπορούν να εντοπισθούν τοπικά, π.χ. μικρές θαμμένες κοιλάδες κτλ.

- Ταχύτητες με εύρος 2000-3500 m/sec αντιστοιχούν σε ιδιαίτερα αποσαρθρωμένο βραχώδες υπόστρωμα. Πρέπει να σημειωθεί ότι σε ορισμένες περιπτώσεις η διάκριση ανάμεσα σε αργίλους και σε υποκείμενα αποσαρθρωμένα πετρώματα δεν ήταν εφικτή και η ερμηνεία έγινε με τη βοήθεια δεδομένων γεωτρήσεων.

- Ταχύτητες με εύρος 3000-5000 m/sec αντιστοιχούν σε μεταβατικές ζώνες θρυμματισμένου βραχώδους υποστρώματος και καθαρού στέρεου βράχου. Το ίδιο εύρος ταχύτητας παρατηρείται και σε ζώνες θραύσεως εκρηξιγενών πετρώματων μέσα σε κρυσταλλικό υπόστρωμα.

- Ταχύτητες με εύρος 3500-5000 m/sec μπορούν επίσης να αντιστοιχούν και σε κάθετες γεωλογικές ανωμαλίες μεταμορφωμένων πετρωμάτων. Συνήθως αυτές οι αλλαγές σχετίζονται με ζώνες θραύσεως και ή το υπάρχων σύστημα ρηγμάτων.

- Ταχύτητες με εύρος 4700-7200 m/sec αντιστοιχούν σε καθαρό, συμπαγές κρυσταλλικό υπόστρωμα γρανοδιορίτη.

Τα εύρη ταχυτήτων που αναφέρθηκαν παραπάνω επιβεβαιώθηκαν και με τον συσχετισμό των δεδομένων από γεώτρηση στην περιοχή έρευνας. Πρέπει να σημειωθεί ότι η αντιστοίχιση των δεδομένων από γεώτρηση στα σεισμικά δεδομένα είναι μια εργασία η οποία απαιτεί ιδιαίτερη προσοχή αφού μπορεί να οδηγήσει εύκολα σε λάθος συμπεράσματα.
Όσον αφορά τώρα τις τιμές από τα δεδομένα ηλεκτρικής αντίστασης σημειώνουμε τα ακόλουθα:

- Αντίσταση με εύρος από 0.5-1.0 Ohm*m αναπαριστά ζώνες υψηλής διαπερατότητας οι οποίες περιέχουν νερό. Τέτοιες ζώνες είναι επιφανειακά εδάφη, ιζηματογενείς αποθέσεις και ρηγματα κυρίως με ανοιχτές οπές.

- Αντίσταση με εύρος 8-30 Ohm*m αναπαριστά ζώνες κορεσμένες ύδατος όπως αποσαρθρωμένο βραχώδες υπόστρωμα. Μπορεί να θεωρηθεί ότι οι ζώνες αυτές συμπεριφέρονται σαν αποθήκες υπόγειου ύδατος με μέση διαπερατότητα.

- Αντίσταση με εύρος 25-150 Ohm*m αναπαριστά ζώνες χαμηλής διαπερατότητας όπως λιθολογικές αλλαγές των μεταμορφικών πετρωμάτων.

- Τέλος, αντίσταση της τάξης των 150 Ohm*m και άνω, αναπαριστά στεγνούς σχηματισμούς, χωρίς νερό, όπως κρυσταλλικό υπόστρωμα και σε μερικές περιπτώσεις λιθολογικές αλλαγές των μεταμορφικών πετρωμάτων, τα οποία συμπεριφέρονται σαν φράγμα του υπόγειου ύδατος.

Πρέπει να σημειωθεί επίσης ότι σε μερικές περιπτώσεις, παρατηρείται από τις τομές ότι περιοχές υψηλής ταχύτητας του συμπαγούς κρυσταλλικού υποστρώματος σχετίζονται με ενδιάμεσες τιμές αντίστασης. Αυτό μπορεί να εξηγηθεί με την παρουσία ζωνών μεταλλευμάτων μέσα στο κρυσταλλικό υπόστρωμα.
<table>
<thead>
<tr>
<th>Σ</th>
<th>Όνομασία</th>
<th>Μήκος</th>
<th>Συντ/μενες Αρχής</th>
<th>Συντ/μενες τέλους</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1B10_S1</td>
<td>230m</td>
<td>586338,832</td>
<td>586166,112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2369284,681</td>
<td>2369438,001</td>
</tr>
<tr>
<td>2</td>
<td>1B10_S2</td>
<td>542m</td>
<td>586239,909</td>
<td>586181,508</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2369253,764</td>
<td>2369784,553</td>
</tr>
<tr>
<td>3</td>
<td>1B10_S3</td>
<td>285m</td>
<td>586047,204</td>
<td>586323,425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2369862,979</td>
<td>2369925,841</td>
</tr>
<tr>
<td>4</td>
<td>1B10_S5S6</td>
<td>900m</td>
<td>586237,582</td>
<td>586146,626</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2369511,102</td>
<td>2370435,950</td>
</tr>
<tr>
<td>5</td>
<td>1B10_S7</td>
<td>945m</td>
<td>586249,529</td>
<td>586082,219</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2369476,713</td>
<td>2370348,012</td>
</tr>
<tr>
<td>6</td>
<td>S1</td>
<td>741m</td>
<td>585111,644</td>
<td>585453,325</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2369363,705</td>
<td>2368751,154</td>
</tr>
<tr>
<td>7</td>
<td>S2</td>
<td>171m</td>
<td>585481,590</td>
<td>585649,013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2368795,001</td>
<td>2368764,046</td>
</tr>
<tr>
<td>8</td>
<td>S3</td>
<td>657m</td>
<td>585912,976</td>
<td>586514,716</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2368995,502</td>
<td>2368977,892</td>
</tr>
<tr>
<td>9</td>
<td>S4a</td>
<td>789m</td>
<td>586415,3091</td>
<td>586931,239</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2369036,5993</td>
<td>2368480,768</td>
</tr>
<tr>
<td>10</td>
<td>S4b</td>
<td>897m</td>
<td>586804,364</td>
<td>587340,184</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2368525,254</td>
<td>2369143,236</td>
</tr>
</tbody>
</table>
Πίνακας 8.3.2: Εύρος των σεισμικών ταχυτήτων

Πίνακας 8.3.3: Εύρος των ηλεκτρικών αντιστάσεων
8.3.1.2 Περιγραφή και ερμηνεία των γραμμών

Στο κεφάλαιο αυτό περιγράφουμε με συντομία τις γραμμές για τον έλεγχο του πρώτου ορύγματος. Η γραμμή 1B10_S1 βρίσκεται στην περιοχή Mawkef Al Jenn. Παρακάτω παραθέτουμε διαγράμματα με τις τοποθεσίες όλων των γραμμών. Η περιοχή χρησιμοποιείται σαν υπαίθριος χώρος στάθμευσης λεωφορείων. Επιπλέον η περιοχή περιτριγυρίζεται από δρόμους με μεγάλο κυκλοφοριακό φόρτο με αποτέλεσμα ο μέσος μετρούμενος θόρυβος να αγγίζει τα υψηλότερα όρια. Το συνολικό μήκος της γραμμής ήταν 225 μέτρα και είχε προσανατολισμό από ανατολικά προς δυσμάς (E-W) με το πρώτο σημείο να βρίσκεται ανατολικά. Η γραμμή 1B10_S2 βρίσκεται στην περιοχή Mawkef Al Jenn και έχει συνολικό μήκος 429 μέτρα. Η γραμμή έχει προσανατολισμό από βορρά προς νότο (N-S) με το πρώτο σημείο να βρίσκεται στο νότο.

Η γραμμή 1B10_S3 είναι η μόνη γραμμή που μπόρεσε να χαραχθεί κάθετα στο άργυμα 1B10 και τις γραμμές 1B10_S5S6 και 1B10_S7, με συνολικό μήκος 285 m. Πολύ σημαντικό πρόβλημα ήταν η διάσχιση των δύο λεωφόρων και το κακό σήμα που παίρναμε. Αντιμετωπίσαμε το κακό σήμα με πολλαπλά χτυπήματα (shots) φθάνοντας τα 10-15 σε κάθε σημείο. Η γραμμή αυτή έχει προσανατολισμό από ανατολικά προς δυσμάς (E-W) με το πρώτο σημείο να βρίσκεται δυτικά. Η γραμμή 1B10S5/S6 βρίσκεται κατά μήκος του δρόμου Hojoun, με συνολικό μήκος 900 μέτρων.
Αντιμετωπίστηκαν σοβαρές δυσκολίες ασφάλειας κατά τη λήψη δεδομένων λόγω της μεγάλης κίνησης του δρόμου και φυσικά υψηλά επίπεδα θορύβου. Και εδώ ακολουθήθηκε η μέθοδος των πολλών χτυπημάτων (10-15). Η γραμμή 1B10_S7 βρίσκεται κατά μήκος του δρόμου Haram, με συνολικό μήκος 480 μέτρα. Και εδώ αντιμετωπίστηκαν τα ίδια προβλήματα. Η γραμμή έχει γενικό προσανατολισμό από βορρά προς νότο με το πρώτο σημείο να βρίσκεται στο νότο. Η γραμμή S1 απλώνεται δυτικά του Haram, σε συνολικό μήκος 741 μέτρων. Και εδώ αντιμετωπίσθηκαν οι ίδιες δυσκολίες. Η γραμμή έχει προσανατολισμό από βορρά προς νότο με το πρώτο σημείο να βρίσκεται στο βορρά. Η γραμμή S2 ξεκινά από εκεί που τελειώνει η γραμμή S1 κατά μήκος του πύργου F με συνολικό μήκος 215 μέτρων. Επικρατούσαν και εδώ ίδιες συνθήκες με τη γραμμή S1. Η γραμμή S3 απλωνόταν βορείως του Al Haram με κατεύθυνση από ανατολικά προς δυτικά (EW). Το μεγαλύτερο μέρος αυτής της γραμμής βρισκόταν πάνω στο δρόμο με το πρώτο σημείο να βρίσκεται δυτικά και συνολικό μήκος γραμμής τα 657 μέτρα. Η γραμμή S4a εκτείνονταν ανατολικά του Al Haram με κατεύθυνση βόρειοδυτικά – νότιοανατολικά (NW-SE). Το μεγαλύτερο μέρος της γραμμής βρισκόταν πάνω σε δρόμο και ότι δεν μπορούσε να χρησιμοποιηθεί το πίπτων βάρος λόγω μορφολογίας χρησιμοποιούσαμε σφύρα. Σοβαρή δυσκολία σε αυτή τη γραμμή αποτέλεσε η πολύ δύσκολη τοπογραφία και το πέρασμα από λεωφόρους. Το πρώτο σημείο της γραμμής βρισκόταν νότιοβορειοδυτικά με ένα συνολικό αριθμό 264 γεωφώνων να καλύπτουν συνολικό μήκος 789 μέτρων.

Η τελευταία μας γραμμή, η S4b απλώθηκε σχεδόν κάθετα στην γραμμή S4a στο όρος Khandama ανατολικά του Al Haram με κατεύθυνση από νότιοανατολικά προς βόρειοδυτικά (SE – NW). Το μεγαλύτερο μήκος βρισκόταν εκτός δρόμου και
χρησιμοποιήθηκε επί το πλείστον η σφύρα αντί του πίπτοντος βάρους. Φυσικά, και εδώ αντιμετωπίσαμε προβλήματα με την τοπογραφία. Το πρώτο σημείο της γραμμής βρισκόταν νότιοανατολικά, με συνολικό αριθμό 300 γεωφώνων να καλύπτουν μήκος 897 μέτρων. Η γραμμή έτεμε τις γραμμές S4α και S4b στα γεώφωνα 250 (747 μέτρα από την αρχή της γραμμής) και 22 (63 μέτρα από την αρχή) αντίστοιχα.

8.3.1.3 Γραμμή 1Β10_S1

Σκοπός της έρευνας είναι να χαρτογραφήσει τις υπεδαφικές δομές και να εντοπίσει τυχόν τεκτονικές δομές που μπορεί να υπάρχουν στη περιοχή που παίρνουμε τα δεδομένα. Μετά από ποιοτικό έλεγχο, επεξεργασία, ερμηνεία και έλεγχο των αποτελεσμάτων καταλήφαμε στα τομογράμματα που παραθέτουμε παρακάτω. Η θέση της διεπιφάνειας υπολογίστηκε βάσει της ανάλυσης ταχυτήτων. Τιμές μεγαλύτερες από 5200 m/sec δείχνουν την έναρξη συμπαγούς κρυσταλλικού υποστρώματος. Τα αποτελέσματα από τη σεισμική διάθλαση περιορίζονται στα πρώτα 45 μέτρα όπου μπορούμε να κάνουμε την παρακάτω ερμηνεία:

Δύο σημαντικές ζώνες διακρίνονται. Η πρώτη εκτείνεται από την επιφάνεια και προς τα κάτω σε βάθος περίπου 15-18 μέτρα στο αριστερό μέρος του προφίλ και η οποία φθάνει μέχρι την επιφάνεια στο σημείο όπου πραγματοποιούμε τη γεώτρηση P2, 140 μέτρα περίπου από την αρχή της γραμμής. Αυτός ο σχηματισμός παρουσιάζει εύρος ταχυτήτων από 2-3,5 km/sec. Κάτω από αυτό το σχηματισμό βρίσκεται μια ρηχή ζώνη με μέσο πάχος τα 8-15 μέτρα και εύρος ταχυτήτων τα 3,5-5 km/sec. Επιπλέον η σχετική θέση και η μορφολογία του σχηματισμού αυτού μας οδηγούν στο...
Συμπέρασμα ότι πρόκειται για ζώνη μετάβασης ανάμεσα στο συμπαγές κρυσταλλικό υπόστρωμα και τα μαλακά επιφανειακά εδάφη. Αυτή η ενδιάμεση ζώνη βρίσκεται πάνω από τη δεύτερη σημαντική ζώνη η οποία παρουσιάζει μέσο όρο ταχυτήτων μεγαλύτερο από 5,5 km/sec, ταχύτητα που αντιστοιχεί στο κρυσταλλικό υπόστρωμα με πιθανή ζώνη θραύσης (στη θέση 40-100 μέτρα). Σύμφωνα με αυτό, η υπερκείνουσα ενδιάμεση ζώνη αναπαριστά τη σαρθρή ζώνη του κρυσταλλικού πετρώματος. Αυτό το συμπέρασμα είναι συμβατό με την θέση και τη μορφολογία της ζώνης. Η γραμμή δεν είχε μεγάλο άνοιγμα και έτσι δεν μπορέσαμε να χαρτογραφήσουμε με ακρίβεια τις ζώνες χαμηλής ταχύτητας και έτσι δεν μπορέσαμε να δείξουμε πιθανά ρήγματα. Τα δεδομένα όμως που πήραμε από την γεωτρήση P2 δείχνουν την ύπαρξη δύο ζωνών ρηγμάτωσης στα 80 και 150 m από την αρχή της τομής.

Οι γεωηλεκτρικές μετρήσεις κατά μήκος αυτής της γραμμής εδείξαν περιοχή υψηλής αντίστασης η οποία σχετίζεται με το άνω μέρος της ζώνης ρηγμάτωσης σε θέση γύρω στα 40-100 μέτρα.
Εικ. 8.9: Απεικόνιση της γραμμής 1B10_S1 και των γειτονικών σε αυτή γραμμών
Πανεπιστήμιο Πατρών – Τμήμα Γεωλογίας – Εργαστήριο Σεισμολογίας - Διδακτορική Διατριβή Μ.Σ. Αρβανίτης

Σελίδα 194

ιστού
8.3.1.4 Γραμμή 1B_10S2

Η ερμηνεία αυτής της γραμμής στηρίζεται στην ίδια μεθοδολογία που χρησιμοποιήσαμε και πριν. Τα αποτελέσματα της σεισμικής διάθλασης περιορίζονται στα πρώτα 55-60 μέτρα και εκεί παρατηρούμε τα εξής: υπάρχουν τρία βασικά σύνορα τα οποία διακρίνονται και από τη γεώτρηση (1B10_BH2) η οποία γίνεται 35m από την αρχή της γραμμής. Το πρώτο εκτείνεται κατά μήκος όλης της γραμμής με εύρος ταχυτήτων 1,6-3,0 km/sec και πάχος που κυμαίνεται στα 4-5 meters νοτίως της γραμμής και σε απόσταση 120 m μετά (σταθμός 120) γίνεται παχύτερο φτάνοντας το μέγιστο πάχος των 20-22 μέτρων στο μέσο και μετά πάλι μειώνεται στα 5-6 μέτρα στα τελευταία 50 μέτρα της τομής. Η ιδιαίτερη ζώνη κάτω από αυτό το σχηματισμό με μέσο πάχος 8-10 μέτρα και εύρος ταχυτήτων 3,0-5 km/sec σχετίζεται ξανά με τη ζώνη μετάβασης ανάμεσα στο υψηλής ταχύτητας κρυσταλλικό υπόστρωμα και τους χαμηλότερης ταχύτητας κρυσταλλικού υπόστρωμα και τους χαμηλότερης ταχύτητας ανω χημιστισμούς. Προσοχή πρέπει να δωθεί στην εναλλαγή του πάχους της τομής, εναλλαγή που σχετίζεται με τη σχεδόν κάθετη επέκταση (ανάμεσα στη θέση 140-340 μέτρα) αυτής της ζώνης που προφανώς δείχνει μια ζώνη μετάβασης ανάμεσα στο υψηλής ταχύτητας κρυσταλλικό υπόστρωμα και τους χαμηλότερης ταχύτητας κρυσταλλικού υπόστρωμα και τους χαμηλότερης ταχύτητας ανω χημιστισμούς. Προσοχή πρέπει να δωθεί στην εναλλαγή του πάχους της τομής, εναλλαγή που σχετίζεται με τη σχεδόν κάθετη επέκταση (ανάμεσα στη θέση 140-340 μέτρα) αυτής της ζώνης που προφανώς δείχνει μια ζώνη μετάβασης. Αυτή η ενδιάμεση ζώνη υπέρκειται του βαθύτερου και μεγαλύτερου συνόρου με μέση ταχύτητα που ξεπερνά τα 5,5 km/sec και ανταποκρίνεται στο κρυσταλλικό υπόστρωμα. Πρέπει να σημειωθεί για άλλη μια φορά ότι το ρήγμα εντοπίζεται περίπου στον σταθμό 160 χήρη στα γεωηλεκτρικά δεδομένα που μπορούν και βλέπουν μια ζώνη χαμηλής αντίστασης και μια στενή ζώνη που μοιάζει πιο πολύ με μια δέσμη από ανοιχτές ρηγματώσεις παρά με μια ζώνη ρηγμάτωσης και η οποία εντοπίζεται και από τα δεδομένα της γεώτρησης. Αυτά τα ανοικτά σπασίματα
δείχνουν να έχουν κλίση και να είναι στενά με αποτέλεσμα να μην εντοπίζονται από τη σεισμική τομή. Η γεωηλεκτρική τομή εντοπίζει την ύπαρξη διαπερατών ζωνών γύρω από τις ζώνες ρηγμάτωσης αλλά δεν μπορούν να συνδεθούν ποιοτικά με τους σχηματισμούς χαμηλής σεισμικής ταχύτητας. Η αιτία για αυτό είναι ότι επηρεάζονται από δεύτερογενή φαινόμενα, όπως ο τοπικός θόρυβος, με αποτέλεσμα να χρειάζεται τομογραφία crosshole για να λύσει αυτά τα προβλήματα. Παρακάτω παραθέτουμε τα επεξεργασμένα προφίλ.

Εικ.8.10: Απεικόνιση χάρτη των γραμμών
8.3.1.5 Γραμμή 1Β10_S3

Η ερμηνεία αυτής της γραμμής στηρίζεται στην ίδια μεθοδολογία που ακολουθήσαμε και στις άλλες γραμμές. Τα αποτελέσματα από τη μέθοδο της σεισμικής διάθλασης φτάνουν μέχρι τις 55-60 μέτρα, όπου παρατηρούμε τα εξής: Υπάρχουν δύο σημαντικά σύνορα. Το πρώτο εκτείνεται κατά μήκος όλης της γραμμής, με εύρος ταχυτήτων 1,6-3,0 km/sec και πάχος που κυμαίνεται από περίπου 15 μέτρα στα δυτικά της γραμμής και σε μήκος 100 m από την αρχή της γραμμής γίνεται παχύτερο φθάνοντας το μέγιστο πάχος των 20-22 m στο ανατολικό άκρο της γραμμής. Ο παχύ σχηματισμός κάτω από αυτή τη ρηχή της γραμμής γίνεται παχύτερο φθάνοντας το μέγιστο πάχος των 20-22 m στο ανατολικό άκρο της γραμμής. Ο παχύ σχηματισμός κάτω από αυτή τη ρηχή της γραμμής γίνεται παχύτερο φθάνοντας το μέγιστο πάχος των 20-22 m στο ανατολικό άκρο της γραμμής. Ο παχύ σχηματισμός κάτω από αυτή τη ρηχή της γραμμής γίνεται παχύτερο φθάνοντας το μέγιστο πάχος των 20-22 m στο ανατολικό άκρο της γραμμής. Ο παχύ σχηματισμός κάτω από αυτή τη ρηχή της γραμμής γίνεται παχύτερο φθάνοντας το μέγιστο πάχος των 20-22 m στο ανατολικό άκρο της γραμμής. Ο παχύ σχηματισμός κάτω από αυτή τη ρηχή της γραμμής γίνεται παχύτερο φθάνοντας το μέγιστο πάχος των 20-22 m στο ανατολικό άκρο της γραμμής. Ο παχύ σχηματισμός κάτω από αυτή τη ρηχή της γραμμής γίνεται παχύτερο φθά

Το μεγάλο πάχος αυτής της τομής κατά μήκος της συγκεκριμένης γραμμής προκαλείται από μια ζώνη θραύσεως η οποία υπεισέρχεται μέσα στη γραμμή. Το κρυσταλλικό υπόστρωμα κατά μήκος της γραμμής δεν απεικονίζεται από τις υψηλές ταχύτητες λόγω της ζώνης θραύσεως, αλλά από τη μεταβολή κάποιων υψηλότερων ταχύτητων στο χαμηλότερη τομή. Η γεωηλεκτρική τομή συμβολίζει τη πιθανή παρουσία μιας διαπερατής ζώνης η οποία θα μπορούσε να είναι μέρος της παραπάνω εκτεταμένης ζώνης θραύσεως. Ιδιαίτερη προσοχή επίσης δώθηκε στη γεωλογική και υδρογεωλογική ερμηνεία καθώς τα ηλεκτρικά δεδομένα εξετάσθηκαν ποιοτικά και όχι ποσοτικά. Παραθέτουμε παρακάτω τα επεξεργασμένα προφίλ.
8.3.1.6 Γραμμή 1Β10_S5S6

Η ερμηνεία της γραμμής γίνεται λαμβάνοντας υπόψιν τα εξής. Η θέση της διεπιφάνειας υπολογίστηκε βάσει της ανάλυσης των ταχυτήτων από τη σεισμική ανάκλαση. Το κριτήριο για τη διαφοροποιήση ήταν η εναλλαγή του διαστήματος της ταχύτητας. Τιμές μεγαλύτερες από 5200 m/sec δείχνουν την παρουσία συμπαγών κρυσταλλικού υποστρώματος. Τα δεδομένα από διάθλαση περιορίζουν στα πρώτα 55-60 μέτρα και παρατηρούμε τα εξής: υπάρχουν τρία βασικά σύνορα. Το πρώτο βρίσκεται σε διάφορα σημεία της γραμμής και παρουσιάζει φάσμα ταχυτήτων 1,6-3,0 km/sec και πάχος που διαφέρει από 10-12 μέτρα και τοπικά 18-20 μέτρα. Δείχνει έτσι ότι σε μερικές περιοχές έχει γίνει διάβρωση και ότι παρεμβάλλονται ζώνες μετάβασης και κομμάτια από το κρυσταλλικό υπόστρωμα. Η ζώνη κάτω από αυτό το σχηματισμό (πράσινο και κίτρινο) με μέσο πάχος τα 12-15 μέτρα και εύρος ταχυτήτων 3,0-5 km/sec σχετίζεται ξανά με τη ως ζώνη μετάβασης ανάμεσα στο υψηλής ταχύτητας κρυσταλλικό υπόστρωμα και τους υπερκείμενους χαμηλής ταχύτητας σχηματισμούς. Η εναλλαγή του πάχους εντοπίζεται σε τρεις περιοχές όπου η κάθετη επέκταση προς τα κάτω προφανώς δείχνει ασθενώς ρηγματωμένες ζώνες. Η μέση αυτή ζώνη βρίσκεται παραδοξώς πάνω από το βαθύτερο σύνορο το οποίο δείχνει ότι είναι και το χαμηλότερο σημείο αυτής της τομής με μέση ταχύτητα που ξεπερνά τα 5,5 km/sec και συνδέεται με το κρυσταλλικό υπόστρωμα. Αυτός ο τελευταίος σχηματισμός, όπως εκδηλώθηκε και παρατίθεται εν μέρει να γέμιζαν με άλλο υλικό, για αυτό και αναπαριστάται με μικρές
αλλαγές στη κατανομή της ταχύτητας. Το γεωηλεκτρικό προφίλ δείχνει την παρουσία πιθανών διαπερατών ζωνών οι οποίες σχετίζονται με τις ζώνες ρηγμάτωσης.
8.3.1.7 Γραμμή 1B10_S7

Η ερμηνεία αυτής της γραμμής στηρίζεται στην ίδια μεθοδολογία που αναπτύχθηκε και παρατηράται. Στη δεδομένη από τη διάθλαση περιορίζονται στα 55-60 μέτρα, όπου παρατηρούμε τρία σημαντικά σύνορα. Τα συγκεκριμένα επιβεβαιώνονται και από τις γεωτρήσεις 1B10_BH1 με offset 0 μέτρα, 1B10_BH2 με offset 17m και 1B10_BH3 περίπου 20m μακριά. Το πρώτο απλώνεται κατά μήκος όλης της γραμμής με εύρος ταχυτήτων 1,6-3,0 km/sec και μέσο πάχος τα 18-22 meters και τοπικά μέχρι 25 m. Η ζώνη κάτω από αυτό το σχηματισμό με μέσο πάχος τα 8-10 m και εύρος ταχυτήτων 3,0-5 km/sec σχετίζεται ξανά με τη ζώνη μετάβασης ανάμεσα στο υψηλής ταχύτητας κρυσταλλικό υπόστρωμα και τους υπερκείμενους σχηματισμούς χαμηλότερης ταχύτητας.

Η εναλλαγή του πάχους δείχνει ότι σχετίζεται με περιοχές όπου οι δύο κάθετες επεκτάσεις (και οι οποίες κατεβαίνουν προς τα κάτω) αυτής της ζώνης δείχνουν ξεκάθαρα ζώνες θράύσεως (80-180m, 220-360m, 460-620m και 720-810m). Αυτή η ενδιάμεση ζώνη βρίσκεται πάνω από το βαθύτερο σύνορο που βρίσκεται στο χαμηλότερο σημείο της τομής με μεση ταχύτητα που χειροκίνεται τα 5,5 km/sec και αντιποικίζει στο κρυσταλλικό υπόστρωμα. Ο χώρος αυτός της επιφάνειας ανάμεσα στον υπογεύη και τον επιφανή υπογεύη έχει ιδιαίτερα συμπαγείς σχηματισμούς και το υπογεύη πετρώματος είναι ιδιαίτερα αποσαρθρωμένο πέτρωμα. Σε γεωφυσικούς όρους αυτές οι δύο συνθήκες έχουν ιδιές γεωφυσικές ιδιότητες έτσι η διεπιφάνεια ανάμεσα στο έδαφος και το
αποσαρθρωμένο πέτρωμα σηκώνεται λίγο πιο ψηλά στα βαθύτερα μέρη της τομής.

Επιπλέον, από τη γεώτρηση βλέπουμε ότι ο γρανοδιορίτης είναι θρυμματισμένος σε όλο το βάθος της γεώτρησης, με αποτέλεσμα οι ταχύτητες που αναπαριστώνται να είναι στο εύρος του αποσαρθρωμένου πετρώματος. Το γεωηλεκτρικό προφίλ είναι ιδιαίτερα πολύπλοκο αλλά υποδεικνύει διάφορες περιοχές οι οποίες σχετίζονται με ζώνες θράυσεως που θα μπορούσαν να είναι ένδειξη ύπαρξης νερού.
8.3.1.8 Γραμμή S1

Η θέση της διεπιφάνειας προσδιορίσθηκε από ανάλυση ταχυτήτων από δεδομένα ανάκλασης. Τιμές υψηλότερες των 5200 m/sec υποδεικνύουν την παρουσία συμπαγούς κρυσταλλικού υποστρώματος. Τα δεδομένα διαθλασης περιορίζονται στα 60 μέτρα και παρατηρούμε τα ακόλουθα: υπάρχουν τρία βασικά σύνορα, με το πρώτο να απλώνεται κατά μήκος όλης της γραμμής με ταχύτητες που κυμαίνονται στα 1,6-3,0 km/sec και πάχος που κυμαίνεται από τα 6-7 μέτρα στο βόρειο μέρος, αρχίζοντας στα 80 μέτρα από την αρχή της τομής, φθάνοντας το μέγιστο πάχος των 10-12 m στα 350 m από την αρχή. Η δεύτερη ζώνη με μέσο πάχος τα 15-20 m και εύρος ταχυτήτων 3,0-5 km/sec σχετίζεται ξανά με τη ζώνη μετάβασης ανάμεσα στο κρυσταλλικό υπόστρωμα υψηλής ταχύτητας και στις υπερκείμενες χαμηλής ταχύτητας στρωματώσεις. Το πάχος σε δύο συγκεκριμένες περιοχές στα σημεία 300-440 m και 600-700 m της τομής δείχνουν να σχετίζονται με κάθετες επεκτάσεις που υποδεικνύουν ζώνες θραύσεως. Στα τελευταία 300 m της γραμμής το πάχος είναι γύρω στα 6-8 m. Η χαμηλότερη ζώνη που εμφανίζεται στο χαμηλότερο μέρος της τομής, με μέση ταχύτητα που ξεπερνά τα 5,5 km/sec αντιστοιχεί στο κρυσταλλικό υπόστρωμα. Προσοχή πρέπει να δωθεί σε δύο σημαντικές ζώνες θραύσεως στα σημεία 300-440 m και 600-700 m της τομής, τα οποία έχουν πλάτος 80m περίπου. Το γεωηλεκτρικό προφίλ δείχνει την παρουσία πιθανών διαπερατών ζωνών γύρω από τις ζώνες θραύσεως η οποία σχετίζεται κάπως και με την παρουσία χαμηλών σεισμικών ταχυτήτων.
Εικ. 8.11: Χάρτης της Γραμμής S2
8.3.1.9 Γραμμή S2

Η θέση των διεπιφανειών προσδιορίσθηκε από την ανάλυση ταχυτήτων. Τα αποτελέσματα της διάθλασης περιορίζονται στα πρώτα 60 μέτρα όπου και παρατηρούμε τα ακόλουθα: υπάρχουν τρεις συνοριακές επιφάνειες. Η πρώτη εκτείνεται κατά μήκος σχεδόν όλης της γραμμής, με εύρος ταχυτήτων που κυμαίνεται στα 1,6-3,0 km/sec και πάχος που κυμαίνεται στα 15-18m δυτικά και 6-7m ανατολικά, φθάνοντας όμως τα περίπου 20 μέτρα πριν το τέλος της τομής. Η δεύτερη ζώνη με μέσο πάχος τα 10-15 m και εύρος ταχυτήτων τα 3,0-5 km/sec σχετίζεται με τη ζώνη μετάβασης ανάμεσα στο κρυσταλλικό υπόστρωμα και τους υπερκείμενους, χαμηλότερης ταχύτητας, σχηματισμούς. Το πάχος μειώνεται προς τα ανατολικά φθάνοντας σχεδόν μηδενικό στα 150 με 170m. Η τελευταία ζώνη που αποτελεί και το χαμηλότερο σημείο της τομής, με μέση ταχύτητα που ξεπερνά τα 5,5 km/sec αντιστοιχεί στο κρυσταλλικό υπόστρωμα. Πρέπει να διωθεί ιδιαίτερη σημασία σε μια σημαντική ζώνη θραύσης σε μήκος 0- 60m της τομής. Το γεωηλεκτρικό προφίλ δείχνει την παρουσία πιθανής διαπερατής ζώνης αλλά δεν μπορεί να συσχετισθεί ποιοτικά με τα σεισμικά δεδομένα.
Εικ.8.12: Χάρτης της γραμμής και της γύρω περιοχής
8.3.1.10 Γραμμή S3

Η θέση της διεπιφάνειας υπολογίστηκε βάσει της ανάλυσης ταχυτήτων. Τιμές υψηλότερες των 5200 m/sec υποδηλώνουν παρουσία συμπαγούς κρυσταλλικού υποστρώματος. Τα δεδομένα της διάθλασης περιορίζονται στα πρώτα 60 μέτρα. Υπάρχουν τρεις σημαντικές ζώνες. Η πρώτη απλώνεται κατά μήκος όλης της γραμμής, με εύρος ταχυτήτων από 1,2-2,5 km/sec και πάχος που κυμαίνεται από 10-12 μέτρα στο ανατολικό μέρος της γραμμής, στα 7-8 μέτρα στο σταθμό 350-400 και στην αρχή της τομής φθάνει σε ένα μέγιστο πάχος της τάξης των 45-50 m. Η δεύτερη ζώνη με μέσο πάχος 7-8 m και εύρος ταχυτήτων 2,8-3.5 km/sec σχετίζεται με την αποσαρθρωμένη ζώνη. Ανάμεσα σε αυτή και το κρυσταλλικό υπόστρωμα η ζώνη μετάβασης μπορεί να διαφανεί, και η οποία παρουσιάζει μέσο πάχος 8-10 m προς τα ανατολικά, 5-6 m κοντά στο μέσο της γραμμής και ανάμεσα στους σταθμούς 360 και 440. Προσοχή πρέπει να δωθεί στις δύο σημαντικές ζώνες θραύσεως κατά μήκος της γραμμής και σε μήκος 280 m και 460 - 540 m από την αρχή της τομής. Συγκεκριμένα, η πρώτη σχετίζεται με ανθρωπογενείς προσχώσεις. Το γεωηλεκτρικό προφίλ, τονίζει την παρουσία πιθανών διαπερατών περιοχών γύρω από τις ζώνες θραύσεως.
Εικ. 8.13: Χάρτης των γραμμών S3 και S4a
8.3.1.11 Γραμμή S4a

Τα δεδομένα από διάθλαση περιορίζονται σε βάθος στα πρώτα 60 μέτρα. Υπάρχουν τρεις βασικές ζώνες, με την πρώτη να απλώνεται κατά μήκος όλης της γραμμής και εύρος ταχυτήτων 1,6-3,0 km/sec και πάχος που κυμαίνεται στα 6-7 meters μέχρι 10-12 m κατά μήκος. Η δεύτερη ζώνη με μέσο πάχος τα 10-15 m και εύρος ταχυτήτων 3,0-5 km/sec σχετίζεται ξανά με τη ζώνη μετάβασης. Η εναλλαγή του πάχους σε δύο συγκεκριμένες περιοχές, στα σημεία 0-140 m και 340-460 m της τομής συσχετίζεται με περιοχές όπου οι κάθετες επεκτάσεις συμβολίζουν ζώνες θραύσεως. Η χαμηλότερη ζώνη εχει ταχύτητες που ξεπερνούν τα 5,5 km/sec και αντιστοιχεί στο κρυσταλλικό υπόστρωμα. Το γεωηλεκτρικό προφίλ υποδεικνύει την παρουσία διαφόρων διαπερατών περιοχών γύρω από τις ζώνες θραύσεως, κάτω από το δακτυλίδι που σχηματίζει η λεωφόρος.
8.3.1.12 Γραμμή S4b

Τα δεδομένα από τη διάθλαση περιορίζονται στα πρώτα 60 μέτρα. Παρατηρούμε τρεις ζώνες, με την πρώτη να απλώνεται κατά μήκος ολόκληρης της γραμμής, με εύρος ταχυτήτων 1,6-3,0 km/sec και πάχος που εναλλάσσεται από 6-7 meters στο βορρά φτάνοντας το μέγιστο πάχος των 15-20 m στο νότο. Η δεύτερη ζώνη με μέσο πάχος 10-12 m και ταχύτητες 3,0-5 km/sec σχετίζεται ξανά με τη ζώνη μετάβασης. Η εναλλαγή του πάχους στην περιοχή γύρω από τα σημεία 80-300 m της τομής σχετίζεται με περιοχές όπου οι κάθετες προεκτάσεις υποδεικνύουν ζώνες θραύσεως. Η χαμηλότερη ζώνη με μέση ταχύτητα που ξεπερνά τα 5,5 km/sec αντιστοιχεί στο κρυσταλλικό υπόστρωμα. Το γεωηλεκτρικό προφίλ δεν υποδεικνύει ύπαρξη διαπερατών ζωνών.

Εικ.8.15: Χάρτης γύρω από τις γραμμές ενδιαφέροντος
8.3.2 Όρυγμα 1A26

Κατά μήκος του ορύγματος 1A26 πήραμε δεδομένα σεισμικής διάθλασης αλλά και ηλεκτρικά. Η θέση των γραμμών αλλά και τα μήκη τους δίνονται στον πίνακα 8.3.1. Για να μετατρέψουμε τα γεωφυσικά δεδομένα σε γεωλογικούς ή υδρογεωλογικούς όρους, θεωρούμε ως αναφορά τον πίνακα τιμών που παραθέτουμε (πίνακας 8.3.2).

Εκεί βλέπουμε σε χρωματική κλίμακα τη σχέση ανάμεσα στις ταχύτητες των σεισμικών κυμάτων και τους γεωλογικούς σχηματισμούς. Ο πίνακας 8.3.3 δείχνει σε χρωματική κλίμακα τις τιμές της ηλεκτρικής αντίστασης και τη συσχέτισή τους με γεωλογικούς και υδρογεωλογικούς σχηματισμούς.

Όσον αφορά στις σεισμικές τομές, πρέπει να σημειωθεί ότι σε ορισμένες περιπτώσεις οι ταχύτητες των σεισμικών κυμάτων δεν μπορούν να αναπαραστήσουν τις αντίστοιχες γεωλογικές δομές λόγω των ειδικών συνθηκών που επικρατούν, π.χ. πολύ σκληρή άργιλος μπορεί να έχει ιδιαίτερη μεγαλύτερη ταχύτητα από το στρώμα αποσαρθρωμένου πετρώματος που βρίσκεται από κάτω. Για αυτό το λόγο χρησιμοποιήσαμε και δεδομένα από γεωτρήση για να ελαχιστοποιήσουμε την πιθανότητα σφάλματος.

Σε γενικές γραμμές, μπορούμε να συμπεράνουμε τα εξής από την διαδικασία ερμηνείας των αποτελεσμάτων:

- Ταχύτητες με εύρος 800-2800 m/sec αντιστοιχούν σε εδάφη και ιζηματικά αποθέματα. Σε κάποιες περιπτώσεις, πολύ χαμηλές ταχύτητες (της τάξης των
800-1000 m/sec) αντιστοιχούν σε ανθρωπογενείς προσχώσεις και μπορούν να εντοπισθούν τοπικά, π.χ. μικρές θαμμένες κοιλάδες κτλ.

- Ταχύτητες με εύρος 2000-3500 m/sec αντιστοιχούν σε ιδιαίτερα αποσαρθρωμένο βραχώδες υπόστρωμα. Πρέπει να σημειωθεί ότι σε ορισμένες περιπτώσεις η διάκριση ανάμεσα σε αργίλους και σε υποκείμενα αποσαρθρωμένα πετρώματα δεν ήταν εφικτή και η ερμηνεία έγινε με τη βοήθεια δεδομένων γεωτρήσης.

- Ταχύτητες με εύρος 3000-5000 m/sec αντιστοιχούν σε μεταβατικές ζώνες θρύμματισμένου βραχώδους υποστρώματος και καθαρού στέρεου βράχου. Το ίδιο εύρος ταχύτητας παρατηρείται και σε ζώνες θραύσεως εκρηξιγενών πετρωμάτων μέσα σε κρυσταλλικό υπόστρωμα.

- Ταχύτητες με εύρος 3500-5000 m/sec μπορούν επίσης να αντιστοιχούν και σε κάθετες γεωλογικές ανωμαλίες μεταμορφωμένων πετρωμάτων. Συνήθως αυτές οι αλλαγές σχετίζονται με ζώνες θραύσεως και με το υπάρχον σύστημα ρηγμάτων.

- Ταχύτητες με εύρος 4700-7200 m/sec αντιστοιχούν σε καθαρό, συμπαγές κρυσταλλικό υπόστρωμα γρανόδιοριτή.

Τα εύρη ταχυτήτων που αναφέρθηκαν παρατάνα από δεδομένων γεωτρήσης στην περιοχή έρευνας. Πρέπει να σημειωθεί ότι η αντιστοίχιση των δεδομένων από γεώτρηση στα σεισμικά δεδομένα είναι μια εργασία η οποία απαιτεί ιδιαίτερη προσοχή αφού μπορεί να οδηγήσει εύκολα σε λάθος συμπεράσματα.
Όσον αφορά τώρα τις τιμές από τα δεδομένα ηλεκτρικής αντίστασης σημειώνουμε τα ακόλουθα:

- Αντίσταση με εύρος από 0.5-1.0 Ohm*m αναπαριστά ζώνες υψηλής διαπερατότητας οι οποίες περιέχουν νερό. Τέτοιες ζώνες είναι επιφανειακά εδάφη, ιζηματογενείς αποθέσεις και ρηγματά κυρίως με ανοιχτές οπές.
- Αντίσταση με εύρος 8-30 Ohm*m αναπαριστά ζώνες κορεσμένες ύδατος όπως αποσαρθρωμένο βραχώδες υπόστρωμα. Μπορεί να θεωρηθεί ότι οι ζώνες αυτές συμπεριφέρονται σαν αποθήκες υπόγειου ύδατος με μέση διαπερατότητα.
- Αντίσταση με εύρος 25-150 Ohm*m αναπαριστά ζώνες χαμηλής διαπερατότητας όπως λιθολογικές αλλαγές των μεταμορφικών πετρωμάτων.
- Τέλος, αντίσταση της τάξης των 150 Ohm*m και άνω, αναπαριστά στεγνούς σχηματισμούς, χωρίς νερό, όπως κρυσταλλικό υπόστρωμα και σε μερικές περιπτώσεις λιθολογικές αλλαγές των μεταμορφικών πετρωμάτων, τα οποία συμπεριφέρονται σαν φράγμα του υπόγειου ύδατος.

Πρέπει να σημειωθεί επίσης ότι σε μερικές περιπτώσεις, παρατηρείται από τις τομές ότι περιοχές υψηλής ταχύτητας του συμπαγούς κρυσταλλικού υποστρώματος σχετίζονται με ενδιάμεσες τιμές αντίστασης. Αυτό μπορεί να εξηγηθεί με την παρουσία ζωνών μεταλλευμάτων μέσα στο κρυσταλλικό υπόστρωμα.
Κατά την περίοδο 28/11/2004 – 16/4/2005 έγιναν συλλέχθησαν τα δεδομένα, που περιλαμβάνουν τις εξής γραμμές 1A26_S3, 1A26_S4, 1A26_S5S6, S7a, S7b, S8, S9, S10 και S11. Τα γεώφωνα στις παραπάνω γραμμές τοποθετήθηκαν ανα 3 μέτρα και υπήρχε σεισμική πηγή ανά 6 μέτρα. Μια τέτοια διάταξη εξασφαλίζει ότι η έρευνα θα έχει ικανότητα διερεύνησης που θα ξεπερνά τα 50 μέτρα, βάθος που ήταν ο στόχος της συγκεκριμένης έρευνας. Ο συνολικός αριθμός των καναλιών ήταν 120.
Το πινάκας 8.3.1 παρουσιάζει τις σεισμικές και ηλεκτρικές γραμμές για το δεύτερο ορύγμα. Η σεισμική γραμμή περιλαμβάνει τους μήκους και τις συντμήμες άρχης και τέλους για κάθε μήκος.

<table>
<thead>
<tr>
<th>Σειρά</th>
<th>Ονομασία</th>
<th>Μήκος</th>
<th>Συντμήμενες Αρχής</th>
<th>Συντμήμενες τέλους</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1A26_S3</td>
<td>453m</td>
<td>586411,288</td>
<td>586804,511</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>237092,119</td>
<td>237167,674</td>
</tr>
<tr>
<td>2</td>
<td>1A26_S4</td>
<td>285m</td>
<td>587172,341</td>
<td>587115,834</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2371061,469</td>
<td>237132,2924</td>
</tr>
<tr>
<td>3</td>
<td>1A26_S5S6</td>
<td>861m</td>
<td>586169,685</td>
<td>586697,663</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2370589,166</td>
<td>2371309,307</td>
</tr>
<tr>
<td>4</td>
<td>S7a</td>
<td>357m</td>
<td>586690,124</td>
<td>586388,896</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2371090,622</td>
<td>2371255,722</td>
</tr>
<tr>
<td>5</td>
<td>S7b</td>
<td>945m</td>
<td>586631,594</td>
<td>587568,720</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2371198,906</td>
<td>237120,723</td>
</tr>
<tr>
<td>6</td>
<td>S8</td>
<td>921m</td>
<td>587215,039</td>
<td>586413,955</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2371255,924</td>
<td>2371653,378</td>
</tr>
<tr>
<td>7</td>
<td>S9</td>
<td>561m</td>
<td>586993,651</td>
<td>587175,443</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2371168,476</td>
<td>2371632,598</td>
</tr>
<tr>
<td>8</td>
<td>S10</td>
<td>651m</td>
<td>589887,585</td>
<td>589478,713</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2369745,298</td>
<td>2370157,513</td>
</tr>
<tr>
<td>9</td>
<td>S11</td>
<td>1860m</td>
<td>589480,782</td>
<td>588414,506</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2370119,323</td>
<td>2371640,848</td>
</tr>
</tbody>
</table>

Πινακάς 8.3.1: Οι σεισμικές και ηλεκτρικές γραμμές για το δεύτερο ορύγμα.
Πίνακας 8.3.2: Αντιστοιχία σεισμικών ταχυτήτων με γεωλογικούς σχηματισμούς

Πίνακας 8.3.3: Αντιστοιχία ηλεκτρικής αντίστασης με γεωλογικούς σχηματισμούς
8.3.2.2 Περιγραφή των γραμμών

Η γραμμή 1A26_S3 βρισκόταν κατά μήκος του δρόμου Al Tariq street όπως φαίνεται και από τα διαγράμματα που παραθέτουμε παρακάτω με συνολικό μήκος 453 m. Ο γενικός προσανατολισμός αυτής της γραμμής ήταν από δυσμάς προς ανατολάς με το πρώτο σημείο να βρίσκεται δυτικά. Η γραμμή 1A26_S4 απλωνόταν στην νότιοανατολική πλευρά του ορύγματος, διαστευρώνοντάς το στην τομή 2+800m, με συνολικό μήκος 285 m. Η λήψη δεδομένων σε αυτή τη γραμμή ήταν ιδιαίτερα δύσκολη λόγω της πυκνής κίνησης που επικρατούσε και είχε τεθεί θέμα ασφάλειας, ειδικά στη μέση της γραμμής όπου κόβαμε κεντρικό κόμβο του δρόμου. Η γραμμή έχει γενικό προσανατολισμό από βορρά προς νότο, με το πρώτο σημείο στο νότο. Η γραμμή 1A26_S5S6 τραβήχτηκε στη δυτική όχθη του ορύγματος 1A26, με συνολικό μήκος 861 m. Και εδώ αντιμετωπίσαμε σημαντικά προβλήματα λόγω της κυκλοφοριακής κίνησης.

Τα υψηλά επίπεδα θορύβου αντιμετωπίσαμε από πολλαπλές χτυπήματα (10-15 vertical stacking) Η γραμμή έχει γενικό προσανατολισμό βορρά-νότο με το πρώτο σημείο να βρίσκεται στο νότο. Η γραμμή S7a βρίσκεται στη βόρειοδυτική πλευρά του ορύγματος 1A26, με συνολικό μήκος 357 m. Ιδιαίτερα προβλήματα λόγω κυκλοφοριακής κίνησης αντιμετωπίσαμε στο σημείο που η γραμμή έκοβε κεντρική λεωφόρο. Επιπλέον, ένα μέρος της γραμμής απλωνόταν κατά μήκος του πρανούς του παρακείμενου όρους. Σε αυτά τα σημεία της γραμμής χρησιμοποιήσαμε το σύστημα σφύρα-πλάκα, αντί του πίπποντος βάρους (EWG) με μέσο αριθμό stacking 15-20..
γραμμή έχει γενικό προσανατολισμό νότιοανατολικά προς βόρειοδυτικά με το πρώτο σημείο να βρίσκεται στα νότιοανατολικά.

Η γραμμή S7b απλωνόταν κατά μήκος του ανατολικού μέρους του ορύγματος 1A26, έχοντας συνολικό μήκος 945 m. Και πάλι αντιμετωπίσαμε σημαντικά προβλήματα λόγω της παρεμβολής της γραμμής σε παρακείμενη λεωφόρο. Η γραμμή έχει γενικό προσανατολισμό από βόρειοανατολικά προς δυσμάς.

Η γραμμή S8 βρίσκεται στο βόρειοδυτικό μέρος του ορύγματος 1A26, με συνολικό μήκος 921 m. Και πάλι αντιμετωπίσαμε σημαντικά προβλήματα με την κίνηση του δρόμου αλλά και με το γεγονός ότι μέρος της γραμμής βρισκόταν στο πρανές του παρακείμενου όρους. Η γραμμή έχει γενικό προσανατολισμό από νότιοανατολικά προς βόρειοδυτικά, ξεκινώντας από νότιοανατολικά. Η γραμμή S9 απλώνεται στο βόρειο μέρος του ορύγματος 1A26 και έχει συνολικό μήκος 561 m. Και εδώ οι δυσχερείς συνθήκες λήψης δεδομένων αλλά και οι απαραίτητες αδείες από τις αρχές έκαναν πολύ δύσκολη τη συλλογή δεδομένων. Η γραμμή έχει προσανατολισμό από βορρά προς νότο, με το πρώτο σημείο να βρίσκεται στο βορά.

Η γραμμή S10 απλώνεται κατά μήκος του δρόμου Fayrouzi με συνολικό μήκος 651 m. Το τέλος αυτής της γραμμής διασχίζει την αρχή της γραμμής S11. Σημαντικές δυσκολίες παρουσιάστηκαν από την ύπαρξη μη χαρτογραφημένων αγωγών και καλωδίων αλλά και από τον παρακείμενο δρόμο που δρούσε σαν πηγή θορύβου. Η γραμμή έχει προσανατολισμό από νότιοανατολικά προς βόρειοδυτικά, με το πρώτο σημείο στα νότιοανατολικά.
Τέλος, η γραμμή S11 εκτείνεται κατά μήκος του δρόμου Hajj με συνολικό μήκος 1860 m. Στην αρχή το προτεινόμενο μήκος ήταν 1800 m, αλλά κατά τη διάρκεια των μετρήσεων μια αλλαγή στις αρχικές πρώτες αφίξεις μας οδήγησε να επεκτείνουμε τη γραμμή ώστε να φθάσει τα 50 m σε διακριτική ικανότητα. Η γραμμή έχει προσανατολισμό από νότιοανατολικά προς βόρειοδυτικά, με το πρώτο σημείο στα νότιοανατολικά.

8.3.2.3 Γραμμή 1A26_S3

Τα αποτελέσματα από τη διάθλαση περιορίζονται στα πρώτα 50 μέτρα, όπου παρατηρούμε τρεις σημαντικές ζώνες. Η πρώτη εκτείνεται κατά το μεγαλύτερο μήκος της γραμμής αλλά απουσιάζει από τα σημεία ανάμεσα στο 160 και 190 m της τομής και στα τελευταία 90 μέτρα της τομής. Οι ταχύτητες εκεί κυμαίνονται στα 1,1-3,0 km/sec και το μέσο πάχος είναι της τάξης των 6-10 m. Αυτή η ζώνη παρουσιάζει γεωφυσικές ιδιότητες που μοιάζουν με εδαφικούς σχηματισμούς που υπάρχουν σε άλλες γραμμές στην περιοχή.

Η ζώνη που βρίσκεται κάτω από αυτή, με μέσο πάχος 6-8 m και ταχύτητες 2,8-3,8 km/sec σχετίζεται ξανά με τη ζώνη μετάβασης ανάμεσα στο υψηλής ταχύτητας κρυσταλλικό υπόστρωμα και τους υπερκείμενους χαμηλής ταχύτητας σχηματισμούς. Η εναλλαγή του πάχους της ζώνης είναι ορατή στις περιοχές 0-50m, 120-190m, 220-310m, όπου οι κάθετες ζώνες σημειώνουν τις αντίστοιχες ζώνες θραύσεως. Η μέση
αυτή ζώνη βρίσκεται πάνω από τη βαθύτερη ζώνη που δείχνει ότι είναι και το χαμηλότερο σημείο της γραμμής με μέση ταχύτητα 3,8-5,5 km/sec που αντιστοιχεί στο κρυσταλλικό υπόστρωμα.

Ιδιαίτερη προσοχή πρέπει να δωθεί σε δύο περιοχές, στους σταθμούς 60-120 και 180-230 όπου παρουσιάζονται δύο λεπτές ζώνες ελαφρά μικρότερης ταχύτητας και μικρότερης αντίστασης και οι οποίες κατά πάσα πιθανότητα αντιστοιχούν σε δύο στασίματα γεμισμένα με νερό. Το γεωηλεκτρικό προφίλ είναι κάπως σύνθετο αλλά υποδεικνύει διάφορες περιοχές που σχετίζονται με ζώνες θραύσεως, οι οποίες είναι ενδεικτικές της παρουσίας νερού.

Εικ.8.16: Χάρτης των γραμμών
8.3.2.4 Γραμμή 1A26_S4

Τα αποτελέσματα της διάθλασης περιορίζονται στα πρώτα 60 μέτρα όπου και παρατηρούμε τρείς σημαντικές ζώνες. Η πρώτη απλώνεται κατά μήκος της γραμμής με εύρος ταχυτήτων 1,6-3,0 km/sec και πάχος που εναλάσσεται από 10-12 meters φθάνοντας το μέγιστο πάχος των 14-15 m σε μήκος 130 m από την αρχή της γραμμής. Η ζώνη από κάτω με μέσο πάχος 10-12 m και εύρος ταχυτήτων 2.8-3.8 km/sec σχετίζεται ξανά με τη ζώνη μετάβασης. Στις θέσεις από 15 μέχρι 40 μέτρα, 85-140 και 220-255 μέτρα η ζώνη εκτείνεται σε μεγαλύτερο βάθος και σχετίζεται με τις ζώνες θραύσεως που χαρακτηρίζονται από χαμηλότερες ταχύτητες. Η τελευταία ζώνη με ταχύτητες που εξερευνούν τα 5,5 km/sec αντιστοιχεί στο κρυσταλλικό υπόστρωμα.

Πρέπει να σημειωθεί ότι σε αυτή τη γραμμή εντοπίζονται τρείς σημαντικές ζώνες θραύσεως. Η μία βρίσκεται στην αρχή της γραμμής, με πλάτος περίπου 30m, η άλλη ανάμεσα στην περιοχή 80 και 130 m της τομής και η τρίτη στην περιοχή ανάμεσα στα 220 και 250m της τομής. Η δεύτερη είναι πλησίον της θέσης που βρίσκεται το όρυγμα.
8.3.2.5 Γραμμή 1A26_S5S6

Σε αυτή τη γραμμή παρατηρούμε τρεις βασικές ζώνες και τα αποτελέσματα της ερμηνείας επιβεβαιώνονται και από τη γεώτρηση 1A26_BH1 που έγινε 38m πέραν της γραμμής. Η πρώτη ζώνη εμφανίζεται στα περισσότερα σημεία της γραμμής εκτός από τα τελευταία 60 μέτρα της τομής και έχει έμπρος ταχυτήτων 1,1-3,0 km/sec και μέσο πάχος 10-12 m. Η ζώνη κάτω από αυτήν έχει μέσο πάχος 12-15m και εύρος ταχυτήτων 3,0-5 km/sec και σχετίζεται ξανά με τη ζώνη μετάβασης.

Η εναλλαγή του πάχους αυτής της ζώνης είναι εμφανής σε τρεις περιοχές όπου υπάρχουν εμφανώς ζώνες θραύσεως. Η τελευταία ζώνη με ταχύτητες που κυμαίνονται από 3,5-5,5 km/sec αντιστοιχεί στο κρυσταλλικό υπόστρωμα. Σέριση σημαντικές ζώνες θραύσεως μπορούν να εντοπισθούν κατά μήκος αυτής της γραμμής. Η μία είναι κοντά στην αρχή της γραμμής, ανάμεσα στους σταθμούς 60 και 130, η επόμενη ανάμεσα στη θέση 420 και 490m της τομής, η τρίτη στην περιοχή 650 και 700 m της τομής και η τελευταία στους σταθμούς 780 και 830. Πρέπει να σημειωθεί ότι η πρώτη είναι κοντά στο σημείο που βρίσκεται το όρυγμα και απεικονίζει την κύρια ζώνη θραύσεως που είναι υπο-παράλληλη στον άξονα του ορύγματος.

Επιπλέον, η παρουσία ζώνης θραύσεως ανάμεσα στους σταθμούς 420 και 490 δείχνει μια περιοχή με μικρές ρηγματώσεις και ανοιχτά κενά γεμισμένα με νερό, συμπέρασμα το οποίο εξάγεται και από τα γεωηλεκτρικά δεδομένα, και το οποίο φαίνεται από μικρές αλλαγές στην ταχύτητα του σεισμικού κύματος, την τάξη των μερικών εκατοντάδων m/sec. Το γεωηλεκτρικό προφίλ είναι κάπως σύνθετο αλλά
δείχνει την παρουσία πολλών περιοχών, οι οποίες αν συσχετισθούν με τις ζώνες θραύσεως, μπορούν να είναι ζώνες νερού.
8.3.2.6 Γραμμή S7a

Υπάρχουν τρεις ζώνες οι οποίες επιβεβαιώνονται και από τη γεώτρηση 1A26_BH7 που έγινε 20m πιο πέρα από τη γραμμή. Η πρώτη ζώνη απλώνεται κατά μήκος όλης της γραμμής, με εύρος ταχυτήτων 1,6-3,0 km/sec και πάχος που κυμαίνεται από 10-11 στα δυτικά, φθανοντας το μέγιστο πάχος των 15-17 m στα 220 m από την αρχή και το ελάχιστο των 1-2 m στο τέλος της γραμμής. Η ζώνη από κάτω έχει μέσο πάχος 14-15 m, εύρος ταχυτήτων 2.8-3.8 km/sec και σχετίζεται ξανά με τη ζώνη μετάβασης.

Στην περιοχή από τα 50 ως τα 160m αυτής, η ζώνη φαίνεται να πηγαίνει βαθύτερα και παρουσιάζει το ίδιο φαινόμενο και σε μήκος 230-260m. Η τελευταία ζώνη, με μέση ταχύτητα που ξεπερνά τα 5,5 km/sec αντιστοιχεί στο κρυσταλλικό υπόστρωμα. Πρέπει να σημειωθεί ότι δύο μεγάλες ζώνες θραύσεως εντοπίζονται σε αυτή τη γραμμή. Η πρώτη βρίσκεται κοντά στην αρχή της γραμμής με πλάτος περίπου 80m και η άλλη σαφώς μικρότερη στα 240 m της τομής. Αυτή η δεύτερη πιθανώς σχετίζεται με το πρατήρι του παρακείμενου λόφου. Το γεωηλεκτρικό προφίλ, δείχνει την παρουσία διαπερατών ζωνών οι οποίες θα μπορούσαν να σχετίζονται με τις ζώνες θραύσεως.
8.3.2.7 Γραμμή S7b

Τα αποτελέσματα της διάθλασης περιορίζονται στα πρώτα 50-55 μέτρα όπου και παρατηρούμε τρείς ζώνες. Στη γραμμή αυτή κάναμε και τη γεώτρηση 1A26_BH3 3m μακριά από το τέλος της γραμμής. Η πρώτη ζώνη εκτείνεται κατά μήκος της γραμμής, με εύρος ταχυτήτων που κυμαίνεται στα 1,6-3,0 km/sec και μέσο πάχος 8-10 μέτρα και τοπικά μέχρι και 14-16 μ. Η ζώνη που βρίσκεται από κάτω, έχει μέσο πάχος 8-10 m και εύρος ταχυτήτων 2,8-3,8 km/sec και σχετίζεται δεν με τη ζώνη μετάβασης. Τρείς περιοχές με χαμηλότερη ταχύτητα ζώνες και οι οποίες έχουν κατεύθυνση κατακόρυφα προς τα κάτω, αντιστοιχούν σε ζώνες θραύσεως (270-350m, 510-550m, και 660-710m).

Αυτές οι ζώνες θραύσεως αναπαριστώνται με ταχύτητες υψηλότερες από τις επικρατούσες τιμές. Η πιο χαμηλή ζώνη με ταχύτητες που ξεπερνούν τα 5,5 km/sec αντιστοιχεί στο κρυσταλλικό υπόστρωμα. Το γεωηλεκτρικό προφίλ δεν είναι συνεχής λόγω των περιορισμών που είχαμε από την τοπογραφία της γραμμής (περνά μέσα από μια από τις μεγαλύτερες λεωφόρους της πόλης) και είναι και αρκετά σύνθετο αλλά υποδεικνύει πολλές περιοχές που σχετίζονται με ζώνες θραύσεως, οι οποίες αποτελούν ένδειξη για την παρουσία ύδατος.
8.3.2.8 Γραμμή S8

Στη γραμμή S8 τα δεδομένα από τη διάθλαση περιορίζονται στα 60-70 και παρατηρούμε, όπως και σε όλες τις προηγούμενες γραμμές, τρεις ζώνες. Η πρώτη πάλι επεκτείνεται κατά μήκος όλης της γραμμής, με εύρος ταχυτήτων 1,6-3,0 km/sec και πάχος που εναλάσσεται από 6-7 μέτρα στα ανατολικά, φθάνοντας το μέγιστο πάχος των 10-12 m σε μήκος 560 m από την αρχή και το ελάχιστο των 1-2 m στο τέλος της γραμμής. Ακριβώς από κάτω βρίσκεται η ζώνη με μέσο πάχος 14-15 m και εύρος ταχυτήτων 3,0-5 km/sec που σχετίζεται ξανά με τη ζώνη μετάβασης.

Το πάχος αλλά και η διείσδυση σε βαθύτερο ορίζοντα σε δύο περιοχές, στα σημεία 60-180 m και 480-580 m της τομής, δείχνουν να σχετίζονται ασθενώς η μέσες ζώνες θραύσεως. Η τελευταία ζώνη, με μέσες ταχύτητες που ξεπερνούν τα 5,5 km/sec αντιστοιχεί στο κρυσταλλικό υπόστρωμα. Πρέπει να σημειωθεί ότι δύο σημαντικές ζώνες θραύσεως παρατηρούνται κατά μήκος αυτής της γραμμής. Η πρώτη είναι κοντά στην αρχή ανάμεσα στα σημεία 80 και 180 m της τομής και έχει πλάτος περίπου 80m και δείχνει πολύ ασθενώς θρυμματισμένη και η άλλη βρίσκεται στα σημεία 470-580 m η οποία σχετίζεται με την αρχή του πρανούς του παρακείμενου λόφου. Το γεωηλεκτρικό προφίλ, υποδεικνύει την παρουσία πιθανών διαπερατών περιοχών γύρω από τις ζώνες θραύσεως και σχετίζεται απόλυτα με τα σεισμικά δεδομένα.
8.3.2.9 Γραμμή S9

Η γραμμή S9 δείχνει και αυτή τρεις σημαντικές ζώνες. Η πρώτη απλώνεται κατά μήκος όλης της γραμμής, με εύρος ταχυτήτων 1,6-3,0 km/sec και πάχος που εναλλάσσεται από τα 7-8 μέτρα στα νότια, φθάνει το μέγιστο πάχος των 12-14 μ στη μέση και το ελάχιστο των 1-2 μ στο τέλος της γραμμής. Η ζώνη από κάτω με μέσο πάχος τα 14-15 μ και εύρος ταχυτήτων τα 3,0-5 km/sec σχετίζεται ειδικά με τη ζώνη μετάβασης. Η εναλλαγή του πάχους στην συγκεκριμένη περιοχή στη σημεία (180,240)-(360,480) μ της τομής δείχνει να σχετίζεται με το ίδιο γεγονός που συζητήσαμε και στις παραπάνω γραμμές. Στα τελευταία 100 μ της γραμμής αυτής της ζώνης το πάχος είναι περίπου 6-8 μ.

Η χαμηλότερη ζώνη έχει ταχύτητες που εξερθούν τα 5,5 km/sec και αντιστοιχεί στο κρυσταλλικό υπόστρωμα. Πρέπει να σημειωθεί ότι παρατηρείται κατά μήκος αυτής της γραμμής μια χαμηλή ταχύτητας, ανάμεσα στα 220 και 480 μ της τομής, η οποία σχετίζεται με δύο ζώνες θραύσεως, και οι οποίες έχουν σχέση με το πρανές του παρακείμενου λόφου. Το γεωηλεκτρικό προφίλ, δείχνει την παρουσία διαπερατών ζωνών γύρω από τις ζώνες θραύσεως.
8.3.2.10 Γραμμή S10

Τα δεδομένα από τη διάθλαση περιορίζονται στα 55 όπου και διακρίνουμε τρείς ζώνες. Η πρώτη εκτείνεται στο μήκος όλης της γραμμής με εύρος ταχυτήτων 1,5-2,5 km/sec και μέσο πάχος 8-9 m το οποίο φθάνει στο μέγιστο στις περιοχές 80-150m και 580m μέχρι το τέλος της γραμμής. Ο ίδιος σχηματισμός δείχνει ελάχιστο πάχος 4-5 m στις περιοχές 240-260m και 520-550 m της γραμμής. Αυτός ο σχηματισμός δείχνει την παρουσία εδαφικών σχηματισμών στο πάνω μέρος. Η ζώνη από κάτω με μέσο πάχος 5-6 m όπου τοπικά αυξάνεται σε 10-12 m, χαρακτηρίζεται από ταχύτητες της τάξης των 2,5-4,5 km/sec και σχετίζεται με τη ζώνη μετάβασης. Κάτω από τη ζώνη μετάβασης, η χαμηλή ζώνη με ταχύτητες που ξεπερνούν τα 5,0 km/sec αντιστοιχεί στο κρυσταλλικό υπόστρωμα. Πρέπει να σημειωθεί ότι κατά μήκος αυτής της γραμμής εντοπίσθηκαν δύο σημαντικές ζώνες θραύσεως. Η μία βρίσκεται στην περιοχή ανάμεσα στα 430-460 m της γραμμής και με πλάτος περίπου 30m και η άλλη σαφώς μικρότερη στα 560-580m της τομής. Το γεωηλεκτρικό προφίλ δείχνει την παρουσία διάφορων διαπερατών ζωνών.
Εικ.8.16: Χάρτης της περιοχής
8.3.2.11 Γραμμή S11

Τα δεδομένα της διάθλασης περιορίζονται στα 70 μέτρα, όπου παρατηρούμε τρεις σημαντικές ζώνες. Η πρώτη εμφανίζεται σε τρία συγκεκριμένα σημεία της γραμμής, με εύρος ταχυτήτων 2-3,5 km/sec και πάχος που κυμάνεται από 15-18 m στο νότιο μέρος και μέχρι 20 – 25 m στο βόρειο μέρος. Κάτω από αυτό το σχηματισμό βρίσκεται η ενδιάμεση ζώνη με εναλασσόμενο πάχος και εύρος ταχυτήτων 3,5-5 km/sec και η οποία συνδέεται με τη ζώνη μετάβασης. Τέλος, η χαμηλότερη ζώνη με μέσες ταχύτητες που ξεπερνούν τα 5,5 km/sec αντιστοιχεί στο κρυσταλλικό υπόστρωμα.

Αυτός ο τελευταίος σχηματισμός ανεβαίνει σε δύο περιοχές σχεδόν μέχρι την επιφάνεια. Σύμφωνα με αυτό η πάνω ενδιάμεση ζώνη αναπαριστά την αποσαρθρωμένη ζώνη του κρυσταλλικού υποστρώματος. Ρίχνοντας μια προσεκτική ματιά στη μορφολογία αυτής της συγκεκριμένης ζώνης παρατηρούμε τρεις κάθετες περιοχές με χαμηλότερη ταχύτητα. Αυτές συνδέονται με τις ζώνες θραύσεως που έχουν παρατηρηθεί στην ευρύτερη περιοχή. Οι γεωηλεκτρικές μετρήσεις έδειξαν δύο περιοχές υψηλής αντίστασης που σχετίζονται με την ανύψωση του κρυσταλλικού υποστρώματος στην επιφάνεια. Επίσης, πάνω από τις περιοχές με χαμηλές σεισμικές ταχύτητες, οι τιμές της αντίστασης είναι χαμηλές, γεγονός που υποδεικνύει το μέσο υπεδαφικό επίπεδο του ύδατος.
Εικ.8.17: Χάρτης της γραμμής και της γύρω περιοχής
8.4 Συμπεράσματα

Στο σημείο αυτό ανακεφαλαιώνουμε τα συμπεράσματα με βάση τα δεδομένα που συλλέξαμε και παρουσιάζουμε μια εύγλωτη σύνοψη αυτών έχοντας οδηγό τα σημεία κλειδί που αναλύσαμε στις προηγούμενες ενότητες. Ξεκινάμε από το όρυγμα 1Β10 όπου παρατηρούμε τα εξής γεωφυσικά χαρακτηριστικά:
Τρείς κύριες περιοχές χαρακτηρίζονται από χαμηλές ταχύτητες που αντιστοιχούν σε ζώνες θραύσεως. Αυτές οι ζώνες διασχίζουν το όρυγμα στις θέσεις 2+200, 2+500 και περίπου 2+750.

Δύο σημαντικές ζώνες θραύσεως εντοπίζονται κατά μήκος της γραμμής S4a. Η μία στην αρχή της γραμμής, νοτίως του δρόμου King Abdul Aziz, και η άλλη στους πρόποδες του λόφου. Η πρώτη είναι σαφώς ασθενέστερη με βάση τις σεισμικές ταχύτητες που δίνει. Επιπλέον, οι εδαφικοί σχηματισμοί καλύπτουν το πρώτο μισό της γραμμής και η ζώνη έχει μέσο πάχος 8-10 m.

Μια μεγάλη σημαντική ζώνη θραύσεως εντοπίζεται κοντά στην αρχή της γραμμής S4b. Η γραμμή χαρακτηρίζεται από την απουσία εδαφικών σχηματισμών στην επιφάνεια και η ζώνη έχει πάχος που κυμαίνεται στα 5-7 m.

Οι γραμμές S1, S2 δείχνουν ότι υπάρχουν δύο σημαντικές ζώνες θραύσης κυρίως στη γραμμή S1, οι οποίες όμως δεν απαιτούν επιπλέον μελέτη μια και βρίσκονται έξω από την περιοχή του ορύγματος.

Αντίστοιχα μπορούμε να συνοψίσουμε και για τα υπεδαφικά γεωφυσικά χαρακτηριστικά του ορύγματος 1A26 στα εξής:

- Έξι κύριες περιοχές χαρακτηρίζονται από χαμηλές ταχύτητες οι οποίες υποδεικνύουν παρουσία ζώνων θραύσεως. Τρείς ζώνες διασχίζουν το
όρυγμα στα σημεία 1+700, 1+900, 2+20, 2+550, 2+800 και περίπου στα 2+980 και είναι εμφανή στις αντίστοιχες σεισμικές γραμμές.

• Δύο σημαντικές ζώνες θραύσεως εντοπίζονται κατά μήκος της γραμμής S7a. Η μία στους πρόποδες του λόφου και η άλλη κοντά στο όρυγμα. Αυτή που βρίσκεται κοντά στο όρυγμα είναι εμφανώς ασθενέστερη σύμφωνα με τις τιμές των σεισμικών ταχυτήτων. Επιπλέον, οι εδαφικοί σχηματισμοί καλύπτουν το μεγαλύτερο μέρος της γραμμής και κάτω από την αποσαρθρωμένη ζώνη έχει ένα μέσο πάχος των 8-10 m.

• Ομοίως με τη γραμμή S7a εντοπίζονται δύο κύριες ζώνες θραύσης κατά μήκος της γραμμής S8. Η μια κοντά στη γραμμή βορείως του άξονα του ορύγματος και η μια που σχετίζεται σαφώς με τους πρόποδες του λόφου, όπου σηκώνεται το τραχύ ανάγλυφο. Τα δύο τρίτα της γραμμής δείχνουν σχηματισμούς με γεωφυσικά χαρακτηριστικά όμοια με εδαφικούς σχηματισμούς. Η αποσαρθρωμένη ζώνη κατά μήκος αυτής της γραμμής του κρυσταλλικού υποστρώματος έχει πάχος περίπου 6-8m.

• Η γραμμή S9 χαρακτηρίζεται από την παρουσία δύο ζώνες θραύσης. Η πρώτη εντοπίζεται στο σημείο που η γραμμή διασχίζει τον άξονα του ορύγματος και η άλλη βόρεια προς τους λόφους. Κάτω από τους επιφανειακούς εδαφικούς σχηματισμούς βρίσκεται η αποσαρθρωμένη ζώνη με πάχος περίπου 5-6 m ενώ πάνω από τις ζώνες θραύσεως δείχνει παχύτερη φθάνοντας τοπικά και πάχη της τάξης των 10-12m.

• Τρεις ζώνες θραύσης εντοπίζονται κατά μήκος της γραμμής S10. Η μία είναι στη μέση, και πιο ασθενής από τις υπόλοιπες σύμφωνα με την κατανομή των
σεισμικών ταχυτήτων. Η γραμμή αυτή καλύπτεται σε σχεδόν όλο το μήκος της από εδαφικούς σχηματισμούς πάχους 8-10 m. Αυτοί οι σχηματισμοί υπέρκεινται της αποσαρθρωμένης ζώνης η οποία παρουσιάζει πάχος 6-8 m.

- Η γραμμή S11 καλύπτεται για 10-15 μέτρα από σχηματισμούς, που σύμφωνα με τα χαρακτηριστικά χαρακτηριστικά, μπορούν να χαρακτηρισθούν σαν εδαφικούς σχηματισμούς. Η αποσαρθρωμένη ζώνη του κρυσταλλικού υποστρώματος είναι περίπου 8-10 m και εντοπίζουμε τρεις ζώνες θραύσης στο βόρειο μέρος της γραμμής.

- Οι γραμμές 1A26_S5S6 και S7b κατά μήκος του άξονα του ορύγματος δείχνουν διάφορες ασθενείς ζώνες που σχετίζονται με ζώνες θραύσεως. Εξαιτίας της τοποθεσίας των γραμμών δεν είναι δυνατό να εντοπίσουμε αν αυτές οι ζώνες είναι κάθετες στον άξονα του ορύγματος ή μέρος μιας μεγαλύτερης ζώνης παράλληλης στο όρυγμα, ιδίως κατά μήκος της γραμμής 1A26_S5S6.

8.5 Υπολογισμός λόγου Poisson και μέτρου ελαστικότητας Young

Υπολογισμός λόγου Poisson

Για να πάρουμε μια εκτίμηση του λόγου Poisson και μετέπειτα του μέτρου Young από τους υπολογιζόμενους χρόνους της διάθλασης, πρέπει να συλλέξουμε κάποια επιτρέπουν δεδομένα και να τα χρησιμοποιήσουμε ανάλογα. Το πρώτο βήμα είναι να συλλέξουμε πληροφορίες σχετικά με τις πυκνότητες των υλικών στην περιοχή που μελετούμε. Τα δεδομένα που έχουμε συγκεντρώσει από τις γεωτρήσεις μας δείχνουν ότι οι τιμές της πυκνότητας κυμαίνονται από 2.3 - 2.83 gr/cm³ και αντιστοιχούν στις
αντίστοιχες ιδιότητες των υλικών (πιο πυκνό υλικό, μεγαλύτερες ταχύτητες). Χρησιμοποιώντας αυτή την πληροφορία, το επόμενο βήμα είναι ο υπολογισμός του λόγου Poisson. Χρησιμοποιώντας τις μετρήσεις downhole (DS) μπορούμε να κάνουμε μια εκτίμηση για τις ταχύτητες Vs και τον λόγο Vp/ Vs. Επίσης, από τα γεωτεχνικά δεδομένα των γεωτρήσεων υπάρχει μια εναλλακτική συσχέτιση του λόγου Poisson με τις τιμές των –P κυμάτων από τις τομές της σεισμικής τομογραφίας.

Έχοντας δύο διαφορετικές εκτιμήσεις του λόγου Poisson τα αποτελέσματα μπορούν να συγκριθούν, να συσχετισθούν και να ελεχθούν ποιοτικά. Ο λόγος Poisson που υπολογίσθηκε κυμάνεται από 0.18-0.32. Με βάση και τις ερμηνείες από τις τομές και τη σχετική θέση των γεωτρήσεων στις σεισμικές τομές, μπορούμε να συσχετίσουμε τις τιμές της πυκνότητας και του λόγου Poisson σε κάθε μια από τις αντιστοιχίες των τιμών της τομής.

\[
\alpha = \left(\frac{V_s}{V_p}\right)^2 \quad (8.4)
\]

\[
\nu = \frac{1-2\alpha}{2-2\alpha} \quad (8.5)
\]

Υπολογισμός του μέτρου Young

Ο υπολογισμός του μέτρου ελαστικότητας Young από τους υπολογισθέντες χρόνους της τομογραφίας διάθλασης είναι μια επέκταση της προηγούμενης διαδικασίας. Η εκτίμηση των πυκνοτήτων των υλικών όπως αυτή εξάχθηκε από τα δεδομένα των
γεωτρήσεων θα χρησιμοποιηθεί και σε αυτόν τον υπολογισμό. Χρησιμοποιούμε ξανά τις βασικές εξισώσεις:

\[V_p = \sqrt{\frac{\lambda + 2\mu}{\rho}} \quad (8.6) \]

\[V_s = \sqrt{\frac{\mu}{\rho}} \quad (8.7) \]

\[E = \frac{\rho V_s^2 (3V_p^2 - 4V_s^2)}{V_p^2 - V_s^2} = \frac{\rho V_p^2 (1 - 2\nu)(1 + \nu)}{1 - \nu} \quad (8.8) \]

όπου \(V_p \) ταχύτητα των -P κυμάτων, \(V_s \) ταχύτητα των -S κυμάτων, \(\rho \) η πυκνότητα, \(\lambda \) και \(\mu \) οι σταθερές του Lame ν ο λόγος Poisson α ο λόγος \(\frac{V_s}{V_p} \) και \(E \) το μέτρο ελαστικότητας Young. Χρησιμοποιώντας τις παραπάνω εξισώσεις και επιλύοντας για τις άγνωστες μεταβλητές μπορούμε να υπολογίσουμε το λόγο \(\frac{V_p}{V_s} \) και κατά αντίστοιχα το μέτρο Young για κάθε μέρος της τομής. Παρακάτω παραθέτουμε το διάγραμμα ροής υπολογισμού του μέτρου ελαστικότητας.
Διάγραμμα ροής για το μέτρο ελαστικότητας

Εικ.8.18: Διάγραμμα ροής υπολογισμού μέτρου ελαστικότητας.
Επίλογος - Ανακεφαλαίωση

Στη παρούσα διδακτορική διατριβή εξετάσαμε τις μεθόδους που χρησιμοποιούνται στη σεισμική τομογραφία και εστιάσαμε κυρίως στη χρήση γεωμετρίας Finsler για την βελτίωση των αλγορίθμων σε προβλήματα τριών διαστάσεων. Χάρη στους χώρους Finsler εξερεύναμε βασικά προβλήματα που αντιμετώπιζαν οι αλγόριθμοι ιχνηλάτησης ακτινών (ray-tracing) και μειώσαμε τις επιδράσεις των εντόνων αντιθέσεων της ταχύτητας των σεισμικών κυμάτων. Συγκεκριμένα, σημειώσαμε στην ιδέα ότι κάθε μοναδιαία σφαίρα ενός ισοτροπικού μέσου σε εφαπτόμενο χώρο, που δημιουργείται από ένα σημείο που ανήκει στο μέτωπο κύματος, μπορεί να επεκταθεί σε ένα ελλειψοειδές σε ανισοτροπικό μέσο και ότι τελικά αυτό το ελλειψοειδές μπορεί να χαρακτηρίζει το σεισμικό κύμα. Η διαπίστωση αυτή γενικεύει τις εξισώσεις ray-tracing στη βάση μιας ολικής δέσμης στη διαφορική γεωμετρία του Finsler.

Διερεύνησαμε και καταγράψαμε ποιοτικά τα προβλήματα και τα μειονεκτήματα των αλγορίθμων τρισδιάστατης σεισμικής τομογραφίας διάθλασης με ιδιαίτερη έμφαση στην εφαρμογή αυτών σε μικρά βάθη και στην συμπεριφορά τους σε έντονες αντιθέσεις ταχύτητας των σεισμικών κυμάτων. Εφαρμόσαμε σύστημα ποιοτικού ελέγχου των δεδομένων με βάση πιθανοθεωρητικές προσεγγίσεις και στατιστικές μεθόδους, στηριζόμενοι στην Μπεϋσιανή προσέγγιση, για να εκτιμήσουμε την ποιότητα των δεδομένων. Αναλύσαμε τη σημασία του αρχικού μοντέλου ταχυτήτων και σε ποιό βαθμό αυτό επηρεάζει τα τελικά αποτελέσματα, διενεργώντας πλήθος πειραμάτων με συνθετικά δεδομένα και διάφορα αρχικά μοντέλα ταχυτήτων. Υλοποιήθηκαν τρεις νέοι αλγόριθμοι σε γλώσσα Matlab και Fortran για την αυτόματη
εισαγωγή ανωμαλίας σε συνθετικά δεδομένα ενώ εκτιμήθηκε το μέγεθος επιρροής του αρχικού μοντέλου ταχυτήτων στα τελικά αποτελέσματα. Ελέγξαμε επίσης τη σημασία των ελεύθερων μεταβλητών και του μεταβλητού βάρους στην κανονικοποιημένη αντιστροφή.

Τέλος, εφαρμόσαμε τους αλγορίθμους σε σεισμικά δεδομένα που συγκεντρώσαμε από επιτόπια έρευνα στη Σαουδική Αραβία. Σκοπός της έρευνας ήταν η υπεδαφική χαρτογράφηση της περιοχής αλλά και των αρχαίων ορυγμάτων του αποχετευτικού συστήματος της Μέκκα, ώστε αυτά να σταθεροποιηθούν. Η χαρτογράφηση περιέλαβε πλήρη απεικόνιση σε τρεις διαστάσεις πάνω από τα δύο αρχαία ορυγμάτα, με δεκαοκτώ συνολικά σεισμικές γραμμές. Η περιοχή μελέτης κάλυψε μια έκταση συνολικού μήκους 13.972 μέτρων, μέσα σε αστικό περιβάλλον, με ιδιαίτερα δυσχερείς συνθήκες ύψης δεδομένων και πολύ υψηλά όρια θορύβου. Οι δύο σήραγγες που μας ενδιέφεραν βρίσκονταν στην περιοχή Wadi Ibrahim, της Μέκκας.

Στα τρία πρώτα κεφάλαια κάνουμε μία εισαγωγή στη σεισμική τομογραφία αλλά και στις μεθόδους της. Γίνεται αναφορά στα είδη και τον τρόπο με τον οποίο εξελίχθηκε στο χρόνο η σεισμική τομογραφία και ιδιαίτερα αυτή της διάθλασης, αναλύεται η μέθοδος της τομογραφίας ενώ δίνονται και οι βασικές αρχές επιλογής κατάλληλου μοντέλου ταχυτήτων. Τέλος ασχολούμαστε με την κατασκευή και την παραμετροποίηση του μοντέλου, παρουσιάζοντας τον τρόπο με τον οποίο το φυσικό φαινόμενο διατυπώνεται στον μαθηματικό φορμαλισμό και πώς αυτό το πρόβλημα μετατρέπεται σε αλγόριθμο.
Στο τέταρτο κεφάλαιο περιγράφεται το ευθύ πρόβλημα και δίνεται μια αναλυτική παράθεση των δυο σημαντικότερων μεθόδων, αυτής της κυματομορφής και της μεθόδου eikonal. Είναι το κεφάλαιο στο οποίο χρησιμοποιούμε τις καμπυλότητες Finsler στις εξισώσεις ray-tracing. Η νέα αυτή προσέγγιση στο χώρο του ray-tracing, μας δίνει τα εργαλεία για γρηγορότερους και πιο αποτελεσματικούς αλγορίθμους, οι οποίοι δουλεύουν τόσο σε ισοτροπικούς και σε ανισοτροπικούς χώρους.

Στο πέμπτο και το έκτο κεφάλαιο ασχολούμαστε με το αντίστροφο πρόβλημα. Παρουσιάζονται οι κατηγορίες αντίστροφων προβλημάτων, οι τρόποι αντίστροφης, με τα αντίστοιχα πλεονεκτήματα και μειονεκτήματα που έχει ο καθένας αλλά και οι στόχοι που βρίσκονται πίσω από τη διαδικασία της αντίστροφης ενώ ασχολούμαστε με την αναλυτική παρουσίαση των αβεβαιοτήτων και της διακινδύνευσης στα προβλήματα σεισμικής δρομοχρονικής τομογραφίας.

Στο έβδομο κεφάλαιο γίνεται μια εισαγωγή στα δίκτυα Kohonen και στη χρησιμότητά τους στην αποτίμηση των τομογραφικών δεδομένων μας χρησιμοποιώντας τους αυτορυθμιζόμενους χάρτες (SOM).

Στο τελευταίο κεφάλαιο, το όγδοο, παρουσιάζεται με λεπτομέρεια η τομογραφική διερεύνηση της περιοχής ενδιαφέροντος και η παράθεση της ερμηνείας των αποτελεσμάτων της τομογραφίας. Επίσης, αυτά συγκρίνονται με τα αποτελέσματα από τις γεωτρήσεις που έγιναν στην περιοχή αλλά και τις ηλεκτρικές μετρήσεις. Ο σκοπός της επιτάχυνσης αυτής έρευνας ήταν να προσδιορίσει η υπεδαφική δομή στην περιοχή γύρω από τα ορύγματα αλλά και να βρεθεί η ανύψωση της κορεσμένης
δομής μέσα στο υπόστρωμα. Επίσης, εντοπίσθηκαν οι ασθενείς ζώνες και υπολογίστηκε το βάθος του αλλούμιακού και του κορεσμένου βραχώδους στρώματος. Τα γεωφυσικά δεδομένα που συλλέξαμε και επεξεργαστήκαμε υποδεικνύουν την παρουσία 4 διακριτών σεισμικών περιοχών με ταχύτητες που κυμαίνονται από 800 ως 7000 m/s. Η γεωλογική ερμηνεία των αντίστοιχων δεδομένων μας έδωσε τους ακόλουθους γεωλογικούς σχηματισμούς: ιζήματα και ανθρωπογενείς προσχώσεις, ιδιαίτερα αποσαρθωμένο βραχώδες υπόστρωμα, θραυσμένα κρυσταλλικά υποστρώματα καθώς και κρυσταλλικά υποστρώματα. Επιπλέον έγινε και υδρογεωλογική ερμηνεία, η οποία στηρίχτηκε κυρίως στα γεωηλεκτρικά δεδομένα, ενώ εξάχθηκαν χρήσιμοι δυναμικοί και μηχανικοί παράμετροι, βασισμένοι στο μέτρο Young, από τα δεδομένα των γεωτρήσεων.
Βιβλιογραφία – Αναφορές

Ξένη Βιβλιογραφία

Arvanitis, M., 2005 Field-work experience as a research initiation for students: the case of applied geophysics, Science Education: Best practices of research training for students under 21, NATO Science Series, IOS Press, 106-110.

Cormack, A.M., 1963, Representation of a function by its line integrals, with some radiological applications, J. Appl. Geophys., 34, 2722-7

de Boor, C., 1978, A Practical guide to Splines, Springer-Verlag

Ivansson, S., 1986, Seismic borehole tomography theory and computational methods, Proc. IEEE, 74, 328-38

Kuhn, T. S., 1974, The function of measurement in modern physical science, Cambridge University Press.

McCann, D.M., Baria, R. and Jackson, P.D., 1986, Applications of crosshole seismic measurements, Geophysics, 51, 914-29

Saito, H., 1990, 3-D ray-tracing method based on Huygens. principle, 60th Annual International Meeting, SEG.

Tselentis, G., and Makropoulos, G., 1986, Rates of crustal deformation in the gulf of Corinth as determined from seismicity, Tectonophysics, 124, 55-66

Tselentis, G. and Stavrakakis, G., 1987, A method of quantifying the dependence of the depth of the hypocenter of an earthquake upon the velocity model, Computers and Geosciences, 9, 281-287

Tselentis, G., Vassiliou, I., Lekkas, E., Roubos, D. and Sokos, E., 1998, Site specific design strong motions at the city of Vartholomio Greece, 3rd Conference of Geotechnical Engineering, vol.1, 567-574

Williamson, P. R., 1990, Tomographic inversion in reflection seismology, Geophys. J. Int., 100, 255-274

Yasuda H., 1979, On the indicatrices of a Finsler space, Tensor 33, 213-221.

Zhang, J., Rodi, W., Mackie, R.L., Shi, W., Regularization in 3-D DC resistivity tomography, presented at SAGEEP, 1996.

Ελληνική Βιβλιογραφία

Λυριτζής, Ι., 2005, Φυσικές επιστήμες στην αρχαιολογία, Τυπωθήτω.

Τσελέντης, Α., 1997, Σύγχρονη Σεισμολογία, Παπασωτηρίου.

Παπαζάχος, Β., 1996, Εισαγωγή στην εφαρμοσμένη γεωφυσική, Ζήτη