Διδακτορική Διατριβή

Έλεγχος της μίξης κυμάτων και της δημιουργίας αργού φωτός υπό συνθήκες ηλεκτρομαγνητικά επαγώμενης διαφάνειας και ενίσχυσης χωρίς αντιστροφή πληθυσμού σε μεταλλικούς ατμούς

Πένταρης Διονύσιος

Επιβλέπων Καθηγητής
Θωμάς Ευθυμιόπουλος

Πανεπιστήμιο Πατρών
Σχολή Θετικών Επιστημών
Τμήμα Φυσικής
Πάτρα 2010
Έλεγχος της μίξης κυμάτων και της δημιουργίας αργού φωτός υπό συνθήκες ηλεκτρομαγνητικά επαγώμενης διαφάνειας και ενίσχυσης χωρίς αντιστροφή πληθυσμού σε μεταλλικούς ατμούς

Πανεπιστήμιο Πατρών, Σχολή Θετικών Επιστημών, Τμήμα Φυσικής
Πάτρα 2010
Ευχαριστώ τον πατέρα μου Γιώργο, την μητέρα μου Ιωάννα καθώς και την αδερφή μου Τούλα, για την ενθάρρυνση που μου πρόσφεραν όλα αυτά τα χρόνια, στήν προσπάθεια μου να «σηκώσω μια γωνιά του μεγάλου πέπλου», του κόσμου που μας περιβάλλει.

“I do not know what I may appear to the world; but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.”
Isaac Newton (1643-1727)

“A human being is a part of a whole, called by us "universe", a part limited in time and space. He experiences himself, his thoughts and feelings as something separated from the rest... a kind of optical delusion of his consciousness. This delusion is a kind of prison for us, restricting us to our personal desires and to affection for a few persons nearest to us. Our task must be to free ourselves from this prison by widening our circle of compassion to embrace all living creatures and the whole of nature in its beauty.”
Albert Einstein (1879-1955)

“The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work.”
John Von Neumann (1903-1957)

“What we observe is not nature itself, but nature exposed to our method of questioning.”
W. Heisenberg (1901-1976)

“In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in poetry, it’s the exact opposite.”
P. A. M. Dirac (1902-1984)

“... when people thought the Earth was flat, they were wrong. When people thought the Earth was spherical they were wrong. But if you think that thinking the Earth is spherical is just as wrong as thinking the Earth is flat, then your view is worser than both of them put together.”
Isaac Asimov (1920-1992)

“Absence of evidence is not evidence of absence.”
Carl Sagan (1934-1996)

“You can know the name of a bird in all the languages of the world, but when you’re finished, you’ll know absolutely nothing whatever about the bird... So let’s look at the bird and see what it’s doing- that’s what counts. I learned very early the difference between knowing the name of something and knowing something.”
Richard Feynman (1918-1988)
ΕΥΧΑΡΙΣΤΙΕΣ

Ευχαριστώ τον επιβλέποντα καθηγητή μου κ. Θ. Ευθυμióπουλο για τον προσανατολισμό μου στο μονοπάτι της αμφισβήτησης και των ερωτημάτων, στήν αγονία μου να διερευνήσω τα μυστικά της Φύσης. Οι διάφορες κατά καιρούς φιλοσοφικό-κοινωνικές συζητήσεις μας, μου έδωσαν ύδηγηση για μία βαθύτερη αντιμετώπιση της πραγματικότητας.

Τα αποτελέσματα του κεφαλαίου 2 υποστηρίχτηκαν από το Υπουργείο Παιδείας και την Ευρωπαϊκή Ένωση (E.U.) με βάση το πρόγραμμα ΕΠΕΑΕΚ II, Πυθαγόρας-Ι 285 καθώς επίσης και από το Πανεπιστήμιο Πατρών υπό το πρόγραμμα “Καραθεοδωρής”.

Ευχαριστώ επίσης, τον επιβλέποντα Καθηγητή κ. Στέλιο Κουρή για την φιλοξενία του κατά την διάρκεια των πειραμάτων του πρώτου μέρους του κεφαλαίου 4, τον ερευνητή του Τμήματος Φυσικής κ. Γιώργο Χατζηκυριάκο για την συνεργασία του και την συμβολή του στήν πραγματοποίηση τους καθώς και τον κ. Απόστολο Αρμώρα για τις ορθογραφικές και συντακτικές επισημάνσεις του πάνω στο κείμενο της διδακτορικής διατριβής.

Τα αποτελέσματα του κεφαλαίου 5 προέκυψαν κατόπιν της συνεργασίας μας με το ερευνητικό εργαστήριο VULC (Vilnius University LaserLab Center) του Πανεπιστήμιου του Βιλνίους υπό την αιγίδα του Ευρωπαϊκού προγράμματος “ATLAS” (“Advanced Training in Laser Science”). Το πρόγραμμα αυτό ήταν μέρος του υποπρογράμματος του συνολικού έργου “Marie Curie Early Stage Training project”,.

Εγκάρδιες ευχαριστίες στόν Καθηγητή κ. Α. Λύρα για την καθοριστική συμβολή του στην μορφοποίηση των πρώτων βημάτων του αριθμητικού κώδικα και στη φυσική ερμηνεία των παραγόμενων αποτελεσμάτων, καθώς επίσης και στόν ερευνητή Δρ. Ν. Μερλέμη για την ουσιαστική προγραμματιστική συνεισφορά του στήν οικοδόμηση του αριθμητικού κώδικα στη γλώσσα προγραμματισμού FORTRAN παράλληλα με την βοήθεια του, στήν καθοδήγηση και εκτέλεση των πειραμάτων.

ΕΥΧΑΡΙΣΤΙΕΣ ΠΡΟΣ ΤΗΝ ΕΠΤΑΜΕΛΗ ΕΠΙΤΡΟΠΗ

Ευχαριστώ την επταμελή επιτροπή για τις υποδείξεις της σχετικά με την γραφή και τον μορφή της διδακτορικής διατριβής. Ευχαριστώ κατά αλφαβητική σειρά τους καθηγητές:

Α. Γεώργα, Καθηγητή Πανεπιστημίου Πατρών.
Α. Λύρα, Αναπληρωτή Καθηγητή Πανεπιστημίου Ιωαννίνων.
Ε. Πασπαλάκη, Επίκουρο Καθηγητή Πανεπιστημίου Πατρών.
Θ. Ευθυμιόπουλο, Καθηγητή Πανεπιστημίου Πατρών.
Κ. Κοσμίδη, Καθηγητή Πανεπιστημίου Ιωαννίνων.
Ν. Βάινο, Αναπληρωτή Καθηγητή Πανεπιστημίου Πατρών.
Σ. Κουρή, Καθηγητή Πανεπιστημίου Πατρών.
ΠΕΡΙΛΗΨΗ

Στη παρούσα διατριβή μελετούμε την αλληλεπίδραση ατόμων αλκαλίων (νατρίου-Να και καλίου-Κ) με σύμφωνη πηγή ακτινοβολίας (laser). Συγκεκριμένα παρουσιάζουμε:

✓ Την επίδραση της καταστρεπτικής κβαντικής συμβολής (destructive quantum interference), η οποία εμφανίζεται στη διαδρομή-1, \(|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \leftrightarrow |5P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle \), του ατομικού K υπό nsec διφωτονική διέγερση της μετάβασης \(|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \). Η καταστρεπτική κβαντική συμβολή οδηγεί στη γραμμική απόκριση των εσωτερικά παραγόμενων εντάσεων των ακτινοβολιών στις μεταβάσεις \(|6S_{1/2}\rangle \leftrightarrow |5P_{3/2}\rangle \) και \(|5P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle \) αντίστοιχα. Το φαινόμενο αυτό μελετάται για διάφορες τιμές των παραμέτρων: της μέγιστης έντασης της διεγείρουσας ακτινοβολίας του laser, του διφωτονικού αποσυντονισμού \(|4S_{1/2}\rangle \rightarrow |4S_{1/2}\rangle \) της ατομικής πυκνότητας N και του μήκους διάδοσης ζ των ακτινοβολιών, όταν οι δύο από τις τρεις αυτές παραμέτρους παραμένουν σταθερές.

Επίσης, μελετούμε τις προϋποθέσεις του κορεσμού της διαδρομής-1 για ισχυρότερη ένταση του εξωτερικού πεδίου laser (I_{max} \gg 1MW/cm^2) και κατόπιν δείχνουμε ότι η διαδρομή-2, \(|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle \), εμφανίζεται, έχοντας πρώτα κορεσθεί η διαδρομή-1, στις μικρές ατομικές πυκνότητες N. Επιπρόσθετα, παρουσιάζουμε τις προϋποθέσεις επαγωγής ενός είδους ατομικής μνήμης (optical free induction memory) όταν ο παλμός laser υποστεί απότομη πτώση στο μέγιστο του (truncated pulse) κατά την μη-συντονιστική διέγερση της μετάβασης \(|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \).

✓ Τις συνθήκες εκείνες οι οποίες ευθύνονται για την εμφάνιση αξονικής ή/και κωνικής εκπομπής στήν μετάβαση \(|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle \), της διαδρομής-1, καθώς και στήν μετάβαση \(|4P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle \), της διαδρομής-2, αντίστοιχα, για διάφορες ατομικές πυκνότητες N, υπό fsec διφωτονική διέγερση της \(|6S_{1/2}\rangle \) κατάστασης του ατομικού K.
Την παραγωγή ακτινοβολίων από σύμφωνη παραμετρική μίξη (parametric four-wave mixing) ή και μερικώς σύμφωνο μηχανισμό όπως η ενισχυμένη αυθόρμητη εκπομπή (amplified spontaneous emission) ή υπέρ σκέδαση-Raman (stimulated hyper-Raman scattering), όταν το nsec πεδίο laser διεγείρει με δύο φωτόνια την μετάβαση $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle$, με μήκος κύματος $\lambda_{|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle} = 728.6 \text{ nm}$, καθώς και την μετάβαση $|4S_{1/2}\rangle \leftrightarrow |7S_{1/2}\rangle$, με μήκος κύματος $\lambda_{|4S_{1/2}\rangle \leftrightarrow |7S_{1/2}\rangle} = 660.6 \text{ nm}$ του ατομικού K, αντίστοιχα.

Εστιάζουμε κατά μείζονα λόγο τη μελέτη μας στη διαδρομή -2, στήν μονόδρομη (unidirectional) και στήν αμφίδρομη (bidirectional) διάδοση της ακτινοβολίας του πεδίου laser.

Την γέννηση της κωνικής τρίτης αρμονικής (conical third harmonic generation-THG) σε μεταλλικούς ατμούς Na και K υπό fsec διέγερση.

Στη περίπτωση του Na (μέσο με κανονική διασπορά) βρίσκουμε ότι η χαρακτηριστική δακτυλοειδή δομή του κώνου της τρίτης αρμονικής οφείλεται στήν επίδραση κυρίως του τανυστικού όρου $\chi^{(5)}$ και σχετίζεται με την μίξη €ι κυμάτων.

Ακόμα, δείχνουμε, ότι στη περίπτωση του K (μέσο με αρνητική διασπορά) η εκπομπή μακρινού πεδίου (far field emission) της κωνικής τρίτης αρμονικής, παρουσιάζει ορισμένες διαφοροποιήσεις σε σχέση με αυτή του Na. Το όλο φαινόμενο αντιμετωπίζεται φαινομενολογικά.
ABSTRACT

In the doctorate dissertation is studied the effect of the wave mixing of laser light with the internally generated fields of the alkali vapors, such as the sodium (Na) and the potassium (K) respectively. Specifically it was studied:

✓ The numerical simulation of the four-level system, when a two-photon nsec field excites the transition $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle$ of potassium atom. It is shown that the destructive quantum interference is responsible for the reduction of the non-linearity of path-1, $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \leftrightarrow |5P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$, in which, the parameters of the system, such as the two-photon detuning $\Delta_{|6S_{1/2}\rangle \leftrightarrow |4S_{1/2}\rangle}$, the atomic density N and the laser maximum intensity I_{max} play an important role. Moreover the saturation of the path-1 has as a consequence the passage of the energy to the atomic path-2, $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ which activates later than the path-1, in low atomic density of atomic K. A truncated excitation pulse is able to induced phenomena of atomic memory in which the providing excitation intensity is able to be stored in the system. The optical free induction memory (OFIM) is observed in the truncated nsec excitation of the transition $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle$. This type of atomic memory is studied via the evolution of the density matrix element $\sigma_{12}(\tau)$ for specific selection of the two-photon detuning.

✓ The conditions which are responsible for the axial or/and conical emission of radiation near the transition $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$, of path-1, and $|4P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$, of path-2, respectively under the fsec two-photon excitation of $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle$ transition.

✓ The production of coherent (parametric four-wave mixing) or/and partially coherent (amplified spontaneous emission or stimulated hyper-Raman scattering) radiation when the nsec laser field excites with two-photons the transition $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle$, (with wavelength $\lambda_{|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle} = 728.6$ nm), and the transition $|4S_{1/2}\rangle \leftrightarrow |7S_{1/2}\rangle$, (with wavelength $\lambda_{|4S_{1/2}\rangle \leftrightarrow |7S_{1/2}\rangle} = 660.6$ nm), of
atomic potassium respectively. It is also studied the emissions of the path-2 in the unidirectional and the bidirectional propagation (counter-propagation) of the laser field in the \(n_{\text{sec}} |4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \) two-photon excitation.

The conical third harmonic generation (THG) in Na and K vapor under the \(f_{\text{sec}} \) excitation.

It is proved that the third harmonic generation of Na, (normally dispersive medium), in the laser wavelength range of 1770-2200 nm, is mainly a result of six-wave mixing. The tensor term \(\chi^{(5)} \) dominates against the term \(\chi^{(3)} \), (which is connected with the four-wave mixing process), as it is shown theoretically.

In the case of K vapor (negative dispersion medium), in the laser wavelength range of 1200-2180 nm, the observed conical emission appears similarities and dissimilarities with the Na one respectively. The THG generation of K interpreted in a phenomenological way.
Περιεχόμενα

ΕΙΣΑΓΩΓΗ
Ιστορική αναδρομή
a) Πεδίο μελέτης της μη-γραμμικής οπτικής 17
b) Αλληλεπίδραση πεδίων laser σε μη-γραμμικά μέσα 18
g) Μίξη κυμάτων υπό εξωτερική διέγερση 20
d) Νεότερες ερευνητικές εργασίες στήν μίξη τεσσάρων κυμάτων 22
c) Αντικείμενο της διδακτορικής διατριβής 24

Βιβλιογραφία 25

ΚΕΦΑΛΑΙΟ 1
Ανάπτυξη μεθοδολογίας του πίνακα πυκνότητας και των εξισώσεων διάδοσης. Εξισώσεις Maxwell-Bloch
Εισαγογή 31
1.1 Θεωρητικό υπόβαθρο και μεθοδολογία 33
1.1.1 Συνάρτηση Hamilton του συστήματος στήν εικόνα αλληλεπίδρασης 33
1.1.2 Κβαντική στατιστική. Ο πίνακας πυκνότητας 35
1.1.3 Εξισώσεις διάδοσης των ηλεκτρικών πεδίων 38

ΠΑΡΑΡΤΗΜΑ
Π.1 Ο κβαντικός θόρυβος 43
Π.2 Προσδιορισμός της πόλωσης της διφωτονικής μετάβασης στο άτομο του K 44

Βιβλιογραφία 47

ΚΕΦΑΛΑΙΟ 2
Θεωρητική μελέτη της παραμετρικής μίξης των μεταλλικών ατμών του καλίου υπό nsec διφωτονική διέγερση
Ενότητα 1 51
Εισαγογή ενότητας 1 51
2.1 Η κβαντική συμβολή 52
2.1.1 Κλασική συμβολή σε μηχανικά μέσα στόν μεσόκοσμο 52
2.1.2 Συμβολή ηλεκτρομαγνητικών κυμάτων στόν μικρόκοσμο 53
2.2 Παραμετρική μίξη τεσσάρων κυμάτων 54
2.2.1 Ένταση παραγόμενων πεδίων σε συνάρτηση με το μήκος διάδοσης 54
2.2.2 Ένταση παραγόμενων πεδίων σε συνάρτηση με την ένταση του πεδίου laser 57
2.2.3 Ένταση παραγόμενων πεδίων σε συνάρτηση με την ατομική πυκνότητα 59
2.2.4 Μίξη της κατανομής του πλήθους στήν διαδρομή-1 61
2.3 Φαινόμενο κορεσμού σε άτομα K 64
2.3.1 Ένταση παραγόμενων πεδίων σε συνάρτηση με την ένταση του πεδίου laser 65
2.3.2 Η συνθήκη κορεσμού 73
Ενότητα II 75
Εισαγωγή ενότητας II 75
2.4 Ελεύθερα επαγώμενη ατομική μνήμη 76
2.4.1 Μελέτη της συμπεριφοράς του στοιχείου συμφωνίας της διφωτονικής μετάβασης 76
2.4.2 Μελέτη της ευστάθειας της ελεύθερα επαγώμενης μνήμης 80
2.4.3 «Διάβασμα» της κατάστασης της μνήμης 82
Συμπεράσματα 83
Βιβλιογραφία 85

ΚΕΦΑΛΑΙΟ 3
Παραμετρική μίξη τεσσάρων κυμάτων σε μεταλλικούς ατμούς καλίου υπό fsec διφωτονική διέγερση
Εισαγωγή 87
3.1 Πειραματική διάταξη 89
3.2 Παραμετρική μίξη τεσσάρων κυμάτων υπό fsec 4S_{1/2}-6S_{1/2} διέγερση 91
3.2.1 Διαδρομή-1 92
3.2.2 Διαδρομή-2 97
Συμπεράσματα 104
Βιβλιογραφία 105

ΚΕΦΑΛΑΙΟ 4
Μελέτη της μίξης κυμάτων σε πολυεπίπεδο ατομικό συστήματος μεταλλικών ατμών καλίου υπό nsec διφωτονική διέγερση
Ενότητα I 107
Εισαγωγή ενότητας I 107
4.1 Πειραματική διάταξη για την μελέτη του πολυεπίπεδου ατομικού συστήματος 109
4.2 Μίξη κυμάτων υπό nsec 4S_{1/2}-7S_{1/2} διέγερση 111
4.2.1 Διαδρομή-1 111
4.2.2 Διαδρομή-2 112
Ενότητα II 119
Εισαγωγή ενότητας II 119
4.3 Πειραματική διάταξη για την μελέτη των παραγόμενων ακτινοβολιών κατά τη διάδοση του laser προς τις δύο διευθύνσεις του κελιού 121
4.4 Μίξη τεσσάρων κυμάτων υπό nsec 4S_{1/2}-6S_{1/2} διέγερση στις δύο περιπτώσεις διφωτονικής διέγερσης 123
4.4.1 Ακτινοβολία 6S_{1/2}-4P_{3/2} της διαδρομής-2 123
4.4.2 Ακτινοβολία 4P_{3/2}-4S_{1/2} της διαδρομής-2 128
Συμπεράσματα 131
ΚΕΦΑΛΑΙΟ 5
Γέννηση της τρίτης αρμονικής σε μεταλλικούς ατμούς
Ενότητα I 135
Εισαγωγή ενότητας I 135
5.1 Πειραματική διάταξη της τρίτης αρμονικής για την περίπτωση των μεταλλικών ατμών του Na 139
5.2 Θεωρητικό μοντέλο για τους μεταλλικούς ατμούς του Na 141
5.3 Αποτελέσματα για τους μεταλλικούς ατμούς του Na 145
5.3.1 Δυνατές περιπτώσεις στην κονική κατανομή της τρίτης αρμονικής του Na 145
5.3.2 Απεικόνιση της τρίτης αρμονικής του Na 146
5.3.3 Ποιοτικά χαρακτηριστικά της τρίτης αρμονικής στους ατμούς του Na 148
Ενότητα II 155
Εισαγωγή ενότητας II 155
5.4 Γέννηση της τρίτης αρμονικής σε μεταλλικούς ατμούς K 155
5.4.1 Εικόνες μακρινού πεδίου της τρίτης αρμονικής του K 156
5.4.2 Ποιοτικά χαρακτηριστικά της τρίτης αρμονικής στους ατμούς του K 159
5.5 Φαινόμενα ιονισμού σε μεταλλικούς ατμούς 163
5.5.1 Περίπτωση ιονισμού με την χρήση διφωτονικού παλμού διέγερσης 163
5.5.2 Περίπτωση ιονισμού με την χρήση ισχυρού παλμού διέγερσης 164
Συμπεράσματα 167
Βιβλιογραφία 168

ΜΕΛΛΟΝΤΙΚΕΣ ΕΡΓΑΣΙΕΣ
ΚΑΤΑΛΟΓΟΣ ΔΗΜΟΣΙΕΥΣΕΩΝ
ΑΡΙΘΜΟΣ ΒΙΒΛΙΟΓΡΑΦΙΚΩΝ ΑΝΑΦΟΡΩΝ
ΕΥΡΕΤΗΡΙΟ ΣΗΜΑΝΤΙΚΩΝ ΕΠΙΣΤΗΜΟΝΙΚΩΝ ΟΡΩΝ
ΕΙΣΑΓΩΓΗ

Ιστορική αναδρομή.

α) Πεδίο μελέτης της μη-γραμμικής οπτικής

Ο προσδιοριστικός όρος «μη-γραμμικό» αναφέρεται στην μη-γραμμική απόκριση του ατομικού συστήματος (π.χ. του τανυστή της ηλεκτρικής επιδεκτικότητας χ(k)ij, όπου k η τάξη και |i⟩↔|j⟩ η υπό μελέτη μετάβαση) σε αντιστοιχία με το πλάτος του αλληλεπιδρόντος ηλεκτρικού πεδίου Eo. Επιπλέον, σε πολυεπίπεδα ατομικά συστήματα, που εμφανίζεται η μίξη εσωτερικά παραγόμενων πεδίων με τα εξωτερικά πεδία laser, ο τανυστής της ηλεκτρικής επιδεκτικότητας μπορεί να είναι 3ης τάξεως (για την μίξη τεσσάρων κυμάτων) ή γενικά k τάξεως, ανάλογα με τα συμμετέχοντα πεδία στην αλληλεπίδραση της ακτινοβολίας με την ύλη [3]. Επί παραδείγματι, η μη-γραμμική πόλωση P(2) αντίστοιχη ή υπό μελέτη των δυο συχνοτήτων (sum frequency mixing), με συχνότητες ωρ και ωρ αντίστοιχα, η οποία πραγματοποιείται σε ατομικό σύστημα δύο επιπέδων, περιγράφεται με την εξής
σχέση: \(P_{\text{p}}^{(2)}(\omega_p + \omega_q) = \sum_{jk} \chi_{jk}^{(2)}(\omega_p + \omega_q, \omega_p, \omega_q) E_j(\omega_q) E_k(\omega_p) \) \[4\]. Στα περισσότερα από αυτά τα συστήματα η συγκεκριμένη αλληλεπίδραση δίνεται από τις σύμφωνες καταστάσεις (coherent states) του ηλεκτρικού πεδίου (οι οποίες αντιστοιχούν στο ελάχιστο της αβεβαιότητας και έχουν το πιο "κλασικό" από τις κβαντομηχανικές καταστάσεις του πεδίου ακτινοβολίας). Αυτό οφείλεται στο γεγονός ότι η ισχυρή ακτινοβολία laser δεν προκαλεί κβάντωση του ηλεκτρικού πεδίου και επομένως το φως αντιμετωπίζεται με βάση την εξίσωση Maxwell της κλασικής Φυσικής. Στο σημείο αυτό δύο τομείς του νοημοσύνου: η κβαντική οπτική με την κβαντική οπτική (quantum optics). Η τελευταία ουσιαστικά προήλθε από την ενοποίηση της κβαντικής θεωρίας πεδίου (εξίσωση Dirac) και της Φυσικής οπτικής (κυματική-σωματιδιακή θεωρία του φωτός). Το πεδίο της κβαντικής οπτικής εξελίχθηκε ραγδαία τα τελευταία χρόνια. Στη μελετήθηκαν, μεταξύ άλλων, οι σύμφωνες και οι συμφωνεμένες (squeezed) καταστάσεις του πεδίου ακτινοβολίας, η κατάσταση της συμπεριφοράς των ατομικών συστημάτων κοντά στον κβαντικό θόρυβο (quantum noise), η συμβολομετρία (interferometry) και οι οπτικοί ενισχυτές (optical amplifiers). Επίσης, η δημιουργία ακτινοβολίας laser χωρίς αντιστροφή πληθυσμού (lasing without inversion-LWI) αποτέλεσε ένα από τα πιο ενδιαφέροντα πεδία της κβαντικής Φυσικής τα οποία διερευνήθηκαν τόσο θεωρητικά όσο και πειραματικά.

Εν κατακλείδι, η κβαντική οπτική παρέχει ένα πεδίο γόνιμου προβληματισμού σχετικά με τη διευθέτηση θεμελιωδών ερωτήματος της κβαντικής θεωρίας όπως η αρχή της συμπληρωματικότητας (complementary principle), οι κρυμμένες μεταβλητές (hidden variables) και άλλα μη-τετριμμένα ερωτήματα [5].

β) Αλληλεπίδραση πεδίων laser σε μη-γραμμικά μέσα

Ένα από τα πιο γνωστά θέματα της μη-γραμμικής οπτικής είναι εκείνο που αναφέρεται στο άθροισμα ή στη διαφορά των συχνοτήτων (sum-and-difference-frequency generation) των πεδίων που αλληλεπιδρούν κάθε φορά με ένα ατομικό σύστημα. Κατά την πορεία της επιστημονικής έρευνας κατανόηθηκε ότι η περιορισμένη διαπερατότητα των κρυστάλλων στα μικρά μήκη κύματος δεν περιέγραφε ικανοποιητικά την μίξη κύματων, με αποτέλεσμα να δοθεί ωθητή προς την ανάγκη χρήσης ατομικών ή μοριακών μέσων αντί για τους συνήθεις

Στο φαινόμενο της μίξης των τεσσάρων κυμάτων (four-wave mixing-FWM) σε μεταλλικούς ατμούς καλίου (K), η εμφανιζόμενη κβαντική συμβολή (quantum interference-QI) σε μία ατομική διαδρομή (atomic path) διαδραμάτισε πολύ σημαντικό ρόλο. Η καταστρεπτική QI μεταξύ των διαφορετικών καναλιών (channels) διέγερσης των μεταλλικών ατμών (π.χ. αλκάλια) μελετήθηκε τόσο θεωρητικά όσο και πειραματικά. Ο ανταγωνισμός μεταξύ της ενσυρρυμένης αυθόρμησης εκπομπής (amplified spontaneous emission-ASE) και της παραμετρικής μίξης των τεσσάρων κυμάτων, που δημιουργήθηκε με διφωτική διέγερση του νατρίου (Na), οδήγησε εξαιτίας της QI, σε περιορισμό της πρώτης διαδικασίας όπου δείχθηκε θεωρητικά και πειραματικά από τους M. S. Malcuit et. al. [9] και R. W. Boyd et. al. [10], αντίστοιχα. Επίσης, η καταστολή (suppression) της δημιουργούμενης ακτινοβολίας με εξαναγκασμένη υπέρ σκέδαση-Raman (SHRS) υπό διφωτική διέγερση σε άτομα Na, μελετήθηκε από τους M. A. Moore et. al. [11], W. R. Garrett et. al. [12] και R. K. Wunderlich et. al. [13], αντίστοιχα. Παρόμοια θεωρητική μελέτη του φαινομένου πραγματοποιήθηκε και από τον Y. P. Malakyan [14], ενώ πειραματικά επαληθεύτηκε και σε άτομα λίθιου (Li) από τους M. H. Lu και Y. M. Liu [15]. Οι παραπάνω ερευνητές παρατήρησαν ότι τα φαινόμενα της διφωτικής QI, υπό συνθήκες συμφωνίας φάσης (phase matching condition) κατά την μίξη τεσσάρων κυμάτων, οδήγησαν εν τέλει στόν κορεσμό της παραγωγής της παραμετρικής μίξης (parametric four-wave mixing-PFWM) [12, 13].
Ο όρος παραμετρικές διαδικασίες (parametric processes) αναφέρεται στις διαδικασίες όπου δεν παρατηρήθηκε μεταφορά πληθυσμού (population transfer) μεταξύ των διαφόρων ατομικών επιπέδων. Ο πληθυσμός παρέμενε, ως επί το πλείστον, στη θεμελιώδη κατάσταση (ground state) [12, 13]. Οι παραμετρικές διαδικασίες, π.χ. η παραμετρική μίξη τεσσάρων κυμάτων, είναι διαδικασίες σύμφωνες (coherent) σε αντίθεση με τις ασύμφωνες (incoherent) ή μερικώς σύμφωνες (partially coherent) όπως η ενισχυμένη αυθόρμητη εκπομπή (amplified spontaneous emission-ASE) και η εξαναγκασμένη υπέρ σκέδαση-Raman (stimulated hyper-Raman scattering-SHRS). Όπως παρουσιάζουμε στη παρούσα διδακτορική διατριβή οι σύμφωνες διαδικασίες διαδίδονται πάντοτε στόν +ξ οπτικό άξονα (forward propagation) του ατομικού μέσου, σε αντίθεση με τις ασύμφωνες διαδικασίες που διαδίδονται ταυτόχρονα και στόν −ξ οπτικό άξονα (backward propagation). Τέλος, η παραμετρική, λεγόμενη, ακτινοβολία σχετίζεται και με την φυσική συμπεριφορά (απόκριση) των παραγόμενων ακτινοβολιών ως προς τις κρίσιμες παραμέτρους του συστήματος όπως λόγου χάρη, η μέγιστη ένταση (peak intensity) του εξωτερικού πεδίου, η ατομική πυκνότητα (atomic density) και ο διφωτονικός αποσυντονισμός (two-photon detuning), αντίστοιχα.

γ) Μίξη κυμάτων υπό εξωτερική διέγερση

Η nanosecond (nsec) διφωτονική διέγερση, στη περίπτωση των ατόμων K, και η δημιουργία της μίξης τεσσάρων κυμάτων από εσωτερικά παραγόμενα πεδία μελετήθηκε αρχικά από τους S. Barak et.al. [16] και κατόπιν από άλλους ερευνητές [17-30]. Συγκεκριμένα οι P. L. Zhang et.al. [18] ασχολήθηκαν με την διφωτονική διέγερση του K στήν |8S1/2⟩ στάθμη, παρατηρώντας συνολικά 32 γραμμές ακτινοβολίας οι οποίες οφείλονταν στη παραγωγή φωτός μέσω ενισχυμένης αυθόρμητης εκπομπής, υπέρ σκέδασης-Raman καθώς και στήν αλληλεπίδραση αυτών με τα φωτόνια του laser με διαδικασίες μίξης τεσσάρων ή έξι κυμάτων. Οι M. E. Movsessian και A. V. Papoyan [19] εργάστηκαν πρός την κατεύθυνση της αλλαγής της συχνότητας (frequency conversion) σε άτομα K, ενώ οι B. K. Clark et.al. [21] με την σειρά τους παρατήρησαν διάφορα φαινόμενα μίξης και εξαναγκασμένης εκπομπής λόγω διφωτονικής διέγερσης της |4S1/2⟩ ↔ |6S1/2⟩ μετάβασης του K όπως επίσης και φαινόμενα εκπομπής κατά την διεύθυνση του πεδίου άντλησης (forward
άλλων ακτινοβολίων μελέτησαν των κυμάτων τον κρούσεων των παραγόμενου ακτινοβολίων καθώς και τα φαινόμενα καταστολής (suppression) στήν εμφάνιση κάποιων γραμμών. Η πρόοδος την ακτινοβολίας εργασίες τους έδειξαν στα παραγόμενου καθώς και τα φαινόμενα καταστολής (amplification) των κυμάτων των κρούσεων των παραγόμενου ακτινοβολίων καθώς και τα φαινόμενα καταστολής (suppression) στήν εμφάνιση κάποιων γραμμών, σε σχέση με την παραγωγή κάποιων άλλων. Η επίδραση του aαδρανούς αερίου (buffer gas) στήν ανακατανομή των κρούσεων των παραγόμενου ακτινοβολίων καθώς και τα φαινόμενα καταστολής (suppression) στήν εμφάνιση κάποιων γραμμών, σε σχέση με την παραγωγή κάποιων άλλων. Διαίρετα ενδιαφέρουσα ήταν η μελέτη της μίξης πέντε κυμάτων (five-wave mixing) από τους S. G. Dinev et al. [25] με την παραγωγή κάποιων γραμμών. Η μίξη των κυμάτων παρατηρήθηκε επίσης στήν περίπτωση της quadrupole διέγερσης της μετάβασης |4S⟩ ↔ |3D⟩ από τους S. G. Dinev et al [26] όπως και μέσω της διφωτονικής διέγερσης |4S⟩ ↔ |3D⟩ από τους J. H. Tsai και M. H. Lu [28] αντίστοιχα, όπου το παραγόμενο φάσμα περιλάμβανε 50 διακριτές γραμμές. Από τις πιο ενδιαφέρουσες θεωρητικές εργασίες, όπου επιτεύχθηκε η απολαβή (gain) κατά την παραγωγή υπεριώδους ακτινοβολίας (UV), και η οποία διαδόθηκε σε μέσο των ατμών του Na χωρίς την αντιστροφή πληθυσμού μεταξύ των επιπέδων |4P⟩ ↔ |4S⟩, παρατηρήθηκε από τους V. Vaicaitis και S. Vaicaitis [29]. Το συγκεκριμένο σύστημα των τριών επιπέδων διεγέρθηκε διφωτονικά σε μικρές ατομικές πυκνότητες (N_{Na} < 10¹⁴ cm⁻³).

Η πρόοδος στήν τεχνολογία των laser, με την κατασκευή πιο στενών παλμών (picoseconds-psec και femtosecond-fsec αντίστοιχα), οδήγησε στη μελέτη της συνακόλουθη παραμετρικής μίξης υπό psec παλμών. Οι V. Vaicaitis et.al. [30], μεταξύ άλλων, μελέτησαν την μίξη αυτή μέσω της διφωτονικής διέγερσης της |3D⟩ κατάστασης του ατόμου του Na. Εδείξαν ότι η εκπομπή υπεριώδης ακτινοβολίας (infrared radiation-IR) ήταν δυνατή στα 589 και 820 nm αντίστοιχα, όπου η δέσμη του laser αντλήθηκε Nd:YAG laser διαδόθηκε σε αντίθετες διευθύνσεις (counter-propagation). Ακόμα, στήν διφωτονική psec διέγερση της |3S⟩ ↔ |4D⟩ μετάβασης οι V. Vaicaitis και S.
Paulikas [31] έστειλε την καθώς και κωνική UV ακτινοβολία στα 330 nm. Τέλος, η μελέτη της κωνικής εκπομπής σε άτομα Na συνεχίστηκε με την χρήση ακόμα πιο στενών παλμών διέγερσης. Οπως είδαμε οι V. Vaicaitis και E. Gaizauskas [32] ήταν δυνατή η εκπομπή φθορίζουσας κωνικής ακτινοβολίας με βάση την συνθήκη συμφωνίας φάσεως Cherenkov, όπου η μίζη τεσσάρων κυμάτων (FWM) μπορούσε να εμφανιστεί, σύμφωνα με σχετικούς θεωρητικούς υπολογισμούς. Το μεγάλο πλεονέκτημα των στενών παλμών έγινε στο μεγαλύτερο εύρος επιλογής της κωνικής εκπομπής σε ύλες Na κυρίως και στόν περιορισμό του ρόλου της απορρόφησης και της μεταφοράς πληθυσμού, τα οποία εξαρτιόταν από την χρονική διάρκεια του παλμού.

d) Νεότερες ερευνητικές εργασίες στην μίζη τεσσάρων κυμάτων

Πρόσφατα οι M. Katharakis et al. [33] παρατήρησαν για πρώτη φορά δύο κοντινές γραμμές εκπομπής της μετάβασης |4P_{3/2}⟩ ↔ |4S_{1/2}⟩, των ατομών του K, (η μία πάνω και η άλλη κάτω από την |4P_{3/2}⟩ κατάσταση αντίστοιχα) για μικρές εντάσεις ακτινοβολίας laser. Μάλιστα η εκκαθάριση ακτινοβολίας κάτω από την |4P_{3/2}⟩ προέκυψε ως αποτέλεσμα της παραμετρικής μίζης των τεσσάρων κυμάτων ενώ εκείνη η οποία βρισκόταν κοντά στην κατάσταση |4P_{3/2}⟩ παραγόταν μέσω της μίζης των τεσσάρων κυμάτων, δύο βημάτων (two-step four-wave mixing). Οι N. Merlemis et al. [34] στήν συνέχεια, παρατήρησαν ότι οι εσωτερικές εκκαθάρισες ακτινοβολίας παρουσιάσαν αξονικό (axial emission), κωνικό (conical emission) προφίλ ή και τα δύο ανάλογα με τις τιμές των παραμέτρων του συστήματος όπου ο διωφτικός αποσυντονισμός Δ|4S_{1/2}⟩ ↔ |4S_{3/2}⟩, η ατομική πυκνότητα N και η μέγιστη ένταση του εξωτερικού πεδίου laser I_{max}. Επίσης, στήν εργασία αυτή επιβεβαιώθηκε, πειραματικά, η σημασία της QI στήν τροποποίηση των μη-γραμμικών ιδιοτήτων μιάς συγκεκριμένης ατομικής διαδρομής του αέριου καλίου.

Πιο πρόσφατα επιχειρήθηκε μία πρώτη θεωρητική προσομοίωση του ατόμου του K των τεσσάρων ενεργειακών επιπέδων υπό nsec διωφτική διέγερση από τους N. Merlemis et al. [35] με την μέθοδο του πίνακα πυκνότητας (density matrix). Θεωρήθηκε ότι το μήκος του ατομικού μέσου μπορεί να αναχθεί (induced) στήν τελική θέση ζ_0 = 17 cm, η οποία ταυτίζεται με την έξοδο των μετρούμενων
ακτινοβολιών από το κελί των ατμών του K. Με αυτή την μέθοδο βρέθηκε ότι η εκπεμπόμενη ακτινοβολία στήν μετάβαση $|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ προέκυψε με βάση τον μηχανισμό της ενισχυμένης αυθόρμητης εκπομπής χωρίς αντιστροφή πλήθους (inversionless ASE), για μια ευρεία μεταβολή των τιμών των πειραματικά ελέγξιμων παραμέτρων.

Ακόμα, οι $D. Pentaris et.al. [36]$ απέδειξαν, για πρώτη φορά θεωρητικά σε ατμούς K, τον ρόλο της Qi σε σύστημα τεσσάρων ενεργειακών επιπέδων με την χρήση των εξισώσεων Maxwell-Bloch όπου μελετήθηκε η παραμετρική μίξη στις μικρές ατομικές πυκνότητες, $N < 10^{14}$ cm$^{-3}$. Βρέθηκε ότι η πρώτη διαδρομή αποδείχτηκε (διαδρομή-1, $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \leftrightarrow |5P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$), απέκλινε σημαντικά από την μη-γραμμική της καταστάσεις, για κάποιες κρίσιμες τιμές των παραμέτρων του συστήματος.

Επιπρόσθετα, οι $T. Efthimiopoulos et.al. [37]$ μελετήσαν το φαινόμενο της διάδοσης της διφωτονικής ακτινοβολίας laser και από τις δύο διεύθυνσεις του ενεργού ατομικού μέσου (counter-propagation) το οποίο είχε ως αποτέλεσμα, η απόσταση αύξησης της μετάβασης των παραγόμενων πεδίων και ως πρός τις δύο διεύθυνσεις (forward and backward propagation) του ατομικού μέσου εξαιτίας της αντίστοιχης αύξησης της ενεργούς πυκνότητας των ατόμων. Ως συνέχεια των θεωρητικών μελετών, οι $A. Armyras et.al. [38, 39]$ επικεντρώθηκαν στο φαινόμενο του κορεσμού (saturation) της διαδρομής-1 όπου παρατηρήθηκε καταστολή της παραμετρικής μίξης των τεσσάρων ενεργού μέσου των ατομικού συστήματος, με την καταστρεπτική Qi και την ανακατανομή του πλήθους μεταξύ των καταστάσεων να χαρακτηρίζει την περιοχή αυτή ή αλλιώς την περιοχή του κορεσμού (saturation region).

Επίσης, μελετήθηκε θεωρητικά από τους $D. Pentaris et.al. [40]$ το ατομικό φαινόμενο της οπτικής επαγώμενης μνήμης (optical free induction memory-OFIM), όταν ο εξωτερικός παλμός διέγερσης υποστεί απότομη πτώση σε μία περιοχή κοντά στο μέγιστο του (truncated pulse ή τετμημένος παλμός) σε ατμούς K. Η συγκεκριμένη εργασία στηρίχτηκε, εν μέρει, στη μελέτη των $I. Pop$ και $L. Moorman [29]$ η οποία πραγματοποιήθηκε σε μετάλλικους ατμούς Na. Τα πεδία που χρησιμοποιήθηκαν στις εν λόγω εργασίες ήταν κλασικά σε αντίθεση με την κβάντωση αυτών όταν αναφέρομαστε σε συστήματα όπου τα πεδία που διαδίδονται υφίστανται σημαντική μείωση της ταχύτητάς τους (slow light). Το φαινόμενο της
ατομικής μνήμης αποτελεί ένα από τα πιο ενδιαφέροντα εδάφια της τρέχουσας ερευνητικής δραστηριότητας στόν ευρύτερο τομέα της μη-γραμμικής και κβαντικής οπτικής. Πολλές σχετικές εργασίες έχουν δημοσιευθεί τα τελευταία χρόνια με ορισμένες από αυτές να εσπευστούν στην επιβράδυνση και την επακόλουθη μείωση της ταχύτητας του φωτός έως μηδενισμού της σε ατμούς ρουβιδίου (Rb), σύμφωνα με τους D. F. Phillips et al. [41]. Ορισμένα ατομικά μέσα ή υλικά με την κατάλληλη προετοιμασία (coherently prepared) δύναται να δώσουν σε μεταγενέστερο χρόνο μέρος της αρχικά παρεχόμενης πληροφορίας σύμφωνα με τους A. S. Zibrov et al. [42], και αποτελούν υποψήφιους μηχανισμούς διεκπαιρέωσης συσκευών αποθήκευσης δεδομένων (quantum memory devices).

Τέλος, είναι δυνατόν με την χρήση πεδίων ελέγχου (control field) να ανακτηθεί μέρος της αρχικής πληροφορίας (information) σε ένα σχετικά ικανοποιητικό χρονικό διάστημα σε ατομικά συστήματα με μικρό ρυθμό απόδεσης (low levels coherent decay rate), όπως εδείξαν θεωρητικά οι H. Kaatuzian et al. [43].

e) Αντικείμενο της διδακτορικής διατριβής

Στήν παρούσα διδακτορική διατριβή ερευνώνται κατά σειρά οι πιο κάτω θεματικές ενότητες:

i. Η θεωρητική μελέτη των φυσικών μηχανισμών της μίξης των τεσσάρων κυμάτων σε ατμούς K υπό την nsec διφωτονική διέγερση της μετάβασης $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle$. Δείχνουμε ότι η QI [36, 38, 39] τροποποιεί την φυσική συμπεριφορά του ατομικού μέσου διαδραματίζοντας πολύ σημαντικό ρόλο στόν μηχανισμό γέννησης των εσωτερικά παραγόμενων ακτινοβολιών επιβεβαιώνοντας και διευρύνοντας την σχετική πειραματική γνώση [34].

ii. Η θεωρητική δυνατότητα εμφάνισης μιάς μορφής ατομικής μνήμης, την οποία ονομάζουμε ελεύθερα επαγώμενη μνήμη, όταν το εξωτερικό αίτιο (nsec παλμός διέγερσης στήν μετάβαση $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle$) υποστεί απότομη πτώση στο μέγιστο του. Ακόμα εξετάζονται οι προκαλούμενες
συνέπειες στήν απόκριση του συστήματος των μεταλλικών ατμών του ατόμου του K [40] ενώ τέλος, εξετάζεται και ο τρόπος ανάγνωσής της.

iii. Η πειραματική μελέτη της παραμετρικής μίξης σε ατμούς K όταν το ατομικό σύστημα διεγερθεί διωφοτονικά από $fsec$ παλμούς ενώ παράλληλα συγκρίνεται η περίπτωση αυτή με την αντίστοιχη $nsec$ διωφοτονική διέγερση της μετάβασης $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle$ [44]. Επίσης, παρουσιάζεται και η $nsec$ διωφοτονική διέγερση της μετάβασης $|4S_{1/2}\rangle \leftrightarrow |7S_{1/2}\rangle$ στήν προσπάθεια μας να μελετήσουμε τα ανταγωνιστικά φαινόμενα, των διαφόρων εσωτερικά παραγόμενων καναλιών, στις πιθανές διαδρομές εκπομπής στο πολυεπίπεδο πλέον ατομικό σύστημα που σχηματίζεται [45].

iv. Η θεωρητική και πειραματική μελέτη της κονικής εκπομπής κατά την γέννηση της τρίτης αρμονικής σε μεταλλικούς ατμούς Na υπό $fsec$ διέγερση [46, 47]. Μελετάται επίσης, με φαινομενολογικό τρόπο, και η τρίτη αρμονική σε μεταλλικούς ατμούς K, τα αποτελέσματα της οποίας συγκρίνονται με προηγούμενες μελέτες.

Σημειώνουμε ότι σε κάθε κεφάλαιο της διδακτορικής διατριβής παρουσιάζεται μία συνοπτική εισαγωγή, σχετική με το υπό διαπραγμάτευση κάθε φορά θέμα.

Βιβλιογραφία

ΚΕΦΑΛΑΙΟ 1

Ανάπτυξη μεθοδολογίας του πίνακα πυκνότητας καθώς και των εξισώσεων διάδοσης.
Εξισώσεις Maxwell-Bloch.

Εισαγωγή

Οι μη-γραμμικές οπτικές ιδιότητες των ατομικών ατμών, παρουσία ισχυρών οδηγούντων πεδίων laser, εμφανίζουν ορισμένα αποτελέσματα τα οποία υπερβαίνουν σημαντικά την εποπτική διαίρεση μας (counter-intuitive), με πολλές υποχρέωσες και επαναστατικές εφαρμογές. Η τελευταία πρόταση συναρτάται άμεσα με την δυνατότητα μας να εκμεταλλευτούμε ή να ελέγξουμε (control) τους εξωτερικούς (πεδία laser) και εσωτερικούς (ατομικοί παράμετροι) βαθμούς ελευθερίας αντίστοιχα, με σημαντική ακρίβεια. Η πιο χαρακτηριστική περίπτωση είναι εκείνη που σχετίζεται με τον έλεγχο της εσωτερικής δυναμικής σε ένα ατομικό σύστημα ατμών μέσω των φαινομένων της συμμετάγων συμβολίσης πληθυσμού (coherent population trapping-CPT), φαινόμενο που ύφασμε να τίθεται ευρέως σε εφαρμογή από τα μέσα της δεκαετίας του 1990. Σε ένα άρθρο ανασκόπησης ο E. Arimondo [1] σημείωσε ότι η σύμφωνη διαίρεση πληθυσμού, προέκυψε ως ένα ακόμα αποτέλεσμα της κβαντομηχανικής συμβολής. Η τελευταία προμήθεια δύο διαφορετικών ατομικών διαδρομών (atomic paths) για την επίτευξη της απαραίτητης εκείνης υπέρθεσης καταστάσεων (superposition of states), στην παγίδευση του πληθυσμού μεταξύ μιάς ατομικής μετάβασης (atomic mode). Το φαινόμενο αυτό είναι μόνο ένα από την ποικιλία αυτών που εμφανίζονται στήν αλληλεπίδραση της ακτινοβολίας με την ύλη. Πιο πολύπλοκα σχήματα (schemes) συμβολίζουν τα οποία προσαπαιτούν πολυπλοκάτω ατομικά ή μοριακά συστήματα παρέχουν νέες προοπτικές μελέτης. Ο S. E. Harris [2] μελέτησε την ηλεκτρομαγνητική επαγόμενη διαφάνεια (electromagnetically induced transparency-EIT), ένα ακόμα «εξωτικό» (exotic) φαινόμενο, βρίσκοντας τρόπο περιορισμού της διαφάνειας του ατομικού μέσου κατά την διάδοση της ακτινοβολίας ενός πεδίου laser, ανοίγοντας ένα νέο πεδίο έρευνας στήν σύγχρονη μη-γραμμική οπτική με την σχετική βιβλιογραφία να παραμένει
ανεξαντλητή. Επίσης, παρατηρήθηκε πειραματικά η μιξή τεσσάρων κυμάτων σε ατομικό μέσο ρουβιδίου (Rb) όπου εμφανίστηκε η επαγώγυνε διαφάνεια, όπως έδειξαν χαρακτηριστικά οι D. A. Braje et al. [3]. Το τελευταίο ήταν συνδυασμός ενός τυπικού μη-γραμμικού φαινομένου (μιξή κυμάτων) και ενός «εξοπλικού», ένδειξη των προοπτικών που προέκυπταν κατά τη μελέτη των μη-γραμμικών συστημάτων. Τέλος, ο έλεγχος των κβαντικών παλμών του φωτός [4, 5] οδήγησε σε συστηματικότερη και βαθύτερη μελέτη των κβαντομηχανικών συστημάτων.

Πρόσφατες μελέτες εστίσαν σε εκείνο το ατομικό σύστημα το οποίο είχε την μορφή του διαμαντιού (diamond closed-loop configuration) όπου οι τέσσερις καταστάσεις συζευγνύονταν μεταξύ τους μέσω διαφορετικών διαδρομών από πεδία laser. Στα συστήματα αυτά το άτομο προσεγγίστηκε με βάση το μοντέλο του κλειστού βρόχου (closed loop) μία μέθοδος που είναι ευρέως διαδεδομένη στήν σύγχρονη μη-γραμμική οπτική. Η σχετική φάση των παραγόμενων πεδίων επιρρέασε σημαντικά την δυναμική του συστήματος [6] καθώς και την επίπεδοτιμή της συνθήκης της στάσηςς κατάστασης (steady state condition) [7], όπου οι εξίσωσες του πίνακα πυκνότητας απλοποιήθηκαν σε αλγεβρικές. Στις εργασίες των R. Buffa et al. [8] και S. K. Schroder et al. [9], η διάδοση εξ δικτύων ατομικής, στο ατομικό μέσο, μοντέλοποιήθηκε με την χρήση των εξίσωσεων Maxwell-Bloch, όπου χρησιμοποιήθηκαν πολυεπίπεδα άτομα τριών και τεσσάρων επιπέδων αντίστοιχα, στα οποία η συμβολή μεταξύ των διαφόρων ατομικών διαδρομών μπόρεσε να οδηγήσει σε παγιδευση του πλήθους μεταξύ δύο καταστάσεων. Σε όλες αυτές τις εργασίες τα ατομικά συστήματα ελήφθησαν ως κλειστά-ατομονομένα (closed) τύπος όσοι να γινθεί η εξίσωση του von-Neumann (κβαντομηχανική μορφή της εξίσωσης Liouville σχετική με την διατήρηση της πυκνότητας).

Στα επόμενα παρουσιάζουμε το θεωρητικό υπόβαθρο και την μεθοδολογία εκείνη που απαιτείται για τη μελέτη των τεσσάρων καταστάσεων του ατόμου του καλλίου (K). Η αλληλεπίδραση του πεδίου της ακτινοβολίας με την ύλη αντιμετωπίζεται σύμφωνα με την ημικλασική θεωρία (semiclassical theory-SCT) όπου το πεδίο ακτινοβολίας περιγράφεται από τις εξίσωσες του Maxwell, ενώ το ατομικό σύστημα (ύλη) από την κβαντομηχανική θεωρία.

Στο παράρτημα Π.1 διαπραγματεύομαστε, λίγα συντόμως, το ζήτημα του κβαντικού θορύβου, ενώ στο παράρτημα Π.2 παρουσιάζουμε την απόδειξη της ευρέσης του στοιχείου πίνακα (matrix element) \(\mu \) της διφωτικής μετάβασης σε
ένα πρότυπο σύστημα δύο επιπέδων, όπου πραγματοποιείται η γέννεση της δεύτερης αρμονικής, μίας και ενδιαφερόμαστε για τον προσδιορισμό του $\mu_2^{(2)}$ στήν διφωτονική διέγερση του ατόμου του K.

1.1 Θεωρητικό υπόβαθρο και μεθοδολογία

1.1.1 Συνάρτηση Hamilton του συστήματος στήν εικόνα αλληλεπίδρασης

Η αλληλεπίδραση ενός ηλεκτρονίου μάζας m και φορτίου e με ένα ηλεκτromαγνητικό πεδίο περιγράφεται από την Hamiltonian

$$\mathcal{H} = \frac{1}{2m} \left[\vec{p} - e \vec{A}(\vec{r}, t) \right]^2 + eU(\vec{r}, t) + V(\vec{r})$$

οπού \vec{p} είναι ο τελεστής της ορμής, $\vec{A}(\vec{r}, t)$ και $U(\vec{r}, t)$ είναι το διανυσματικό και το βαθμωτό δυναμικό του πεδίου της ακτινοβολίας και τέλος $V(\vec{r})$ είναι το ηλεκτροστατικό δυναμικό που σχετίζεται με την παρουσία του ατόμου ($atomic binding energy$) αντίστοιχα. Η εξίσωση Schrodinger που περιγράφει την αλληλεπίδραση αυτή κατά τα γνωστά είναι:

$$\left\{ -\frac{\hbar^2}{2m} \left[\vec{p} - e \vec{A}(\vec{r}, t) \right]^2 + eU(\vec{r}, t) + V(\vec{r}) \right\} \psi(\vec{r}, t) = i\hbar \frac{\partial \psi}{\partial t}(\vec{r}, t)$$

Η έκφραση της Hamiltonian που χρησιμοποιούμε εφεξής δίνεται στήν διπολική προσέγγιση και στήν εικόνα $\vec{r} \cdot \vec{E}(\vec{r}, t)$, όπως ονομαζεται χαρακτηριστικά. Σε αυτήν την εικόνα η τελική μορφή της συνάρτησης Hamilton στήν συνθήκη αντινοβολίας $gauge (radiation gauge)$ $U(\vec{r}, t) = 0$, προκύπτει ότι είναι: $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_i$, όπου $\mathcal{H}_i = -e\vec{E}(\vec{r}, t)$ $\eta Hamiltonian$ αλληλεπίδρασης στη διπολική προσέγγιση (gauge independent field \vec{E}) [10].

Αποδεικνύεται ότι η συνάρτηση Hamilton του συστήματος των τεσσάρων επιπέδων στήν εικόνα αλληλεπίδρασης (interaction picture), στήν οποία δεν συμπεριλαμβάνεται το ελεύθερο μέρος $\mathcal{H}_0 = \frac{\vec{p}^2}{2m} + V(\vec{r})$, γράφεται στήν μορφή

$$\mathcal{H}_i^{(t)} = U_0^\dagger(t) \mathcal{H}_i^{(t)} U_0(t)$$

η οποία κατόπιν πράξεων μετασχηματίζεται στήν παρακάτω τελική γραφή:
\[\psi^{(1)}_i = -\hbar \left(\Omega^{(2)}_{12} |1\rangle \langle 2| e^{-i\Delta_{12}t} + \Omega_{14} |1\rangle \langle 4| e^{-i\Delta_{14}t} + \Omega_{13} |3\rangle \langle 1| e^{-i\Delta_{13}t} + \Omega_{32} |3\rangle \langle 2| e^{-i\Delta_{32}t} + \Omega_{42} |4\rangle \langle 2| e^{-i\Delta_{42}t} + \text{h.c.} \right). \] (1.1)

Η (1.1) προέκυψε από την επίδραση του unitary τελεστή χρονικής εξέλιξης \(\dot{U}(t) = -\frac{i}{\hbar} \psi(t) \) και συγκεκριμένα μέσω της δράσης του τελεστή \(U_0(t) = \exp[-\frac{i}{\hbar} \psi(t)] \) στην Hamiltonian αλληλεπίδρασης. Η φυσική σημασία του τελεστή αυτού σχετίζεται αμέσως με την αντιορικτική εξέλιξη των κβαντομηχανικών συστημάτων στο χρόνο (principle of causality). Το τελευταίο μαζί με την πιθανοκρατική διαδικασία της μέτρησης (probabilistic measurement) συνθετούν το πρόβλημα του κβαντομηχανικού διυισμού (quantum mechanical dualism), το οποίο είναι ακόμα επίκαιρο.

Στήν εξίσωση (1.1) χρησιμοποιήσαμε την σημειογραφία \(1/2 \cdot S_{1/2} \), \(1/2 \cdot S_{3/2} \) και \(3/2 \cdot P_{3/2} \) αντίστοιχα. Κατά συνέπεια οι συχνότητες Rabi δίνονται από τις εκφράσεις: \(\Omega^{(2)}_{12} = \frac{\mu^{(2)}_{12} \cdot \varepsilon_{1}^{2}}{2h} \), \(\Omega_{42} = \frac{\mu_{42} \cdot \varepsilon_{2}}{2h} \), \(\Omega_{14} = \frac{\mu_{14} \cdot \varepsilon_{3}}{2h} \), \(\Omega_{32} = \frac{\mu_{32} \cdot \varepsilon_{4}}{2h} \) και \(\Omega_{13} = \frac{\mu_{13} \cdot \varepsilon_{5}}{2h} \) αντίστοιχα, όπου \(\varepsilon_{j} \) είναι το πλάτος του ηλεκτρικού πεδίου της διφωτονικής ακτινοβολίας, \(\varepsilon_{j} \) τα πλάτη των μονοφωτονικά παραγόμενων ακτινοβολιών και \(\mu_{ij} \) τα στοιχεία του πίνακα στις διάφορες ατομικές μεταβάσεις [11]. Οι συχνότητες Rabi λαμβάνονται μιγαδικές ότσε η ερμηνεία των αποτελεσμάτων να είναι πληρέστερη, ενώ τα στοιχεία του πίνακα \(\rho_{ij} \) (που αναφέρονται παρακάτω) θεωρούνται πραγματικά. Επίσης, οι διάφοροι αποσυντονισμοί δίνονται από την σχέση: \(\Delta_{ij} = \nu_{j} - \omega_{j} \), με \(\nu_{j} \) τις συχνότητες των επιπέδων που δρούν στις αντίστοιχες ατομικές μεταβάσεις και \(\omega_{j} \) τον ενεργειακό διαχωρισμό των επιπέδων, Σχήμα 1.1. Συγκεκριμένα, ορίζουμε ως παραμέτρους τους αποσυντονισμούς: \(\Delta_{12} = \nu_{1} - \omega_{12} \), \(\Delta_{14} = \nu_{3} - \omega_{14} \) και \(\Delta_{13} = \nu_{5} - \omega_{13} \) αντίστοιχα εκφράζοντας τους όρους αποσυντονισμού \(\Delta_{32} \), \(\Delta_{42} \) και \(\Delta_{43} \) συναρτήσει των προηγούμενων. Βρίσκουμε ότι: \(\Delta_{32} = \Delta_{12} - \Delta_{13} \), \(\Delta_{42} = \Delta_{12} - \Delta_{14} \) και \(\Delta_{43} = \Delta_{14} - \Delta_{13} \) αντίστοιχα.
Σημειώνουμε τέλος, ότι στήν Hamiltonian (1.11) δεν περιλαμβάνεται ο όρος της κινητικής ενέργειας \(E_k = \frac{p^2}{2m} \), μιάς και το κελί των ατόμων (vapour cell), το οποίο αποτελεί το ατομικό μας μέσο, παραμένει ακίνητο χωρίς να υφίσταται διαμήκης μετατοπίση του σε σχέση με την διεύθυνση του πεδίου του laser.

Σχήμα 1.1 Ενεργειακό διάγραμμα του ατόμου του καλίου τεσσάρων ενεργειακών καταστάσεων. Το πεδίο laser μήκους κύματος \(\lambda = 728.6 \) nm διεγείρει το ατόμο με δύο φωτόνια στήν κατάσταση \(|2\rangle \). Μεταξύ των καταστάσεων \(|1\rangle \) και \(|2\rangle \) μεσολαβεί η εικονική κατάσταση (virtual state) \(|\rangle \) και \(|\rangle \). Τα εσωτερικά παραγόμενα πεδία εμφανίζονται στις εξής μεταβάσεις: \(|2\rangle \leftrightarrow |4\rangle \) και \(|4\rangle \leftrightarrow |1\rangle \), της διαδρομής-1, \(|2\rangle \leftrightarrow |3\rangle \) και \(|3\rangle \leftrightarrow |1\rangle \) της διαδρομής-2. Οι συχνότητες των εσωτερικά παραγόμενων πεδίων είναι: \(\omega_{24} \), \(\omega_{41} \), \(\omega_{23} \) και \(\omega_{31} \) αντίστοιχα.

1.1.2 Κβαντική στατιστική. Ο πίνακας πυκνότητας

Την περίοδο που ακολούθησε μετά την θεμελίωση της κβαντομηχανικής το 1925, αναζητήθηκαν τα θεωρητικά εκείνα εργαλεία με τα οποία μπορούσε να επιτευχθεί η μελέτη πολυπλοκέων ατόμων, χωρίς να είναι γνωστή έκ των προτέρων, η κυματοσυνάρτηση \(\psi(\vec{r},t) \) μιάς κατάστασης. Πλέον ο βαθμός πολυπλοκότητας αυξήθηκε καθώς προχωρήσαμε από το άτομο του υδρογόνου \((H) \), και τα ειδικά
υδρογονοειδή, σε πολύ πιο σύνθετα άτομα και μόρια, με αποτέλεσμα η γνώση της κυματοσυνάρτησης μίας ιδιοκατάστασης να είναι από πολύ δύσκολή έως αδύνατη. Για να ξεπεραστούν αυτά τα προβλήματα, οι θεμελιωτές της κβαντομηχανικής ορίσαν το στατιστικό «εργαλείο» $\hat{\rho}(\vec{r},t)$ που ονομάζεται πίνακας πυκνότητας (density matrix). Ο πίνακας πυκνότητας μπορεί να οριστεί με τους παρακάτω δύο τρόπους:

i) $\hat{\rho}_j = \alpha \alpha_j$, με βάση τον φορμαλισμό των πλατών πιθανότητας (amplitudes) α_i και ii) $\hat{\rho}_j = \rho_j |i\rangle\langle j|$, στόν χώρο Fock, με ρ_j το κλασικό μέρος του πίνακα πυκνότητας και με $\hat{\sigma}_j = |i\rangle\langle j|$ τον τελεστή ανύψωσης ή υποβιβασμού (raising ή lowering operator) αντίστοιχα, ο οποίος που μας υποδηλώνει την μετάβαση από την μία ιδιοκατάσταση στην άλλη. Στήν κβαντομηχανική στατιστική όπου αντιμετωπίζονται πολυεπίπεδα συστήματα ατόμων πυκνότητας N ο τελεστής του πίνακα πυκνότητας $\hat{\rho}$ ενός ατομικού συστήματος (ensemble) χαρακτηρίζεται από τις παρακάτω ιδιότητες [12]:

α) Τα στοιχεία του πίνακα πυκνότητας δίνονται από την γενική σχέση $\rho_{\ell\ell'} := \langle \ell | \rho | \ell' \rangle$.

β) Τα διαγώνια στοιχεία (diagonal elements) $\rho_{\ell\ell}$ ονομάζονται μετρούμενες πιθανότητες (measured probabilities) μίας κατάστασης $|\ell\rangle$ και δίνονται από την σχέση $\rho_{\ell\ell} := \langle \ell | \rho | \ell \rangle = | \langle \psi(\vec{r},t) | \ell \rangle |^2$.

γ) Τα μη-διαγώνια στοιχεία (non-diagonal elements) $\rho_{\ell\ell'}$ εκφράζουν την συμφωνία (coherence) της μετάβασης $|\ell\rangle \leftrightarrow |\ell'\rangle$ (δηλαδή της υπέρθεση των καταστάσεων $|\ell\rangle$ και $|\ell'\rangle$ αντίστοιχα) και δίνουν πληροφορίες για την σχετική φάση των διαφόρων στοιχείων της υπέρθεσης (πραγματικό και φανταστικό μέρος του $\rho_{\ell\ell'}$ αντίστοιχα).

δ) Η αρτιότητα (parity) για μία απλή κατάσταση (pure state) δίνεται από την σχέση $\text{Tr}[\rho^2] = \text{Tr}[\rho] = 1$, ενώ για μία μικτή κατάσταση (mixed state) είναι $\text{Tr}[\rho^2] < 1$, αντίστοιχα.
Στην περίπτωση του συστήματος των τεσσάρων ενεργειακών επιπέδων ο
telestής του πίνακας πυκνότητας \(\hat{\rho} = \sum_{|i|,|j|}^{4} \rho_{ij} |i\rangle \langle j| \) αναπτυσσόμενος με όλους τους
dinataous syndiasmoys graφetai o\:

\[
\begin{align*}
\hat{\rho} &= \rho_{11} |1\rangle \langle 1| + \rho_{22} |2\rangle \langle 2| + \rho_{33} |3\rangle \langle 3| + \rho_{44} |4\rangle \langle 4| + \rho_{12} |1\rangle \langle 2| + \rho_{24} |2\rangle \langle 4| + \rho_{41} |4\rangle \langle 1| \\
&+ \rho_{23} |2\rangle \langle 3| + \rho_{31} |3\rangle \langle 1| + \rho_{42} |4\rangle \langle 2| + \rho_{14} |1\rangle \langle 4| + \rho_{32} |3\rangle \langle 2| + \rho_{13} |1\rangle \langle 3| \\
&+ \rho_{34} |3\rangle \langle 4| + \rho_{43} |4\rangle \langle 3|.
\end{align*}
\]

Από την εξίσωση von Neumann \(\hat{\rho} = -\frac{i}{\hbar} [\hat{C}, \hat{\rho}] \), όπου στήλη βιβλιογραφία μπορεί

να συναντηθεί και με το όνομα Schrödinger-von Neumann [12], αποδεικνύεται ότι οι επιμέρους εξισώσεις των στοιχείων πίνακα στήλη προσέγγιση του περιστρεφόμενου
kúmatos (rotating wave approximation-RWA) \(\rho_{ij} = \sigma_{ij} e^{-i\omega t} \), όπου αναγνωρίζονται οι

antistovniaimenoi õrroi \((\omega_{maj}, \omega_{ij}) \), paiρνουν την τελική μορφή:

\[
\begin{align*}
\hat{\sigma}_{11} &= -i (\Omega_{12} \sigma_{12} - \Omega_{23} \sigma_{21} + \Omega_{14} \sigma_{14} - \Omega_{43} \sigma_{43}) + \Gamma_{2R} \sigma_{22} + \Gamma_{31} \sigma_{33} + \Gamma_{41} \sigma_{44}, & (1.2) \\
\hat{\sigma}_{22} &= i (\Omega_{21} \sigma_{21} - \Omega_{32} \sigma_{32} + \Omega_{24} \sigma_{42} - \Omega_{42} \sigma_{24}) - \left(\Gamma_{23} + \Gamma_{24} + \Gamma_{2k}\right) \sigma_{22}, & (1.3) \\
\hat{\sigma}_{33} &= i (\Omega_{32} \sigma_{32} - \Omega_{23} \sigma_{23} + \Omega_{34} \sigma_{34}) - \Gamma_{31} \sigma_{33} - \Gamma_{32} \sigma_{22} - \Gamma_{33} \sigma_{33}, & (1.4) \\
\hat{\sigma}_{44} &= i (\Omega_{41} \sigma_{41} - \Omega_{14} \sigma_{14} + \Omega_{42} \sigma_{42} - \Omega_{24} \sigma_{24}) - \Gamma_{41} \sigma_{44} + \Gamma_{42} \sigma_{22}, & (1.5) \\
\hat{\sigma}_{13} &= i (\Delta_{13} + i\gamma_{13}) \sigma_{13} + i \left(\Omega_{13} (\sigma_{33} - \sigma_{11}) + \Omega_{14} \sigma_{43} + \Omega_{12} \sigma_{23} - \Omega_{23} \sigma_{12}\right), & (1.6) \\
\hat{\sigma}_{14} &= i (\Delta_{14} + i\gamma_{14}) \sigma_{14} + i \left(\Omega_{14} (\sigma_{44} - \sigma_{11}) + \Omega_{12} \sigma_{24} + \Omega_{13} \sigma_{34} - \Omega_{34} \sigma_{12}\right), & (1.7)
\end{align*}
\]
\[\dot{\sigma}_{12} = i(\Delta_{12} + i\gamma_{12})\sigma_{12} + i(\Omega_{12}(\sigma_{22} - \sigma_{11}) + \Omega_{14}\sigma_{42} + \Omega_{13}\sigma_{32} - \Omega_{32}\sigma_{13} - \Omega_{42}\sigma_{14}), \]
(1.8)

\[\dot{\sigma}_{34} = -i(\Delta_{14} - \Delta_{13} - i\gamma_{34})\sigma_{34} + i(\Omega_{31}\sigma_{14} + \Omega_{32}\sigma_{24} - \Omega_{42}\sigma_{31} - \Omega_{24}\sigma_{32}), \]
(1.9)

\[\dot{\sigma}_{23} = -i(\Delta_{12} - \Delta_{13} - i\gamma_{23})\sigma_{23} + i(\Omega_{23}(\sigma_{33} - \sigma_{22}) + \Omega_{21}\sigma_{13} + \Omega_{24}\sigma_{43} - \Omega_{43}\sigma_{21}), \]
(1.10)

\[\dot{\sigma}_{24} = -i(\Delta_{12} - \Delta_{14} - i\gamma_{24})\sigma_{24} + i(\Omega_{24}(\sigma_{44} - \sigma_{22}) + \Omega_{21}\sigma_{14} + \Omega_{23}\sigma_{34} - \Omega_{34}\sigma_{21}). \]
(1.11)

+ complex conjugate.

Στις πιο πάνω εξισώσεις προσθέσαμε φαινομενολογικά τους ρυθμούς απόσβεσης \(\gamma_{ij} \), στούς οποίους δεν υπάρχει συνεισφορά, σε μία πρώτη προσέγγιση, από αντίστοιχους όρους κρούσεων \(\gamma_{\text{col}} = \frac{1}{\tau_{\text{col}}} \) (collision dephasing terms). Στα επόμενα κεφάλαια, όταν θα επιχειρήσουμε μία σύγκριση των θεωρητικών και πειραματικών αποτελεσμάτων, ο όρος αυτός θα ληφθεί υπόψη. Συγκεκριμένα οι ρυθμοί απόσβεσης, λόγω της αυθόρμητης εκπομπής \(2R \), συμβολίζουμε επιπρόσθετα την ενεργό απόσβεση \((\text{effective decay}) \) της κατάστασης \(|2\rangle \) προς την θεμελιώδη κατάσταση \(|1\rangle \).

1.1.3 Εξισώσεις διάδοσης των ηλεκτρικών πεδίων

Ως γνωστόν στήν φύση τα ηλεκτρικά πεδία χαρακτηρίζονται από συνιστώσες και στις τρεις διαστάσεις (3d) του χώρου, με συνέπεια να απαιτείται μία αντίστοιχη μοντέλοποιήση τους. Το ίδιο ισχύει και για την επαγώμενη από αυτά πόλωση. Στήν απόδειξη που ακολουθεί θεωρούμε ότι τα ηλεκτρικά πεδία έχουν μιγαδικό πλάτος μιάς και ενδιαφερόμαστε να διαχωρίσουμε την εκπεμπόμενη από την απορροφούμενη ακτινοβολία. Τα ηλεκτρικά πεδία τυποποιούνται με την παρακάτω μορφή:
\[\mathbf{E}(\mathbf{r}, t) = \hat{n} \sum_{j=1}^{5} \left[\frac{\varepsilon_j(\mathbf{r}, t)}{2} e^{-i(\omega t - \mathbf{k}_j \cdot \mathbf{r})} + \text{c.c.} \right], \quad (1.12) \]

\[\mathbf{P}(\mathbf{r}, t) = \hat{n} \sum_{j=1}^{5} \left[\frac{p_j(\mathbf{r}, t)}{2} e^{-i(\omega t - \mathbf{k}_j \cdot \mathbf{r})} + \text{c.c.} \right]. \quad (1.13) \]

Από τις εξισώσεις του Maxwell:

\[\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B}, \quad \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial}{\partial t} \mathbf{D}, \quad \nabla \cdot \mathbf{D} = \rho, \quad \nabla \cdot \mathbf{B} = 0, \]

με \(\mathbf{H} = \frac{1}{\mu} \mathbf{B} \) καθώς και \(\mathbf{J} = \sigma \mathbf{E} \) η πυκνότητα ρεύματος και \(\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} \) η ηλεκτρική μετατόπιση, έχουμε:

\[\nabla \times \nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \left(\nabla \times \mathbf{B} \right) \Rightarrow \nabla \times \nabla \times \mathbf{E} = -\mu \left(\frac{\partial}{\partial t} \mathbf{J} + \frac{\partial^2}{\partial t^2} \mathbf{D} \right) \Rightarrow \]

\[\nabla \times \nabla \times \mathbf{E} = \nabla \left(\nabla \cdot \mathbf{E} \right) - \nabla^2 \mathbf{E} \]

\[\nabla^2 \mathbf{E} = \mu \sigma \frac{\partial}{\partial t} \mathbf{E} + \mu \varepsilon_0 \frac{\partial^2}{\partial t^2} \mathbf{E} + \mu \frac{\partial^2}{\partial t^2} \mathbf{P} \Rightarrow \]

\[\nabla^2 \mathbf{E} + \frac{\partial^2}{\partial Z^2} \mathbf{E} = \mu \sigma \frac{\partial}{\partial t} \mathbf{E} + \mu \varepsilon_0 \frac{\partial^2}{\partial t^2} \mathbf{E} + \mu \frac{\partial^2}{\partial t^2} \mathbf{P} \Rightarrow \]

\[\nabla^2 \mathbf{E} + \frac{\partial^2}{\partial Z^2} \mathbf{E} - \frac{1}{c^2} \frac{\partial^2}{\partial T^2} \mathbf{E} = \mu \sigma \frac{\partial}{\partial t} \mathbf{E} + \mu \frac{\partial^2}{\partial t^2} \mathbf{P} \Rightarrow \]

\[\nabla^2 \mathbf{E} + \left(\frac{\partial}{\partial Z} - \frac{1}{c} \frac{\partial}{\partial T} \right) \left(\frac{\partial}{\partial Z} + \frac{1}{c} \frac{\partial}{\partial T} \right) \mathbf{E} = \mu \sigma \frac{\partial}{\partial t} \mathbf{E} + \mu \frac{\partial^2}{\partial t^2} \mathbf{P} \Rightarrow \]

\[\nabla^2 \mathbf{E} + \left(2ik \right) \left(\frac{\partial}{\partial Z} + \frac{1}{c} \frac{\partial}{\partial T} \right) \mathbf{E} = \mu \sigma \frac{\partial}{\partial t} \mathbf{E} + \mu \frac{\partial^2}{\partial t^2} \mathbf{P}. \quad (1.14) \]
Η (1.14) προέκυψε από τον εν μέρει μετασχηματισμό της δευτεροβάθμιας εξίσωσης Maxwell σε πρωτοβάθμια. Στην συνέχεια εξαιτίας της προσέγγισης των αργά μεταβαλλόμενων πλατών, (slowing varying envelope approximation-SVEA), στόν καθυστερημένο χρόνο (retarded time frame $\tau=t-Z/c$, $z=\zeta$), η σχέση (1.14) μετασχηματίζεται στήν τελική μορφή:

$$\nabla_i^2 E_j + (2ik_j) \left(\frac{\partial}{\partial z} - \frac{1}{c} \frac{\partial}{\partial t} \right) E_j = \mu \sigma \frac{\partial}{\partial t} E_j + \mu \frac{\partial^2}{\partial t^2} P_j \quad \Rightarrow$$

$$\nabla_i^2 E_j + 2ik_j \frac{\partial}{\partial \zeta} E_j = -\frac{k_i^2}{\varepsilon_0} p_j. \quad (1.15)$$

όπου $\nabla_i^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ η Laplacian στο επίπεδο (x,y) ενώ με $\varepsilon_j(x,y,\zeta,\tau)$ και $p_j(x,y,\zeta,\tau)$ θέτονται τα πλάτη του πεδίου και της επικεφαλής πόλωσης αντίστοιχα. Μηδενίζοντας τον τελεστή του Laplace στις 2 διαστάσεις $(2d)$, που αντιστοιχεί στις εγκάρσιες συνιστώσες του ηλεκτρικού πεδίου (δηλαδή στήν κωνική εκπομπή), προκύπτει η πρωτοβάθμια και πρωτοτάξια εξίσωση Maxwell στήν μία διάσταση $(1d)$-και συγκεκριμένα κατά μήκος του οπτικού άξονα ζ, με την οποία περιγράφουμε την αξονική εκπομπή δηλαδή τα πεδία που διαδίδονται μόνο κατά μήκος του οπτικού άξονα του πεδίου του laser. Η (1.15) μετασχηματιζόμενη δίνει:

$$\frac{\partial}{\partial \zeta} E_j(\zeta,\tau) = i \frac{k_i}{2\varepsilon_0} p_j(\zeta,\tau). \quad (1.16)$$

Κατά συνέπεια οι εξισώσεις διάδοσης των πλατών των ηλεκτρικών πεδίων $E_j(\zeta,\tau)$ που δημιουργούνται εσωτερικά για το σύστημα των τεσσάρων επιπέδων γίνονται:

$$\frac{\partial}{\partial \zeta} E_j(\zeta,\tau) = -iN \frac{k_i}{2\varepsilon_0} 4K_2 \sigma_2 \varepsilon_j(\zeta,\tau), \quad (1.17)$$
\[
\frac{\partial}{\partial \zeta} \epsilon_{i} (\zeta, \tau) = iN \frac{k_{i}}{2\epsilon_{0}} \mu_{i} \sigma_{24},
\]
\(1.18\)

\[
\frac{\partial}{\partial \zeta} \epsilon_{j} (\zeta, \tau) = iN \frac{k_{j}}{2\epsilon_{0}} \mu_{j} \sigma_{41},
\]
\(1.19\)

\[
\frac{\partial}{\partial \zeta} \epsilon_{k} (\zeta, \tau) = iN \frac{k_{k}}{2\epsilon_{0}} \mu_{k} \sigma_{23},
\]
\(1.20\)

\[
\frac{\partial}{\partial \zeta} \epsilon_{l} (\zeta, \tau) = iN \frac{k_{l}}{2\epsilon_{0}} \mu_{l} \sigma_{31}.
\]
\(1.21\)

To the second member of the equations (1.17-1.20) we have transformed, from the action of the graph of quantum polarization, \(\tau^{ij} = \mu \rho\), a single and once again the interaction of the radiation with \(\nu\), the second is considered quantum.

In the deduction of the above system of equations we have ignored the terms \(j_{ij} E_{j} \frac{\partial}{\partial \zeta} \) and \(j_{ij} P_{j} \frac{\partial}{\partial \zeta} \) respectively, because the change of them is enough small in a period of optical frequency (slow varying amplitude and phase approximations), with result the plates \(E_{j}\) and \(P_{j}\) do not change significantly [10]. We note that the system of the above equations (1.17)-(1.21) is parabolic with the antistochastic of the states of I. Pop and L. Moorman [13], the results can be presented similarly as time dependent.

In order to obtain the compatibility of the sought solutions, we consider the Maxwell-Bloch system of equations (1.18-1.21) with the state string of the quantum states of Rabi, we use the transformation of the Maxwell-Bloch system and the equation:

\[
\frac{\partial}{\partial \zeta} \Omega_{ij} (\zeta, \tau) = iN \frac{k_{ij}}{2\epsilon_{0}} \mu_{ij} \sigma_{24},
\]
\(1.22\)
Το συζευγμένο σύστημα των 24 διαφορικών εξισώσεων (1.2-1.11) και (1.22-1.25) επιλύεται αριθμητικά με την μέθοδο Runge-Kutta 4ης τάξεως και σταθερού βήματος (constant step size) στήν γλώσσα προγραμματισμού FORTRAN. Στο απλοποιημένο επίπεδο τον τεσσάρων επιπέδων μελετάται η αξονική εκπομπή κατά μήκος του θετικού οπτικού άξονα ζ (axial, forward propagating fields).

Σημειώνουμε ότι στήν επίλυση των εν λόγω εξισώσεων δεν συμπεριλαμβάνεται η εξίσωση διάδοσης της διφωτονικής ακτινοβολίας με χρονικό εύρος στο FWHM τε = 9 nsec, εξαιτίας του ότι αυτή είναι χωρικά πολύ πιο εκτεταμένη σε σχέση με το ενεργό μήκος του ατομικού μέσου που είναι ζε = 11 cm. Σε μονάδες μήκους το εύρος του διφωτονικού παλμού αντιστοιχεί σε ζε = 270 cm. Η προσέγγιση αυτή είναι συνάρτηση του εύρους του παλμού διέγερσης. Όπως γίνεται αντιληπτό στήν περίπτωση της picosecond και της femtosecond διφωτονικής άντλησης η μη-διάδοση του παλμού του laser δεν μπορεί να εφαρμοστεί.

Τέλος, οι βοηθητικές συνθήκες (αρχικές και συνοριακές) στο σύστημα τίθονται ως εξής: α) την χρονική στιγμή τε = 0 το ατομικό σύστημα βρίσκεται στήν θεμελιώδη κατάσταση σι(0,ζ0) = 1 και β) οι συχνότητες Rabi περιγράφονται από τον κβαντικό θόρυβο (quantum noise) με τιμή πεδίου θορύβου ει(ζ0,τε) = 10^{-4} V / cm [14].

Όπως σημειώσαμε και εξηγήσαμε παραπάνω η διφωτονική ακτινοβολία δεν διαδίδεται στο μέσο των ατμών του K, σε μία πρώτη προσέγγιση. Όμως το διφωτονικό στοιχείο του πίνακα εμφανίζεται στις ατομικές εξισώσεις φέροντας την πληροφορία του παλμού διέγερσης. Συγκεκριμένα η διφωτονική συχνότητα Rabi γράφεται τελικά ως Ωi2(τε) = −560×I(τε), (όπως δείχνουμε στο Παράρτημα Π2), όπου...
\[I(\tau) \text{ o παλμός της διφωτονικής έντασης: } I(\tau) = I_0 \sec h^2 \left(\frac{\tau - \tau_c}{\tau_c} \right), \text{ με το πλάτος } I_0 \text{ να εκφράζεται σε μονάδες } \frac{W}{cm^2}. \]

ΠΑΡΑΡΤΗΜΑ

\[\Pi 1 \text{ Ο κβαντικός θόρυβος} \]

Η αρχή της αβεβαιότητας του Heisenberg εισήγαγε στήν σύγχρονη μικρο-Φυσική την αντικειμενική εκείνη δυσκολία η οποία εμφανίζεται κατά την αλληλεπίδραση παρατηρητή και παρατηρούμενου συστήματος. Πρακτικά είναι αδύνατον να περιοριστεί ο ρόλος της μετρητικής συσκευής, και κατά συνέπεια του παρατηρητή, κατά την διάρκεια ενός φυσικού πειράματος. Επομένως, τα φυσικά μεγέθη όπως η θέση (\(\vec{r} \)) και η ορμή (\(\vec{p} \)), την ενέργεια (\(E \)) και τον χρόνο (\(\tau \)), τη διαμήκη (\(E_\perp \)) και τη γεγονός (\(E_\parallel \)) συνιστώσα του ηλεκτρικού πεδίου δεν μπορούν να μετρηθούν ταυτόχρονα με απόλυτη ακρίβεια. Όπως και ο κλασικός θόρυβος έτσι και ο κβαντικός (Quantum Noise) είναι ένα χρονο-εξαρτόμενο φαινόμενο. Χωρίς τον θόρυβο αυτό επαναλαμβανόμενη μετρήσεις μιας φυσικής ποσότητας (π.χ. ορμής) θα έδινε μία ομολόγος μεταβαλλόμενης συνάρτησης του χρόνου \([15]\). Το αντικείμενο του κβαντικού θορύβου στήν σύγχρονη κβαντομηχανική οικοδομείται στις εξής προσεγγίσεις:

i) Στη προσέγγιση του περιστρεφόμενου κύματος και την ομαλή (smoothed) σύζευξη συστήματος και περιβάλλοντος (bath) και ii) στο μοντέλο του λευκού θορύβου (White Noise) κατά Markov. Η Markovian περιγραφή είναι η προσέγγιση εκείνη όπου το περιβάλλον μοντελοποιείται ως λουτρό (heat bath) με πολύ μικρό χρόνο συναντισμού (correlation time) και ασθενή σύζευξη με το εκάστοτε σύστημα. Το όλο θέμα έχει πολύ μεγάλο παρελθόν στήν σύγχρονη Φυσική, και αντιμετωπίζει αρχικά με την χρήση των κβαντικών εξισώσεων Langevin. Οι εξισώσεις αυτές ουσιαστικά σχετίζονται με τις εξισώσεις των τελεστών του Heisenberg όπου το περιβάλλον (reservoir) εξαλείφεται εξαιτίας των εξαναγκασμένων όρων (damping terms) και των δυνάμεων του «λευκού θορύβου».
(white noise forces). Εναλλακτικά το όλο ζήτημα αντιμετωπίστηκε με την βοήθεια της εξίσωσης Master υπό τον φορμαλισμό του πίνακα πυκνότητας μαζί με τo quantum fluctuation regression theorem, κυρίως σε μη-γραμμικά συστήματα [15]. Στη παρούσα μελέτη τα πλάτη των παραγόμενον ηλεκτρικών πεδίων των σύμφωνων καταστάσεων του πεδίου ακτινοβολίας εκκινούν από τον κβαντικό θόρυβο, αποσκέψια εξωτερικού πεδίου (\(\varepsilon_0, \zeta, \tau\) = 10^{-4} V / cm) [14]. Η εκκίνηση αυτή σχετίζεται με την αρχή του Heisenberg για τους λόγους που περιγράψαμε πιο παραπάνω.

Π.1.2 Προσδιορισμός της πόλωσης της δισμονικής μετάβασης στο άτομο του Κ.

Έστω ότι μεταξύ της μετάβασης \(|1\rangle\leftrightarrow|2\rangle\) του ατόμου των τεσσάρων ενεργειακών καταστάσεων παραμικράλλεται ένα σύνολο επιπέδων \(|\ell\rangle\), δέσμιων ή ελευθέρων. Θεωρούμε επίσης, ότι το σύστημα των επιπέδων επιστρέφει από την ανώτερη ενεργειακή κατάσταση στην κατώτερη μέσω των καταστάσεων \(|\ell'\rangle\), ώστε να προσέγγιστει με ένα κλειστό βρόχο (closed loop). Το εφαρμοζόμενο πεδίο που οδηγεί την μετάβαση \(|1\rangle\rightarrow|2\rangle\) γράφεται ως: \(\mathbf{E}_1(t) = \varepsilon_1(t)e^{-i\omega t} + \varepsilon_1^*(t)e^{i\omega t}\), με \(\varepsilon_1(t), \varepsilon_1^*(t)\) συμβολίζουν τα αργά μεταβαλλόμενα μιγαδικά πλάτη του πεδίου αυτού. Αναπτύσσουμε τα στοιχεία πίνακα \(\rho_{ij}(t)\) των μεταβάσεων του κλειστού συστήματος στην πρώτη προσέγγιση των αργά μεταβαλλόμενων πλάτων. Για τα διαγώνια στοιχεία έχουμε ότι: \(\rho_{11}(t) = \sigma_{11}(t)\) και \(\rho_{22}(t) = \sigma_{22}(t)\), ενώ για το μη-διαγώνιο στοιχείο \(\rho_{12}(t)\) έχουμε αντίστοιχα: \(\rho_{12}(t) = \sigma_{12}(t)e^{-i\omega t} + \sigma_{21}(t)e^{i\omega t}\).

Εξαιτίας του γεγονότος ότι η μετάβαση \(|1\rangle\leftrightarrow|2\rangle\) είναι διπολικά απαγορευμένη, δηλαδή \(\mu_{12} = 0\), μπορούμε να θεωρήσουμε ότι \(\omega_2 \equiv -2\omega\). Σε αυτό το σημείο σημειούμε ότι το τελευταίο δεν συνεπάγεται την γέννηση της δευτερης αρμονικής. Για τα μη-συντονιστικά στοιχεία \(\rho_{ij}(t)\) και \(\rho_{ij}(t)\) στο σέτ των επιπέδων \(|\ell\rangle\) έχουμε αντίστοιχα: \(\rho_{ij}(t) = \sigma_{ii}(t)e^{-i\omega t} + \sigma_{ji}(t)e^{i\omega t}\) και \(\rho_{ij}(t) = \sigma_{ji}(t)e^{-i\omega t} + \sigma_{ij}(t)e^{i\omega t}\). Σύμφωνα με τη μελέτη των A. T. Georges, et.al. [16] οι εξίσωσεις πίνακα, για την περίπτωση του κλειστού συστήματος, με χρήση της εξίσωσης von Neumann, είναι:
\[
\left(\frac{\partial}{\partial t} - i \omega_{i} \right) \rho_{i} = -\frac{i}{\hbar} E_{i}(t) \sum_{k=l+2}^{k_{1}} \left(\mu_{ik} \rho_{k} - \rho_{ik} \mu_{k} \right), \quad (1.22)
\]

\[
\left(\frac{\partial}{\partial t} - i \omega_{2} \right) \rho_{2} = -\frac{i}{\hbar} E_{1}(t) \sum_{k=l+2}^{k_{1}} \left(\mu_{ik} \rho_{k} - \rho_{ik} \mu_{k} \right), \quad (1.23)
\]

Από την (1.23) αντικαθιστώντας τα \(\rho_{ij}(t) \), με τα αργά μεταβαλλόμενα πλάτη των αναπτυγμάτων τους, παιρνουμε διαδοχικά ότι:

\[
A_{\mu \lambda \rho} = \left(\frac{\partial}{\partial t} - i \omega_{i} \right) \left[\sigma_{i \rho} e^{-i \omega t} + \sigma_{\rho i} e^{i \omega t} \right] = \frac{\partial}{\partial t} \sigma_{i \rho}(t) e^{-i \omega t} + \frac{\partial}{\partial t} \sigma_{\rho i}(t) e^{i \omega t} + \left(-i \omega \right) \sigma_{i \rho}(t) e^{-i \omega t} + \left(i \omega \right) \sigma_{\rho i}(t) e^{i \omega t} - i \omega \sigma_{i \rho}(t) e^{-i \omega t} - i \omega \sigma_{\rho i}(t) e^{i \omega t} \rightarrow
\]

\[
A_{\mu \lambda \rho} = i \sigma_{i \rho} e^{-i \omega t} \left(-\omega - \omega_{i} \right) + i \sigma_{\rho i} e^{i \omega t} \left(\omega - \omega_{i} \right).
\]

Λόγω της προσέγγισης των αργά μεταβαλλόμενων πλατών θεωρήσαμε ότι τα διαφορικά \(\frac{\partial}{\partial t} \sigma_{i \rho}(t) \) και \(\frac{\partial}{\partial t} \sigma_{\rho i}(t) \) μηδενίζονται. Ομοίως έχουμε:

\[
B_{\mu \lambda \rho} = -\frac{i}{\hbar} E_{1}(t) \left[\mu_{i \rho} \rho_{i} + \mu_{2 \rho} \rho_{2} - \rho_{11} \mu_{2} + \rho_{12} \mu_{2} \right] \rightarrow
\]

\[
B_{\mu \lambda \rho} = -\frac{i}{\hbar} E_{1}(t) \left[-\rho_{11} \mu_{2} + \rho_{12} \mu_{2} \right] \Rightarrow
\]

\[
B_{\mu \lambda \rho} = \frac{i}{\hbar} \left[\varepsilon_{1}(t) e^{-i \omega t} + \varepsilon^{*}_{1}(t) e^{i \omega t} \right] \left[\sigma_{i \rho} + \left(\sigma_{i \rho} e^{i \omega t} + \sigma_{\rho i} e^{-i \omega t} \right) \mu_{2} \right] \Rightarrow
\]

\[
B_{\mu \lambda \rho} = \frac{i}{\hbar} \left[\varepsilon_{1}(t) \sigma_{i \rho} e^{-i \omega t} + \varepsilon^{*}_{1}(t) \sigma_{i \rho} e^{i \omega t} + \varepsilon^{*}_{1}(t) \sigma_{\rho i} e^{-i \omega t} + \varepsilon_{1}(t) \sigma_{\rho i} e^{i \omega t} \right].
\]

Η τελευταία σχέση προέκυψε αφού αγνοήσαμε όρους ανάλογους του \(e^{i \omega t} \), σχετικούς με την τρίτη αρμονική. Εξισώνοντας στήν συνέχεια τα δύο μέλη έχουμε:
Από την (1.23) αντικαθιστώντας τα $\rho_{ij}(t)$ με τα αναπτύγματα τους παίρνουμε την
σχέση $\sigma_{12} = \frac{\epsilon_i(t)\sigma_{22} + \epsilon_i^*(t)\sigma_{12}}{\hbar(\omega + \omega_{12})}$. Η πόλωση επομένως για ένα άτομο που επάγει η διφωτονική μετάβαση είναι, $P = \langle \mu \rangle = \text{Tr}(\mu \rho)$, δηλαδή:

$$P_1(z,t) = \sum_{\ell} \left[\mu_{i\ell} \rho_{i1} + \mu_{2\ell} \rho_{i2} + \rho_{i1} \mu_{1\ell} + \rho_{i2} \mu_{2\ell} \right] \Rightarrow$$

$$P_1(z,t) = \sum_{\ell} \left[\mu_{i\ell} \sigma_{i1} + \mu_{2\ell} \sigma_{i2} + \sigma_{i1} \mu_{1\ell} + \sigma_{i2} \mu_{2\ell} \right] e^{-it(\omega_{12} z)} + \text{c.c.}$$

Οι πρώτοι και τέταρτοι οροί στις αγκύλες μπορούν να αγνοηθούν μιας και σχετίζονται με το μη-συντονισμένο πλάτος σ_{12} δηλαδή $\sigma_{11} \propto \sigma_{12}$ και $\sigma_{22} \propto \sigma_{12}$. Συνεπώς η προηγούμενη σχέση γίνεται:

$$P_1(z,t) = \sum_{\ell} \left[\mu_{2\ell} \sigma_{i2} + \sigma_{i1} \mu_{1\ell} \right] e^{-it(\omega_{12} z)} + \text{c.c.} \Rightarrow$$

$$P_1(z,t) = \left\{ \sum_{\ell} \left(\frac{\mu_{2\ell} \mu_{1\ell}}{\omega_{12} + \omega} - \frac{\mu_{2\ell} \mu_{1\ell}}{\omega_{12} + \omega} \right) \frac{\sigma_{21}}{\hbar} \epsilon_i(t) + \sum_{\ell} \left(\frac{\left| \mu_{2\ell} \right|^2}{\omega_{12} + \omega} - \frac{\left| \mu_{2\ell} \right|^2}{\omega_{12} + \omega} \right) \frac{\sigma_{11}}{\hbar} \epsilon_i(t) \right\} \times e^{-it(\omega_{12} z)} + \text{c.c.}$$

(1.24)
Η σχέση (1.24) εκφράζει την ολική πόλωση \(P_1(z,t) \) του συστήματος, η οποία μπορεί να γραφεί ως:

\[
P_1(z,t) = \left\{ \sum_{l} \left(-\frac{\mu_2 \mu_{1l}}{\omega_{1l} + \omega} - \frac{\mu_2 \mu_{1l}}{\omega_{2l} - \omega} \right) \frac{\sigma_{21}}{h} e_1^*(t) \right\} \times e^{-i(\omega_{kz} t)} + \text{c.c} \Rightarrow \]

\[
P_1(z,t) = \left\{ -\frac{2}{h} \sum_{l} \left(\frac{\mu_2 \mu_{1l}}{\omega_{2l} - \omega} \right) \sigma_{21} e_1^*(t) \right\} \times e^{-i(\omega_{kz} t)} + \text{c.c} \Rightarrow \]

\[
P_1(z,t) = -4\mu_2^{(2)} \sigma_{21} e_1^*(t) e^{-i(\omega_{kz} t)} + \text{c.c} , \quad (1.25)\]

όπου \(\omega_{1l} = \omega_{1l} + \omega_{2l} \Rightarrow -2 \omega = \omega_{1l} + \omega_{2l} \Rightarrow \omega_{1l} + \omega = -\left(\omega + \omega_{1l} \right) = \omega_{2l} - \omega \), ενώ θέσαμε \(K_{21} = \frac{1}{2h} \sum_{l} \left(\frac{\mu_2 \mu_{1l}}{\omega_{2l} - \omega} \right) \). Στην περίπτωση που το πλάτος του πεδίου \(e_i \) εκφράζεται με τη σχέση \(e_i = \frac{\varepsilon_i^*}{2} \) η (1.25) γίνεται:

\[
P_1(z,t) = -2N\mu_2^{(2)} \sigma_{21} e_1^*(t) e^{-i(\omega_{kz} t)} + \text{c.c} . \quad (1.26)\]

Η τελευταία σχέση προκύπτει από την μεθοδολογία με την οποία υπολογίζουμε το διφωτονικό στοιχείο πίνακα. Το στοιχείο πίνακα της διφωτονικής στο σύστημα των μονάδων που χρησιμοποιούμε προκύπτει ότι είναι \(\mu_{12}^{(2)} = 15.7 \times 10^{-35} \text{ cm}^2 \text{Cb} \text{ V} \) ή \(\mu_{12}^{(2)} = 950 \) [a.u.] (Single quantum defect theory-SQDT) [17], με [a.u.] να δηλώνεται το σύστημα των ατομικών μονάδων.

Βιβλιογραφία

ΚΕΦΑΛΑΙΟ 2

Θεωρητική μελέτη της παραμετρικής μίξης κυμάτων σε άτομα καλίου υπό nsec διφωτονική
dιέγερση.

Ενότητα I

Εισαγωγή ενότητας I

Όπως αναφέρθηκε στην εισαγωγή της διδακτορικής διατριβής, η κβαντική συμβολή (quantum interference-QI) διαδραματίζει σημαντικό ρόλο στην συμπεριφορά των ατομικών συστημάτων. Είναι δυνατόν η εμφανισή της να τροποποιήσει ολοκληρωτικά την προηγούμενη μη-γραμμική φύση των συστημάτων αυτών, όπως δείχνουμε παρακάτω. Στην διφωτονική διέγερση $|3S\rangle \leftrightarrow |3D\rangle$ των ατμών του νατρίου πρώτοι οι W. R. Garrett et.al. [1] απέδειξαν τόσο θεωρητικά όσο και πειραματικά την τροποποίηση της μη-γραμμικής συμπεριφοράς που υφίσταται μία ατομική διαδρομή εξαιτίας της καταστρεπτικής QI. Συγκεκριμένα σε σύστημα τριών επιπέδων ($|3S\rangle$, $|3P\rangle$, $|3D\rangle$) οι παραμετρικά παραγόμενες ακτινοβολίες $|3D\rangle \leftrightarrow |3P\rangle$ (υπέρυθρη) και $|3P\rangle \leftrightarrow |3S\rangle$ (υπεριώδης) αντίστοιχα, ικανοποιούσαν την σχέση: $\frac{E_{IR}^2}{\omega_{IR}} - \frac{E_{UV}^2}{\omega_{UV}} = \text{const}$, η οποία δήλωνε ότι η αλλαγή στήν ενέργεια των φωτονίων στήν πρώτη μετάβαση ήταν ίση με την αλλαγή στήν ενέργεια των φωτονίων στήν δεύτερη μετάβαση. Συνεπώς, κάτω από συνθήκες όπου κανένα παραγόμενο πεδίο δεν απορροφόταν η παραπάνω συνθήκη μετασχηματίζόταν στήν σχέση: $\frac{I_{IR}}{I_{UV}} = \frac{\omega_{IR}}{\omega_{UV}} \Rightarrow I_{IR} = \text{const} \cdot I_{UV}$, η οποία με τη σειρά της περιέγραφε ότι η ένταση στήν πρώτη μετάβαση (IR) ήταν ανάλογη με αυτήν στήν δεύτερη, αντίστοιχα (UV). Από τη μελέτη των W. R. Garrett et.al. [1] σε ατμούς νατρίου και την αντίστοιχη πειραματική των N. Merle mis et.al. [2] σε ατμούς καλίου (K) κατανοήθηκε ότι κατά την παραμετρική μίξη τεσσάρων κυμάτων σε μία ατομική.
διαδρομή η ένταση των παραγόμενων ακτινοβολίων αυξανόταν αρχικά μη-γραμμικά (και συγκεκριμένα εκθετικά) με την μέγιστη ένταση του εξωτερικού πεδίου laser I_{max}, μέχρι ένα κρίσιμο σημείο (critical point) πέρα από το οποίο αυξανόταν με γραμμικό τρόπο. Το τελευταίο πραγματοποιήθηκε όταν ικανοποιήθηκε η συνθήκη για την καταστρεπτική QI.

Στο παρόν κεφάλαιο δείχνουμε ότι η αριθμητική επίλυση των εξισώσεων Maxwell-Bloch οδηγεί στήν ήπειρης τριών περιοχών σε μία από τις δύο διαδρομές (διαδρομή-1 ή path-1) που σχηματίζεται στο σύστημα των τεσσάρων ενεργειακών καταστάσεων: την μη-γραμμική, την γραμμική καθώς και την περιοχή κορεσμού, στήν οποία δεν παρατηρείται αύξηση της έντασης της παραμετρικής ακτινοβολίας για αυξανόμενη διφωτονική διέγερση.

2.1 Η κβαντική συμβολή

2.1.1 Κλασική συμβολή σε μηχανικά μέσα στόν μεσόκοσμο

Το φαινόμενο της συμβολής των κυματικών διαταραχών (wave interference) που διαιριστούν σε ένα μηχανικό μέσο του μεσόκοσμου (meso-cosmos), π.χ. σε ένα ρεύματό όπως ο άραξ και το νερό, είναι τόσο παλαιό όσο η ίδια η Φυσική. Ήδη από τον 17ο αιώνα κυρίως στο έργο του I. Newton (1643-1727) και του C. Huygens (1629-1695) παρατηρήθηκαν φαινόμενα στα οποία δύο διαφορετικά κύματα, της ίδιας ή διαφορετικής συχνότητας, συναντώνται σε μία περιοχή του μηχανικού μέσου έχοντας ως συνέπεια την παρουσία πυκνώματων ή αραιωμάτων στήν ευρύτερη περιοχή του μέσου. Το δημιουργούμενο πρότυπο στήν παρουσία των δύο κυμάτων ονομάστηκε πρότυπο συμβολής (interference pattern) ενώ τα πυκνώματα (μέγιστα) και τα αραιώματα (ελάχιστα) κροσσοί συμβολής αντίστοιχα. Οι κροσσοί αυτοί περιέγραφαν πότε η ένωση συμβολή ήταν δημιουργική (πυκνώματα) και πότε ήταν καταστρεπτική (αραιώματα). Το κλασικό αυτό φαινόμενο παρατηρήθηκε και στήν συμπεριφορά των ηλεκτρομαγνητικών κυμάτων κατά την αλληλεπίδραση τους με την ύλη σε μικροσκοπική κλίμακα (micro-cosmos) το οποίο δημιούργησε νέα, μη-τετριμμένα, ερωτήματα σχετικά με την φύση του μικρόκοσμου. Είναι γνωστή σε όλους μας η κβαντομηχανική μεταφορά του πειράματος των διπλών σχεδίων (double slits) του T. Young (1587-1655) το οποίο
ανέδειξε την διττή φύση του φωτός (κύμα και σωματίδιο ταυτόχρονα). Με αφορμή το πείραμα αυτό εισήχθη για πρώτη φορά η έννοια του υλικού κύματος (material wave) από τον L. D. Broglie (1892-1987) όπου συνδέονται επίσης για πρώτη φορά στήν ιστορία της Φυσικής, μία μακροσκοπική, όπως η ορμή και η ενέργεια του σωματιδίου, με μία μικροσκοπική μεταβλητή, όπως το μήκος κύματος και η συχνότητα του, σύμφωνα με τις σχέσεις \(p = \frac{h}{\lambda} \) και \(E = h \nu \) αντίστοιχα.

Τέλος, ο κλάδος της Φυσικής που ονομάζεται Ρευστοδυναμική οδήγησε σε εκπληκτικές τεχνολογικές καινοτομίες τους τελευταίους αιώνες. Το αποκορύφωμα ομως των κυματικών φαινομένων ήταν η ανακάλυψη από τον J. S. Russell (1808-1882) των κυματικών διαταραχών που ονομάστηκαν σολιτόνια (solitons) και τα οποία δεν εμφάνιζαν μόνο τα χαρακτηριστικά που περιγράφηκαν, αλλά χαρακτηρίζονταν και από την διατήρηση του πλάτους ταλάντωσης καθώς και της ενέργειας τους, οδηγώντας την Φυσική σε νέα πεδία μελέτης και έρευνας.

2.1.2 Συμβολή ηλεκτρομαγνητικών κυμάτων στόν μικρόκοσμο

Από την θεμελίωση της Κβαντομηχανικής (1925) έως και σήμερα προτάθηκαν αρκετές εναλλακτικές θεωρίες της κβαντικής ηλεκτροδυναμικής (quantum electrodynamics-QED). Οι θεωρίες αυτές βασίζονται στήν στοχαστική ηλεκτροδυναμική (stochastic electrodynamics), όπου η ύλη αντιμετωπίζεται κβαντομηχανικά ενώ η ακτινοβολία κλασικά, με συνυπολογιζόμενες τις κβαντικές διακυμάνσεις του κενού (quantum fluctuations-κεφάλαιο 1). Στήν εικόνα αυτή όλα τα αμιγώς κβαντομηχανικά φαινόμενα, όπως η αθόρμητη εκπόμπη, η μετατόπιση Lamb (W. Lamb, 1913-2008) και το εύρος της δέσμης του laser αντιμετωπίζονταν με την παραπάνω ημι-ποσοτική μόδα (semi-quantitative fashion) [3].

Χαρακτηριστικό παράδειγμα της εικόνας αυτής αποτέλεσαν τα κβαντικά διακροτήματα (quantum beats) όπου π.χ. σε ένα V-τύπου ατομικό σύστημα ο όρος συμβολής ή beat term εμφανίζονταν κατά την αυθόρμητη αποδιέγερση (decay) των δύο ενεργειακών υψηλότερων καταστάσεων με συχνότητες \(\nu_1 \) και \(\nu_2 \) αντίστοιχα, προς την θεμελιώδη κατάσταση. Το τελευταίο οδήγησε στην ανίχνευση της διαδρομής που αποδιέγειρεται κάθε φορά, την \(\nu_1 \) ή την \(\nu_2 \) το λεγόμενο which path, διαδραματίζοντας σημαντικό ρόλο στήν διαδικασία της μέτρησης (quantum theory of
measurement). Κατ’ αναλογία με το πείραμα των διπλών σχισμών, η αβεβαιότητα στήν ατομική διαδρομή (path ή trajectory) που αποδειγειρόταν κάθε φορά οδήγησε στήν συμβολή μεταξύ φωτονίων διαφορετικών συνιστήματος [3].

Στα περισσότερα προβλήματα αλληλεπίδρασης ακτινοβολίας-ύλης, τα οδηγούντα εξωτερικά πεδία που δρούν σε διαφορετικά κανάλια (channels) ή διαδρομές (paths) μπορούν επίσης, να δημιουργήσουν καταστρεπτική QI σε κάποια τελική κατάσταση. Τότε η γενικευμένη συνιστήσα Rabi (generalized Rabi frequency) μεταξύ των καναλιών ή διαδρομών που συμβάλλουν μπορεί να εφαρμόζεται ένδειξη καταστρεπτικής QI ή μεγιστοποιείται ένδειξη δημιουργικής QI. Από τότε η QI διαδραματίζει έναν από τους σημαντικότερους ρόλους σε πολυεπίπεδα ατομικά συστήματα και είναι ικανή να τροποποιήσει δραματικά την συμπεριφορά τους, επιδρώντας στους μηχανισμούς γέννησης των ακτινοβολιών.

2.2 Παραμετρική μίξη τεσσάρων κυμάτων

Στήν ενότητα αυτή περιορίζουμε την μελέτη μας στις μικρές ατομικές πυκνότητες των μεταλλικών ατμών του K, N < 10^14 cm^-3 με την μέγιστη ένταση του πεδίου να φτάνει μέχρι και την τιμή I_max = 5 MW/cm^2. Στα Σχήματα πού ακολουθούν παρουσιάζουμε διαγράμματα της μέγιστης τιμής της έντασης του εσωτερικά παραγόμενου πεδίου στήν μετάβαση |4⟩↔|1⟩ της μορφής:

\[\log(I_{\text{max}}) = a + s \times \log(p_i), \]

όπου p_i είναι οι εξής παράμετροι: το μήκος διάδοσης ζ, η μέγιστη ένταση I_{\text{max}} του πεδίου άντλησης και η ατομική πυκνότητα N. Τέλος με s δηλώνεται η κλίση της καμπύλης ενώ με a παρίσταται μία σταθερή ποσότητα με διαστάσεις έντασης.

2.2.1 Ένταση παραγόμενων πεδίων σε συνάρτηση με το μήκος διάδοσης

Στο Σχήμα 2.1 δείχνουμε την παραγόμενη μέγιστη ένταση της ακτινοβολίας στήν μετάβαση |4⟩↔|1⟩ σαν συνάρτηση του μήκους διάδοσης ζ για τρεις διαφορετικές τιμές της ατομικής πυκνότητας N, όπου η μέγιστη ένταση του πεδίου διέγερσης έχει τιμή I_{\text{max}} = 0.8 MW/cm^2.
Παρατηρούμε αρχικά την εμφάνιση δύο διακριτών ευθειών με διαφορετική κλίση σ. Στην πρώτη από αυτές η κλίση εχει σχετικά μεγάλη τιμή (κοντά στο 2) ενώ στήν δεύτερη τείνει πρός την μονάδα. Όσο περισσότερο αυξάνεται η τιμή της ατομικής πυκνότητας τόσο η κλίση των δεύτερων ευθειών προσεγγίζει την μονάδα.

Το τελευταίο οριοθετεί την απόκλιση από την μη-γραμμικότητα της διαδρομής-1, η οποία εξαρτάται γραμμικά πλέον από την τιμή του μήκους διάδοσης ζ.

Σχήμα 2.1 Μέγιστη ένταση της ακτινοβολίας στην μετάβαση 4 → 1 σε συνάρτηση με το μήκος διάδοσης ζ για τρεις διαφορετικές ατομικές πυκνότητες N. Παρατηρούμε ότι η γραμμική περιοχή μετατοπίζεται σε μικρότερα μήκη (ζ1 → ζ3) με την αύξηση της ατομικής πυκνότητας. Οι λοιπές παράμετροι ήταν:

\[I_{\text{max}} = 0.8 \text{ MW/cm}^2 \text{ και } \frac{\Delta_f}{2\pi} = 1 \text{ GHz}. \]

Επομένως, σε μεγαλύτερα μήκη διάδοσης και σε μεγαλύτερες ατομικές πυκνότητες N το ατομικό μέσο, σε αυτή την διαδρομή, συγκλίνει πρός την γραμμικότητα ή με άλλα λόγια αποκλίνει από την μη-γραμμικότητα η οποία τελικά περιορίζεται σημαντικά. Παρατηρούμε ακόμα, ότι η γραμμική περιοχή εκκινά σε μικρότερα μήκη όσο μεγαλύτερη είναι η ατομική πυκνότητα N. Στην μέγιστη από τις ατομικές πυκνότητες που παρουσιάζουμε (N = 8×10^13 cm^3) η έναρξη της γραμμικής περιοχής γίνεται στήν θέση ζ = 2.53 cm, μετατοπισμένη σχεδόν στήν έναρξη του κελιού. Στόν πίνακα 2.1 παρουσιάζουμε το πηλίκο της έντασης των παραμετρικά παραγόμενων πεδίων στήν διαδρομή-1 για διάφορες τιμές του μήκους διάδοσης ζ. Η θεωρητική τιμή του πηλικού όπου ισχύει ο μηδενισμός της
γενικευμένης συχνότητας Rabi [1, 2] και η μετάβαση στήν γραμμική περιοχή είναι:

\[
\left(\frac{I_{6S_1/2-5P_{3/2}}}{I_{5P_{3/2}-4S_{1/2}}} \right)_{\text{max}} = \frac{\Omega_{6S_1/2-5P_{3/2}}}{\Omega_{5P_{3/2}-4S_{1/2}}} = 0.1104.
\]

Η τελευταία σχέση προσεγγίζεται επομένως καλύτερα από τα μεγαλύτερα μήκη διάδοσης \(\zeta \) και συνάμα από τις μεγαλύτερες πυκνότητες \(N \) [4].

<table>
<thead>
<tr>
<th>Μέτρος διάδοσης (\xi (\text{cm}))</th>
<th>Περίλογο 1 (N_0 = 2 \times 10^9 \text{ cm}^{-3})</th>
<th>Περίλογο 2 (N_0 = 4 \times 10^9 \text{ cm}^{-3})</th>
<th>Περίλογο 3 (N_0 = 8 \times 10^9 \text{ cm}^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>0.442</td>
<td>0.31</td>
</tr>
<tr>
<td>0.2</td>
<td>0.44</td>
<td>0.321</td>
<td>0.33</td>
</tr>
<tr>
<td>0.3</td>
<td>0.38</td>
<td>0.273</td>
<td>0.22</td>
</tr>
<tr>
<td>0.4</td>
<td>0.33</td>
<td>0.251</td>
<td>0.173</td>
</tr>
<tr>
<td>0.5</td>
<td>0.29</td>
<td>0.242</td>
<td>0.17</td>
</tr>
<tr>
<td>0.6</td>
<td>0.28</td>
<td>0.228</td>
<td>0.166</td>
</tr>
<tr>
<td>0.7</td>
<td>0.26</td>
<td>0.206</td>
<td>0.161</td>
</tr>
<tr>
<td>0.8</td>
<td>0.26</td>
<td>0.175</td>
<td>0.156</td>
</tr>
<tr>
<td>0.9</td>
<td>0.25</td>
<td>0.17</td>
<td>0.153</td>
</tr>
<tr>
<td>1</td>
<td>0.23</td>
<td>0.17</td>
<td>0.132</td>
</tr>
<tr>
<td>2</td>
<td>0.17</td>
<td>0.146</td>
<td>0.121</td>
</tr>
<tr>
<td>3</td>
<td>0.159</td>
<td>0.126</td>
<td>0.117</td>
</tr>
<tr>
<td>4</td>
<td>0.148</td>
<td>0.119</td>
<td>0.115</td>
</tr>
<tr>
<td>5</td>
<td>0.128</td>
<td>0.118</td>
<td>0.114</td>
</tr>
<tr>
<td>6</td>
<td>0.127</td>
<td>0.116</td>
<td>0.116</td>
</tr>
<tr>
<td>7</td>
<td>0.122</td>
<td>0.116</td>
<td>0.116</td>
</tr>
<tr>
<td>8</td>
<td>0.12</td>
<td>0.115</td>
<td>0.112</td>
</tr>
<tr>
<td>9</td>
<td>0.117</td>
<td>0.114</td>
<td>0.113</td>
</tr>
<tr>
<td>10</td>
<td>0.116</td>
<td>0.111</td>
<td>0.111</td>
</tr>
<tr>
<td>11</td>
<td>0.114</td>
<td>0.111</td>
<td>0.113</td>
</tr>
</tbody>
</table>

Πίνακας 2.1. Πηλίκο των μεγίστων των παραγόμενων πεδίων στις μεταβάσεις \(|2\rangle \leftrightarrow |4\rangle \) και \(|4\rangle \leftrightarrow |1\rangle \) αντίστοιχα ως συνάρτηση του μήκους διάδοσης \(\zeta \) της ακτινοβολίας για τρεις διαφορετικές ατομικές πυκνότητες \(N \). Στη γραμμική περιοχή το πηλίκο πείνει προς την θεωρητικά προβλέπομενη τιμη 0.1104. Οι τιμες των υπολοίπων παραμέτρων του συστήματος ήταν:

\[
I_{\text{max}} = 0.8 \text{ MW/cm}^2 \text{ και} \frac{\Delta_{12}}{2\pi} = \frac{\Delta_{14}}{2\pi} = 1 \text{ GHz}.
\]

Σημειώνουμε ότι με όρους επιδεκτικότητας η παραμετρική μίξη τεσσάρων κυμάτων περιγράφεται από τον \(-\text{γραμμικό} \) \(\chi^{(3)} \). Στήν περίπτωση της καταστρεπτικής \(QI \) στήν πρώτη ατομική διαδρομή ο \(-\text{γραμμικός} \) όρος \(\chi^{(3)} \).
μικραίνει σημαντικά τείνοντας προς τον γραμμικό όρο $\chi^{(1)}$. Όπως γίνεται κατανοητό στήν μη-γραμμική περιοχή δεν ισχύει η εικόνα αυτή.

2.2.2 Ένταση παραγόμενων πεδίων σε συνάρτηση με την ένταση του πεδίου laser

Στο Σχήμα 2.2 παρουσιάζουμε την παραγόμενη μέγιστη ένταση της ακτινοβολίας στήν μετάβαση $|4\rangle \leftrightarrow |1\rangle$ σαν συνάρτηση της έντασης I_{max} για δύο διαφορετικές τιμές της ατομικής πυκνότητας N_1 και N_2 αντίστοιχα σε σταθερή θέση, $\zeta = 5 \text{ cm}$, στο κελί των ατμών του K. Παρατηρούμε εξίσου δύο διακριτές ευθείες με διαφορετική κλίση s. Η πρώτη από αυτές περιγράφει την εκθετική περιοχή ενώ η δεύτερη προσεγγίζει την γραμμικότητα. Παρατηρούμε ομοίως, ότι όσο αυξάνεται η τιμή της ατομικής πυκνότητας τόσο η γραμμική περιοχή εκκινά από μικρότερες εντάσεις.

![Σχήμα 2.2 Μέγιστη ένταση της ακτινοβολίας στήν μετάβαση $|4\rangle \leftrightarrow |1\rangle$ σε συνάρτηση με την μέγιστη ένταση του πεδίου I_{max} για δύο διαφορετικές ατομικές πυκνότητες N στήν θέση $\zeta = 5 \text{ cm}$ στο κελίου. Και σε αυτή την περίπτωση η γραμμικότητα μετατοπίζεται σε μικρότερες εντάσεις ($I_a \rightarrow I_b$) με την αύξηση της ατομικής πυκνότητας N. Οι λοιπές παράμετροι ήταν: $\zeta = 5 \text{ cm}$ και $\Delta \omega = 1 \text{ GHz}$.](image)

Για την μεγαλύτερη ατομική πυκνότητα η κρίσιμη εκείνη ένταση έχει μειωθεί από $(I_a)_c = 0.93 \text{ MW/cm}^2$ στήν τιμή $(I_b)_c = 0.69 \text{ MW/cm}^2$. Το τελευταίο επίσης,
σηματοδοτεί την απόκλιση από την μη-γραμμικότητα της διαδρομής-1, η οποία εξαρτάται γραμμικά πλέον και από την μέγιστη ένταση I_{max} του πεδίου. Στόν πίνακα 2.2 παρουσιάζουμε το πηλίκο της έντασης των παραγόμενων πεδίων στήν διαδρομή-1 για διάφορες τιμές του I_{max}. Και σε αυτήν την περίπτωση στήν γραμμική περιοχή το πηλίκο προσεγγίζει την θεωρητική τιμή 0.1104 [4].

<table>
<thead>
<tr>
<th>Μέγιστη διορθοτονική ένταση</th>
<th>Πηλίκο 1</th>
<th>Πηλίκο 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{max} (MW/cm2)</td>
<td>$N_1 = 2 \times 10^6$ cm$^{-1}$</td>
<td>$N_1 = 4 \times 10^7$ cm$^{-1}$</td>
</tr>
<tr>
<td>0.3</td>
<td>0.122</td>
<td>0.124</td>
</tr>
<tr>
<td>0.4</td>
<td>0.129</td>
<td>0.124</td>
</tr>
<tr>
<td>0.5</td>
<td>0.128</td>
<td>0.126</td>
</tr>
<tr>
<td>0.6</td>
<td>0.135</td>
<td>0.124</td>
</tr>
<tr>
<td>0.7</td>
<td>0.132</td>
<td>0.12</td>
</tr>
<tr>
<td>0.8</td>
<td>0.128</td>
<td>0.121</td>
</tr>
<tr>
<td>0.9</td>
<td>0.138</td>
<td>0.118</td>
</tr>
<tr>
<td>1</td>
<td>0.136</td>
<td>0.116</td>
</tr>
<tr>
<td>2</td>
<td>0.135</td>
<td>0.116</td>
</tr>
<tr>
<td>3</td>
<td>0.131</td>
<td>0.117</td>
</tr>
<tr>
<td>4</td>
<td>0.134</td>
<td>0.117</td>
</tr>
<tr>
<td>5</td>
<td>0.134</td>
<td>0.116</td>
</tr>
</tbody>
</table>

Πίνακας 2.2. Πηλίκο των μεγίστων των παραγόμενων πεδίων στήν μεταβάσεις $|2\rangle \leftrightarrow |4\rangle$ και $|4\rangle \leftrightarrow |1\rangle$ αντίστοιχα ως συνάρτηση της μέγιστης έντασης I_{max} του πεδίου για δύο διαφορετικές ατομικές πυκνότητες N, όπου παρατηρείται η ίδια συμπεριφορά. Οι τιμές των υπολοίπων παραμέτρων του συστήματος ήταν: $\zeta = 5$ cm και $\frac{\Delta_{12}}{2\pi} = \frac{\Delta_{14}}{2\pi} = 1$ GHz.

Επίσης, σύμφωνα με τους W. R. Garrett et.al. [1] και N. Merlemis et.al. [2] η μετάβαση από την μία περιοχή στήν οφείλει να ικανοποιεί την σχέση $(I_1)_c \times N_k = \text{const}$. Στήν περίπτωση μας έχουμε αντίστοιχα για τις δύο περιπτώσεις: $(I_1)_c \times N_1 = 1.86 \times 10^{13}$ MW/cm5 και $(I_1)_c \times N_2 = 2.76 \times 10^{13}$ MW/cm5 αντίστοιχα. Η παρατηρούμενη απόκλιση οφείλεται στο γεγονός ότι το μοντέλο μας προσεγγίζει την θεωρητική τιμή $\left(\frac{I_{6S_{1/2}-5P_{1/2}}}{I_{5P_{3/2}-4S_{3/2}}}\right)_{\text{max}} = 0.1104$ σχετικά ικανοποιητικά όπως δείχνουμε στόν πίνακα 2.2 και όχι κατ’ απόλυτο τρόπο.
2.2.3 Ένταση παραγόμενων πεδίων σε συνάρτηση με την ατομική πυκνότητα

Στο Σχήμα 2.3 εμφανίζουμε την παραγόμενη μέγιστη ένταση της ακτινοβολίας στήν μετάβαση $|4\rangle \leftrightarrow |1\rangle$ σαν συνάρτηση της ατομικής πυκνότητας N για δύο διαφορετικές τιμές της μέγιστης ακτινοβολίας I_{max} σε σταθερή πάντα θέση ($\zeta = 5 \text{ cm}$) στο κελί των ατμών του K. Και σε αυτή την περίπτωση παρατηρούμε εξίσου δύο διακριτές ευθείες με διαφορετική κλίση s.

Σχήμα 2.3 Μέγιστη ένταση της ακτινοβολίας στήν μετάβαση $|4\rangle \leftrightarrow |1\rangle$ σε συνάρτηση με την ατομική πυκνότητα N για δύο διαφορετικές μέγιστες εντάσεις I_{max} του πεδίου. Ανάλογα σχόλια ισχύουν και σε αυτή την περίπτωση, με την γραμμική περιοχή να μετατοπίζεται σε μικρότερες πυκνότητες ($N_a \rightarrow N_b$) με την αύξηση της έντασης του πεδίου άντλησης. Οι λοιπές παράμετροι ήταν: $\zeta = 5 \text{ cm}$ και $\Delta_{ji} = 1 \text{ GHz}$.

Η πρώτη από αυτές περιγράφει την εκθετική περιοχή, όπου η κλίση s είναι πολύ μεγαλύτερη της μονάδας ενώ η δεύτερη προσεγγίζει την μονάδα. Όμως είναι και σε αυτήν την περίπτωση η συμπεριφορά του κρίσιμου σημείου έναρξης της γραμμικής περιοχής, δηλαδή, όσο αυξάνεται η μέγιστη τιμή της έντασης I_{max} τόσο η γραμμική περιοχή εκκινά από μικρότερες ατομικές πυκνότητες. Για την τιμή της έντασης $I_{\text{max}} = 2.0 \text{ MW/cm}^2$ η έναρξη της γραμμικότητας έχει μετατοπιστεί από την αρχική τιμή $N_a = 3.0 \times 10^{13} \text{ cm}^{-3}$ (με πεδίο διέγερσης $I_{\text{max}} = 0.8 \text{ MW/cm}^2$) στην τελική τιμή
Νp = 1.1 × 10 ^ {13} \text{ cm}^{-3}. \ Στόν πίνακα 2.3 παρουσιάζουμε το πηλίκο της έντασης των παραμετρικά παραγόμενων πεδίων στήν διαδρομή-1 για διάφορες τιμές του N. Για ακόμα μία φορά στήν γραμμική περιοχή το πηλίκο προσεγγίζει την θεωρητική τιμή 0.1104 [4].

<table>
<thead>
<tr>
<th>Ατομική πυκνότητα (N(10^{13} \text{ cm}^{-3}))</th>
<th>Πηλίκο 1 (I_{\text{max}}) = 0.8 \text{ MW/cm}^2</th>
<th>Πηλίκο 2 (I_{\text{max}}) = 2 \text{ MW/cm}^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.26</td>
<td>0.65</td>
</tr>
<tr>
<td>0.5</td>
<td>0.223</td>
<td>0.348</td>
</tr>
<tr>
<td>0.7</td>
<td>0.17</td>
<td>0.162</td>
</tr>
<tr>
<td>0.9</td>
<td>0.167</td>
<td>0.148</td>
</tr>
<tr>
<td>1</td>
<td>0.164</td>
<td>0.144</td>
</tr>
<tr>
<td>2</td>
<td>0.128</td>
<td>0.152</td>
</tr>
<tr>
<td>3</td>
<td>0.12</td>
<td>0.127</td>
</tr>
<tr>
<td>4</td>
<td>0.117</td>
<td>0.121</td>
</tr>
<tr>
<td>5</td>
<td>0.116</td>
<td>0.12</td>
</tr>
<tr>
<td>6</td>
<td>0.115</td>
<td>0.117</td>
</tr>
<tr>
<td>7</td>
<td>0.115</td>
<td>0.118</td>
</tr>
<tr>
<td>8</td>
<td>0.114</td>
<td>0.118</td>
</tr>
<tr>
<td>9</td>
<td>0.114</td>
<td>0.117</td>
</tr>
</tbody>
</table>

Πίνακας 2.3. Πηλίκο των μεγίστων των παραγόμενων πεδίων στις μεταβάσεις \(|2\rangle \leftrightarrow |4\rangle \) και \(|4\rangle \leftrightarrow |1\rangle \) αντίστοιχα ως συνάρτηση της ατομικής πυκνότητας N για δύο διαφορετικές εντάσεις της μέγιστης έντασης I_{\text{max}}. Οι τιμές των υπολοίπων παραμέτρων του συστήματος ήταν: \(\zeta = 5 \text{ cm} \) και \(\frac{\Delta_{12}}{2\pi} = \frac{\Delta_{14}}{2\pi} = 1 \text{ GHz} \).

Σημειώνουμε ότι σε όλες τις παραπάνω περιπτώσεις οι τιμές των αποσυντονισμών ήταν \(\Delta_{12} - \Delta_{14} = 1 \text{ GHz} \) πού αντιστοιχεί σε μία τιμή πολύ κοντα στόν διφωτονικό συντονισμό. Πρακτικά βρισκόμαστε πάνω στις ατομικές καταστάσεις \(|2\rangle \) και \(|4\rangle \). Από την μελέτη του συστήματος στις μικρές ατομικές πυκνότητες (\(N < 10^{14} \text{ cm}^{-3} \)) μπορούμε γενικεύουντα να ισχυριστούμε ότι σε μεγαλύτερες ατομικές πυκνότητες (\(10^{14} \text{ cm}^{-3} < N < 10^{15} \text{ cm}^{-3} \)) η διαδρομή-1 του ατόμου του K θα συμπεριφέρεται ως επί το πλείστον γραμμικά και στις τρεις πιο πάνω περιπτώσεις (2.2.1-2.2.3). Οι δύο τελευταίες περιπτώσεις των γραφημάτων \(\log(I_{\text{max}}) = a + s \times \log(p_i) \), από όσες παρουσιάζαμε είναι και οι πιο ενδιαφέρουσες
μιάς και μπορούν να μελετηθούν και πειραματικά. Οι N. Merlemis et.al. [2] μελέτησαν πειραματικά το φαινόμενο της γραμμικότητας της πρώτης διαδρομής στις μικρές (\(N_k = 2.8 \times 10^{13} \text{ cm}^{-3}\)) και στις ενδιάμεσες ατομικές πυκνότητες (\(N_1^t = 1.3 \times 10^{14} \text{ cm}^{-3}\), \(N_2^t = 3.8 \times 10^{14} \text{ cm}^{-3}\)), αντίστοιχα σαν συναρτήσεις της μέγιστης τιμής της ακτινοβολίας \(I_{\text{max}}\), στην έξοδο του κελιού (\(\zeta_k = 17 \text{ cm}\)) των ατμών του \(K\) υπό πεδίο με εύρος στο FWHM ίσο με \(\tau_c = 25 \text{ nsec}\). Διαπίστωσαν και αυτοί με την σειρά τους, όπως δείχνουμε χαρακτηριστικά στήν παράγραφο 2.1.2, την μετατόπιση της γραμμικής περιοχής σε μικρότερες κρίσιμες τιμές \(I_c\) με την αύξηση της ατομικής πυκνότητας \(N_1^t\). Το τελευταίο φαινόμενο είναι η πιο σημαντική συνέπεια, όπως υπογραμμίσαμε, της καταστρεπτικής \(QI\) η οποία τείνει να επιφέρει ολίκη γραμμικότητα στήν διαδρομή-1, όπου παράγονται η υπέρυθρη \(|2\rangle \leftrightarrow |4\rangle\) (με κεντρικό μήκος κύματος 3662.3 nm) και η μπλέ \(|4\rangle \leftrightarrow |1\rangle\) (με κεντρικό μήκος κύματος 404.5 nm) παραμετρική ακτινοβολία, στο απλοποιημένο μοντέλο των τεσσάρων ενεργειακών καταστάσεων [4].

Συνοψίζοντας, καταλαβαίνουμε ότι για συγκεκριμένη ένταση του πεδίου έχουμε δεδομένη διέγερση \(|1\rangle \leftrightarrow |2\rangle\) η οποία καθορίζεται από τη δυπολική διωκτονική ροπή. Άρα για να έχουμε καταστρεπτική \(QI\) πρέπει οι παραγόμενες ακτινοβολίες των channel \(|2\rangle \leftrightarrow |4\rangle \leftrightarrow |1\rangle\), οι οποίες ενισχύονται εκθετικά με τις παραμέτρους \(\zeta\), \(N\) και \(I_{\text{max}}\), να γίνουν ίσες με την ποσότητα \(\frac{I_{\text{max}}}{950 \text{[a.u.]}\rangle\text{ της }|1\rangle \leftrightarrow |2\rangle.\)

Μπορεί να γραφεί ποιοτικά ότι ισχύει η πιο κάτω σχέση μεταξύ των εντάσεων:
\[
\frac{I_{\text{max}}}{950 \text{[a.u.]} = \frac{I_{24}}{10.7 \text{[a.u.]}} + \frac{I_{41}}{0.453 \text{[a.u.]}}},
\]
όπου ο συμβολισμός [a.u.] αναφέρεται στο σύστημα των ατομικών μονάδων (atomic units).

2.2.4 Μελέτη της κατανομής του πληθυσμού στήν διαδρομή-1

Στο Σχήμα 2.4 δείχνουμε κάποιους χαρακτηριστικούς χρονικούς παλμούς (temporal profiles) των πεδίων που παράγονται στήν πρώτη διαδρομή. Η μορφή των χρονικών παλμών παραμένει παρόμοια σε όλη την περιοχή των μικρών πυκνοτήτων όπου το αλληλεπίδρων σύστημα συμπεριφέρεται γραμμικά. Παρατηρούμε ότι όσο
μεγαλύτερη είναι η ατομική πυκνότητα ($N_3 > N_1$) του μέσου των ατμών του K τόσο
νωρίτερα εκκινούν οι ακτινοβολίες με μία συνακόλουθη αύξηση στήν μέγιστη τιμή
tους, σε σχέση με το μέγιστο του παλμού του laser. Επίσης, παρατηρούμε ότι η
ακτινοβολία στήν μετάβαση $|4\rangle \leftrightarrow |1\rangle$ είναι πάντα μεγαλύτερη από αυτήν στήν
μετάβαση $|2\rangle \leftrightarrow |4\rangle$, εξής και του ότι, το πηλίκο τους $\left(\frac{I_{|2\rangle \leftrightarrow |4\rangle}}{I_{|4\rangle \leftrightarrow |1\rangle}} \right)_{\text{max}}$
eίναι μικρότερο
της μονάδας.

Σχήμα 2.4 Χρονικό προφίλ των σύμφωνων ακτινοβολιών της διαδρομής-1 για
την ατομική πυκνότητα $N_1 = 2 \times 10^{13}$ cm$^{-3}$ και $N_2 = 8 \times 10^{13}$ cm$^{-3}$
αντίστοιχα για μέγιστη ένταση του πεδίου laser $I_{\text{max}} = 0.8$ MW / cm2 στήν
θέση $\xi = 5$ cm του κελιού.

Στο Σχήμα 2.5 δείχνουμε την κατανομή του πληθυσμού στήν ίδια διαδρομή για
τις τιμές των παραμέτρων του Σχήματος 2.4. Από το Σχήμα 2.5(a) παρατηρούμε ότι η
παραγόμενη ακτινοβολία στήν μετάβαση $|2\rangle \leftrightarrow |4\rangle$ προκύπτει κατά κύριο λόγο με
αντιστροφή πληθυσμού ενώ στήν μεγαλύτερη πυκνότητα, Σχήμα 2.5(c) χωρίς. Οσο
πιο πολύ ανεβαίνουμε σε ατομική πυκνότητα τόσο η ακτινοβολία που παράγεται στήν
συγκεκριμένη μετάβαση προκύπτει χωρίς αντιστροφή πληθυσμού. Αντίθετα, στήν
μετάβαση $|4\rangle \leftrightarrow |1\rangle$ ο πληθυσμός βρίσκεται εξ' ολοκλήρου στήν θεμελιώδη
κατάσταση $|1\rangle$, Σχήμα 2.5(b) και 2.5(d) αντίστοιχα.
Σχήμα 2.5 Κατανομή πληθυσμού των σύμφωνων ακτινοβολιών της διαδρομής-1 για την ατομική πυκνότητα $N_1 = 2 \times 10^{13} \text{ cm}^{-3}$ και $N_3 = 8 \times 10^{13} \text{ cm}^{-3}$ αντίστοιχα, για μέγιστη ένταση του πεδίου laser $I_{\text{max}} = 0.8 \text{ MW/cm}^2$ στην θέση $\zeta = 5 \text{ cm}$ του κελιού. Παρατηρούμε ότι σε όλες τις περιπτώσεις ο πληθυσμός βρίσκεται στήν θέμελιωδή κατάσταση, ενδείξη της παραμετρικότητας της διαδικασίας (PFWM).

Ο φυσικός μηχανισμός κατά την παραγωγή της υπέρυθρης ακτινοβολίας είναι η αυθόρμητα ενισχυμένη εκπομπή (ASE) με ή χωρίς αντιστροφή πληθυσμού, μάς και περιοριστικά αρκετά κοντά στόν διφωτονικό συντονισμό ($\frac{\Delta_2}{2\pi} = 1 \text{ GHz}$). Η παραγόμενη τέταρτη ακτινοβολία προκύπτει ως αποτέλεσμα της παραμετρικής μίξης των τεσσάρων κυμάτων (PFWM). Τα φυσικά χαρακτηριστικά των ακτινοβολιών
παραμένουν αναλλοίωτα στην γραμμική περιοχή των περιπτώσεων πού αναφέραμε στις παραγράφους 2.2.1-2.2.3 [4].

Τελειώνοντας θέλουμε να τονίσουμε ότι οι τιμές των παραμέτρων πού χρησιμοποιήσαμε δεν μας επιτρέπουν να παρατηρήσουμε και να μελετήσουμε την ενεργοποίηση της διαδρομής-2 του ατόμου του K (η οποία παραμένει σε κατάσταση θορύβου). Πειραματικές ενδείξεις μας προσανατολίζουν στην κατεύθυνση της μη-γραμμικότητας της δεύτερης διαδρομής μιάς και όσα παρουσιάσαμε προηγούμενα δεν παρατηρήθηκαν στην διαδρομή αυτή.

2.3 Φαινόμενο κορεσμού σε άτομα K

Στήν παράγραφο αυτή διαπραγματεύομαστε το φαινόμενο του κορεσμού (saturation) των παραγόμενων ακτινοβολιών στο σύστημα των τεσσάρων επιπέδων του K. Το φαινόμενο αυτό παρατηρήθηκε αρχικά σε ατομικούς ατμούς νατρίου [1] ενώ στη συνέχεια και σε ατμούς υδραργύρου [5]. Χαρακτηριστικό του φαινομένου αυτού ήταν η μετάβαση της παρεχόμενης ενέργειας διέγερσης σε μία γειτονική ατομική διαδρομή αφού η ένταση των παραγόμενων πεδίων σε μία αρχική διαδρομή διέγερσης παρέμεινε σταθερή. Πιο κάτω παρουσιάζουμε το φαινόμενο αυτό, στις μικρές πάντα ατομικές πυκνότητες, ώστε να προσδιορίσουμε τους φυσικούς μηχανισμούς που είναι υπεύθυνοι για την εμφάνιση του. Σε μία πρώτη προσέγγιση θεωρούμε τις κρούσεις του ατόμου του K με τα άτομα του αδρανού αερίου (buffer gas) ως ελαστικές με αποτέλεσμα την επιπλέον προσθήκη του ρυθμού απόσβεσης (elastic collision rate \(\gamma_c = \frac{1}{\tau_c} \)) στο δεύτερο μέλος του συνόλου των εξισώσεων (1.6)-(1.11) και συγκεκριμένα στόν όρο \(i \left(\Delta_{ij} + i \gamma_{ij} \right) \sigma_{ij} \) ο οποίος πλέον γίνεται

\[i \left(\Delta_{ij} + i (\gamma_{ij} + \gamma_c) \right) \sigma_{ij} \]

[6, 7]. Στήν προσέγγιση αυτή ο όρος των ελαστικών κρούσεων είναι πάντα ο ίδιος, δηλαδή \(\gamma_c \) και επιδρά μόνο στα μη-διαγώνια στοιχεία του πίνακα πυκνότητας \(\sigma_{ij} \), συνέπεια των κρούσεων αυτών. Τα διαγώνια στοιχεία \(\sigma_{ii} \) μένουν ανεπηρέαστα. Τα τελευταία δύναται να επηρεαστούν μόνο όταν οι κρούσεις είναι ανελαστικές κάτι το οποίο δεν εξετάζεται σε αυτό το μοντέλο, όπως στις αναφορές [8, 9], όπου λαμβάνεται υπόψη κυρίως το φαινόμενο των ανελαστικών κρούσεων. Ο όρος \(\gamma_c \) ενσωματώνεται στο μοντέλο έτσι ώστε να προσεγγιστεί ικανοποιητικά το
θεωρητικό μοντέλο με το πείραμα στήν ημικλασική προσέγγιση [10]. Στήν προσέγγιση αυτή η τιμή του \(\gamma_c \) τίθεται ίση με 0.02 cm\(^{-1}\) (αντίστοιχα σε 0.5 rad / nsec) η οποία είναι ορθή εφόσον η πίεση του αδρανού αέριού είναι μικρότερη από 20 Torr [10]. Στα πειράματα που πραγματοποιήσαμε η μέγιστη τιμή του αερίου ήλιου ήταν 10 mbar (όπου 1 mbar αντίστοιχει σε 0.75 Torr).

Επίσης, ο παλμός του πεδίου laser που διεγείρει το άτομο περιγράφεται από την σχέση: \(\sec h^2 \left(\frac{\tau - \tau_c}{\tau_c} \right) \) για \(\tau < 0 \) και \(\exp \left(-\frac{(\tau - \tau_c)^2}{\tau_c^2} \right) \) για \(\tau > 0 \), αντίστοιχα η οποία προσεγγίζει ικανοποιητικά τον παλμό του πεδίου της χρωστικής (dye laser).

2.3.1 Ένταση παραγόμενων πεδίων σε συνάρτηση με την ένταση του πεδίου laser

Στο Σχήμα 2.6 παρουσιάζουμε την παραγόμενη μέγιστη ένταση της ακτινοβολίας στην μετάβαση \(|4\rangle \leftrightarrow |1\rangle\) σαν συνάρτηση της έντασης \(I_{\text{max}} \) για τρεις

![Σχήμα 2.6 Μέγιστη ένταση της ακτινοβολίας στήν μετάβαση \(|4\rangle \leftrightarrow |1\rangle\) σε συνάρτηση με την μέγιστη ένταση του πεδίου \(I_{\text{max}} \). Παρατηρούμε την ύπαρξη τριών περιοχών: μιάς μη-γραμμικής με κλίση \(s_{\text{NL}} \), μιάς γραμμικής με κλίση \(s_{\text{SAT}} \) και μιάς τρίτης (περιοχή κορεσμού) με κλίση \(s_{\text{NL}}\). Στην τρίτη περιοχή δεν παρατηρείται επιπλέον αύξηση της μέγιστης έντασης του πεδίου αυτού.

Συμπεριλήφθηκε και ο ρομπότ απόδοσης \(\gamma_{\text{col}} \) ο οποίος αντιστοιχεί στις ελαστικές κρούσεις K-He. Σημειώνουμε ότι στο γράφημα η μέγιστη ένταση υπερβαίνει την τιμή \(I_{\text{max}} = 5 \text{ MW/cm}^2 \).
ατομικές πυκνότητες \(N_1 = 2 \times 10^{13} \text{ cm}^{-3} \), \(N_2 = 4 \times 10^{13} \text{ cm}^{-3} \) και \(N_3 = 8 \times 10^{13} \text{ cm}^{-3} \) σε σταθερή πάντα θέση \((\zeta = 5 \text{ cm}) \) στο κελί, αντίστοιχα. Παρατηρούμε πλέον τρείς διακριτές ευθείες με διαφορετική κλίση και κάθε μία.

Η πρώτη από αυτές περιγράφει, όπως είπαμε, την εκθετική περιοχή, η δεύτερη προσεγγίζει την γραμμική ενώ εμφανίζεται μία νέα περιοχή, η τρίτη, όπου η κλίση τείνει να μηδενιστεί μίας και τα σημεία της έντασης είναι σχεδόν παράλληλα πρός τον άξονα \(I_{\text{max}} \). Από τον πίνακα 2.4 παρατηρούμε ότι το πηλίκο \(\left(\frac{I_2|e|+i|4|}{I_4|e|+4|I|} \right) \text{ max} \), στη νέα περιοχή, τείνει εκ νέου πρός την τιμή \(0.1104 \) χαρακτηριστικό και τη γραμμικής περιοχής. Το τελευταίο είναι μία ακόμη ένδειξη της κυριαρχίας της καταστρεπτικής \(QI \) στην περιοχή αυτή, που ονομάζεται περιοχή του κορεσμού [6, 7]. Για να μπορέσουμε να ερμηνεύσουμε τον μηχανισμό που είναι υπεύθυνος για τις

| Μέγιστη διερευνητική ένταση \(I_{\text{max}} \) (MW/cm\(^2\)) | Πηλίκο \(\text{max} \) \\
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.32</td>
</tr>
<tr>
<td>0.04</td>
<td>0.25</td>
</tr>
<tr>
<td>0.08</td>
<td>0.593</td>
</tr>
<tr>
<td>0.1</td>
<td>0.48</td>
</tr>
<tr>
<td>0.2</td>
<td>0.346</td>
</tr>
<tr>
<td>0.4</td>
<td>0.171</td>
</tr>
<tr>
<td>0.8</td>
<td>0.138</td>
</tr>
<tr>
<td>1</td>
<td>0.129</td>
</tr>
<tr>
<td>2</td>
<td>0.126</td>
</tr>
<tr>
<td>4</td>
<td>0.131</td>
</tr>
<tr>
<td>8</td>
<td>0.136</td>
</tr>
<tr>
<td>10</td>
<td>0.139</td>
</tr>
<tr>
<td>20</td>
<td>0.136</td>
</tr>
<tr>
<td>30</td>
<td>0.138</td>
</tr>
<tr>
<td>40</td>
<td>0.138</td>
</tr>
<tr>
<td>50</td>
<td>0.139</td>
</tr>
</tbody>
</table>

Πίνακας 2.4. Πηλίκο των μεγίστων των παραγόμενων πεδίων στις μεταβάσεις \(|2\rangle \leftrightarrow |4\rangle \) και \(|4\rangle \leftrightarrow |1\rangle \) αντίστοιχα ως συνάρτηση της μέγιστης έντασης \(I_{\text{max}} \) για την πυκνότητα \(N_3 = 8 \times 10^{13} \text{ cm}^{-3} \). Οι τιμές των υπολοίπων παραμέτρων του συστήματος ήταν: \(\zeta = 5 \text{ cm} \) και \(\Delta_{ij} = 0 \).
παραγόμενες ακτινοβολίες περνάμε στην μελέτη των Σχημάτων 2.7 και 2.8 όπου παρουσιάζουμε την κατανομή του πληθυσμού στην διαδρομή-1 τόσο στην γραμμική όσο και στην περιοχή του κορεσμού αντίστοιχα.

Σχήμα 2.7 Κατανομή πληθυσμού, στην γραμμική περιοχή, για δύο τιμές της ατομικής πυκνότητας N_1 και N_3 αντίστοιχα, για μέγιστη ένταση του πεδίου laser $I_{\text{max}} = 0.8 \text{ MW/cm}^2$ στην θέση $\zeta = 5 \text{ cm}$ του κελιού. Παρατηρούμε ότι ο πληθυσμός που αφαιρείται από την $[1]$ εξαρτάται από τον ολικό πληθυσμό για την ίδια διέγερση και στόν συντονισμό τα σ_{22} και σ_{44} είναι περίπου ίδια. Ο πληθυσμός της $[3]$ είναι μικρότερος και εμφανίζει χρονική καθυστέρηση.
Σχήμα 2.8 Κατανομή πληθυσμού, στην περιοχή του κορεσμού, για δύο τιμές της ατομικής πυκνότητας N_1 και N_3 αντίστοιχα, για μέγιστη ένταση του πεδίου laser $I_{\text{max}} = 5 \text{ MW/cm}^2$ στην θέση $\zeta = 5$ cm του κελιού. Παρατηρούμε ανακατανομή του πληθυσμού, ο οποίος μοιράζεται μεταξύ των καταστάσεων $|1\rangle$, $|2\rangle$ και $|4\rangle$ αντίστοιχα. Οι καταστάσεις $|1\rangle$ και $|4\rangle$ ανταλλάσουν πληθυσμό και η ανταλλαγή είναι έντονη για τη μικρότερη ατομική πυκνότητα.

Παρατηρούμε ότι στήν γραμμική περιοχή, Σχήμα 2.7, ο πληθυσμός παραμένει, κατά ένα μεγάλο ποσοστό, στήν θεμελιώδη κατάσταση με το υπόλοιπο μεταξύ των καταστάσεων $|2\rangle$ και $|4\rangle$ το οποίο είναι ένδειξη παραμετρικής διαδικασίας. Στήν
περιοχή του κορεσμού, Σχήμα 2.8, η προηγούμενη εικόνα αλλάζει δραματικά. Παρατηρούμε πλέον μεταφορά πληθυσμού μεταξύ των καταστάσεων |1⟩ και |4⟩ (population transfer), της διαδρομής-1 του ατομικού συστήματος.

Σχήμα 2.9 Χρονικοί παλμοί των παραγόμενων πεδίων της διαδρομής-1 και 2, όταν η διαδρομή-1 βρίσκεται σε συνθήκη κορεσμού. Παρατηρούμε ότι τα παραγόμενα πεδία της διαδρομής-2 (περιπτώσεις (c) και (d)) καθυστερούν σημαντικά σε σχέση με αυτά της διαδρομής-1 (περιπτώσεις (a) και (b)) και είναι ασθενείτερα.

Όσο μεγαλώνει η ατομική πυκνότητα αφήνεται περισσότερος πληθυσμός στήν κατάσταση |2⟩, Σχήμα 2.8(b), ενώ η παραγόμενη ακτινοβολία στήν μετάβαση
\[|2\rangle \leftrightarrow |4\rangle \] προκύπτει χωρίς αντιστροφή πληθυσμού στις μικρότερες πυκνότητες, Σχήμα 2.8(a).

Επειδή βρισκόμαστε στήν συνθήκη του διωφτονικού συντονισμού \(\Delta_{12} = 0\) η ακτινοβολία αυτή συνδέεται πιθανότατα με ΑΣΕ. Όμως επειδή \(\sigma_{44} > \sigma_{22}\) είναι πιθανότερα να συνδέεται με την \(\text{SHRS}\) στήν περίπτωση εκείνη όπου ο περισσότερος πληθυσμός μεταφέρεται στήν κατάσταση \(|4\rangle\) παρακάμπτοντας την \(|2\rangle\).

Συνέπεια του κορεσμού της διαδρομής-1 αποτελεί η ενεργοποίηση της διαδρομής-2 όπου βλέπουμε στο Σχήμα 2.9 με την απεικόνιση των χρονικών παλμών των ακτινοβολιών \(|2\rangle \leftrightarrow |3\rangle\) και \(|3\rangle \leftrightarrow |1\rangle\) αντίστοιχα, στήν ατομική πυκνότητα \(N_4\) για πεδίο έντασης \(I_{\text{max}} = 5 \text{ MW/cm}^2\).

Το πέρασμα επομένως (energy transfer ή energy switch over) της παρεχόμενης ενέργειας από την μία διαδρομή στήν άλλη σχετίζεται με τον κορεσμό της πρώτης, με επακόλουθο την ανακατανομή του πληθυσμού, στο ατομικό σύστημα των τεσσάρων επιπέδων [6, 7].

Στο Σχήμα 2.10 δείχνουμε την σύγκριση των αποτελεσμάτων του θεωρητικού μοντέλου με τα πειραματικά τα οποία καταγράφηκαν για dye laser εύρους, στο FWHM, ίσο με 25 nsec σε δύο ατομικές πυκνότητες \(N_4 = 2.8 \times 10^{13} \text{ cm}^{-3}\) και \(N_2 = 1.3 \times 10^{14} \text{ cm}^{-3}\) αντίστοιχα με μήκος κελιού \(\zeta_c = 17 \text{ cm}\) στήν συνθήκη του διωφτονικού συντονισμού \(\Delta_{12} = 0\) [2]. Παρατηρούμε ότι στη μη-γραμμική περιοχή η ταύτιση των θεωρητικών σημείων του μοντέλου \((s_{1,\text{THEOR}}^{NL} = 2.24\) στο Σχήμα 2.10(a) και \(s_{1,\text{THEOR}}^{NL} = 3.57\) στο Σχήμα 2.10(b)) με τα πειραματικά \((s_{1,\text{EXPER}}^{NL} = 2.35\) στο Σχήμα 2.10(a) και \(s_{1,\text{EXPER}}^{NL} = 3.87\) στο Σχήμα 2.10(b)) είναι ικανοποιητική. Στήν γραμμική περιοχή η κλίση των σημείων είναι σχεδόν όμοια \((s_{2,\text{THEOR}}^{L} = 0.77\) και \(s_{2,\text{EXPER}}^{L} = 1.1\), στο Σχήμα 2.10(a) καθώς και \(s_{2,\text{THEOR}}^{L} = 0.79\) και \(s_{2,\text{EXPER}}^{L} = 1.01\) στο Σχήμα 2.10(b), αντίστοιχα) ένδειξη σχετικής συμφωνίας θεωρίας και πειράματος. Όπως παρατηρούμε στο Σχήμα 2.10 τα πειραματικά σημεία περιορίζονται μέχρι και την τιμή \(I_{\text{max}} = 6 \text{ MW/cm}^2\), για τον τεχνικό λόγο ότι το laser της χρωστικής δεν παρέχει περισσότερη ενέργεια κατά την διωφτονική διέγερση της μετάβασης \(|1\rangle \leftrightarrow |2\rangle\). Τότε
θα ήταν δυνατή η τρίτη θεωρητικά προβλεπόμενη περιοχή, όπως μας προσανατολίζει το θεωρητικό μοντέλο.

Σχήμα 2.10 Σύγκριση θεωρητικών (κόκκινα σημεία) και πειραματικών (μαύρα σημεία) αποτελεσμάτων σε δύο ατομικές ποικιλίες

\[N_4 = 2.8 \times 10^{13} \text{ cm}^{-3} \quad \text{και} \quad N_5 = 1.3 \times 10^{14} \text{ cm}^{-3} \]

αντίστοιχα. Παρατηρούμε ότι η ταυτότητα θεωρίας και πειράματος είναι αρκετά ικανοποιητική τόσο στήν μη-γραμμική περιοχή (παρόμοια κλίση s) όσο και στήν γραμμική περιοχή. Η διαφοροποίηση του κρίσιμου σημείου \(P_{NL-L} \) οφείλεται στις προσεγγίσεις του μοντέλου μας (ελαστικές κρούσεις και αξονική διάδοση στον θετικό οπτικό άξονα \(\zeta \)) ενώ στο πείραμα έχουμε διαπλατυσμένο επίπεδο \(|6S_{1/2}\rangle \) ακτινοβολίας προς το \(-\zeta\) και κονική εκπομπή επίσης.

Συγκρίνοντας την κρίσιμη τιμή της έντασης \(I_c \) κατά την μετάβαση από την μη-

γραμμική στήν γραμμική περιοχή παρατηρούμε μία απόκλιση μεταξύ του θεωρητικού
μοντέλου \((I_e)_{\text{THEOR}} = 0.31 \text{ MW/cm}^2\) στο Σχήμα 2.10(a) και \((I_e)_{\text{THEOR}} = 0.19 \text{ MW/cm}^2\) στο Σχήμα 2.10(b)) και της πειραματικής διαδικασίας \((I_e)_{\text{EXP}} = 3.2 \text{ MW/cm}^2\) στο Σχήμα 2.10(a) και \((I_e)_{\text{EXP}} = 0.63 \text{ MW/cm}^2\) στο Σχήμα 2.10(b)). Το τελευταίο αναμένεται επειδή στο απλοποιημένο μοντέλο δεν παίρνουμε υπόψη τα εξής πειραματικά δεδομένα [7]:

I) Το φυσικό εύρος του laser της χρωστικής το οποίο είναι ίσο με \(\Delta \nu_{\text{EXPER}} = 0.1 \text{ cm}^{-1}\), (αντιστοιχεί σε 3 rad/nsec), μιάς και στη θεωρητική προσομοίωση το πεδίο του laser (25 nsec στο FWHM) ήταν στενότερο με εύρος Fourier \(\Delta \tau_e \propto 0.0013 \text{ cm}^{-1}\), (\(\Delta \tau_e \propto \frac{1}{(c \cdot \tau_e)}\)). Συνέπεια αυτής της προσέγγισης είναι ότι στήν πειραματική διαδικασία, στήν κατάσταση του διφωτονικού συντομοσίμου, ένα μεγάλο μέρος του laser άντλησης (δηλαδή της διεγείρουσας ενέργειας) βρίσκεται πρακτικά εκτός της κατάστασης \(|2\rangle (\equiv |6S_{1/2}\rangle)\). Το τελευταίο μπορεί να εκτιμηθεί από το γεγονός ότι η κατάσταση διαπλάτυνση της κατάστασης \(|2\rangle\) είναι \(\gamma_{12}^{\text{broad}} = \gamma_{12} + \gamma_{\text{col}}\) το οποίο τελικά είναι ίσο με \(\gamma_{12}^{\text{broad}} \approx \gamma_{\text{col}} = 0.02 \text{ cm}^{-1}\).

II) Την κονική εκπομπή ακτινοβολίας όπου ένα μέρος της διεγείρουσας ενέργειας καταναλώνεται στήν γέννηση πεδίων σε εγκάρσιο επίπεδο, άξονες \(x\) και \(y\) αντίστοιχα, σε σχέση με την αξονική εκπομπή (οπτικός άξονας \(\zeta\)).

III) Την διάδοση της ακτινοβολίας στήν αντίθετη κατεύθυνση (backward propagation) από αυτή του πεδίου διέγερσης. Στήν προσομοίωση μελετούμε την διάδοση των πεδίων παράλληλα (forward propagation) πρός την κατεύθυνση του πεδίου laser.

Η ικανοποιητική ταύτιση της θεωρητικής μελέτης με τα πειραματικά δεδομένα μας οπλίζει με επιχειρήματα υπέρ της εγγυρότητας της θεωρητικής προσομοίωσης δίνοντας μας, για πρώτη φορά, εικόνα του ατομικού συστήματος σε ότι αφορά την κατανομή του πληθυσμού μεταξύ των ενεργειακών καταστάσεων.
(δυναμική του πληθυσμού $\frac{d\sigma_{ij}}{dt}$ στο ατομικό σύστημα), κάτι το οποίο δεν μπορούσε να εξαρθεί με την πειραματική διαδικασία.

Συνοψίζοντας κατανοούμε ότι η κυριαρχία της καταστρεπτικής κβαντικής συμβολής και η ανακατανομή του πληθυσμού μεταξύ των καταστάσεων $|1\rangle$ και $|4\rangle$ χαρακτηρίζει την περιοχή του κορεσμού, της διαδρομής-1, συνεπάγοντας μερική καταστολή της παραμετρικής μίξης των τεσσάρων κυμάτων (δηλαδή FWM) και την ακόλουθη ενεργοποίηση της διαδρομής-2. Επίσης, η εμφάνιση του κορεσμού επιβραδύνεται με την αύξηση της ατομικής πυκνότητας διότι ο αριθμός των διαθέσιμων ατόμων αυξάνεται σε σχέση με τον διαθέσιμο αριθμό φωτονίων.

2.3.2 H συνθήκη κορεσμού

Στις μικρές ατομικές πυκνότητες, ($N \sim 10^{13}$ cm$^{-3}$), όπου περιορίστηκε η μελέτη μας σχετικά με το φαινόμενο του κορεσμού στους μεταλλικούς ατμούς του K, δείχνουμε ότι ο κορεσμός της διαδρομής-1 οδηγεί στήν ενεργοποίηση της διαδρομής-2, η οποία εμφανίζει σημαντική χρονική καθυστέρηση. Το γεγονός αυτό σχετίζεται πιθανότατα με την εμφάνιση φαινομένων αργού φωτός στήν διαδρομή-2 του καλών, ως συνέπεια της δημιουργίας κάποιου είδους διαφάνειας στήν μετάβαση $|4\rangle \leftrightarrow |1\rangle$, μιάς και ο πληθυσμός αποκλείεται σε μεγάλο ποσοστό στήν κατάσταση $|4\rangle$. Επομένως ένα πεδίο ακτινοβολίας μήκους κύματος $\lambda = 404$ nm δεν προκαλεί κάποια σημαντική μεταβολή στήν κατανομή πληθυσμού, στη μετάβαση αυτή.

Από το Σχήμα 2.6 παρατηρούμε ότι με την αύξηση της ατομικής πυκνότητας το κρίσιμο σημείο p_{NL} μετατιθέτεται σε μικρότερες εντάσεις του πεδίου laser ενώ το $p_{L,SAT}$ σε μεγαλύτερες αντίστοιχα. Στο ίδιο συμπέρασμα καταλήγουμε και από το Σχήμα 2.10. Το τελευταίο μας οδηγεί στήν εξήγηση ότι σε μεγάλες ατομικές πυκνότητες ($N > 10^{13}$ cm$^{-3}$) η διαδρομή-1 θα βρίσκεται μάλλον, στήν γραμμική περιοχή, απαιτώντας πολύ πιο ισχυρό πεδίο για να κορεσθεί, ώστε να ανακατανεμηθεί ισχυρά ο πληθυσμός στο σύστημα των τεσσάρων επιπέδων και να εμφανιστούν κατά συνέπεια τα πεδία της διαδρομής-2, όπως κατανοούμε από το Σχήμα 2.9.
Για την περίπτωση των μεγάλων πυκνοτήτων της τάξεως του 10^{15} cm^{-3}, προηγούμενα πειράματα [11], μας έδειξαν ότι η διαδρομή-2 είναι ήδη ενεργοποιημένη. Επίσης, το κρίσιμο σημείο p_{NL-L} φαίνεται να παραμένει σταθερό [11], κάτι πολύ διαφορετικό από όσα παρουσιάσαμε παραπάνω.

Εν κατακλείδι, κατανοούμε, ότι αφενός μεν η συνθήκη κορεσμού σχετίζεται με την ανακατανομή του πληθυσμού μεταξύ των επιπέδων [1] και [4], στις μικρές πυκνότητες, αφετέρου δε η ενεργοποίηση της διαδρομής-2 δεν συνδέεται κατ’ ανάγκη με την «φραγή» της διαδρομής-1, στις μεγάλες πυκνότητες, αντίστοιχα. Για να μπορέσουμε να μελετήσουμε και να ερμηνεύσουμε την φυσική συμπεριφορά της διαδρομής-2 σε αυτή τη περιοχή ατομικών πυκνοτήτων απαιτείται συστηματικότερη δουλειά.
Ενότητα II

Εισαγωγή ενότητας II

Το φαινόμενο της οπτικά επαγωμένης απόσβεσης (optical free induction decay-OFID) εμφανίζεται όταν ένα πεδίο laser, στήν οπτική περιοχή συγχωτήτων, αλληλεπιδρά με ένα ατομικό σύστημα ενώ κατόπιν διακόπτεται απότομα η δράση του. Στο φαινόμενο αυτό τα μη-διαγώνια στοιχεία της πόλωσης ενός ατομικού μέσου μας πληροφορούν για την δυνατότητα της δημιουργίας σύμφωνης ηλεκτρομαγνητικής ακτινοβολίας κατά την αλληλεπίδραση της διεγείρουσας ακτινοβολίας με το άτομο [16]. Παράδειγμα του φαινομένου αυτού αποτελεί η περίπτωση ενός σύμφωνου προετοιμαζόμενου ατομικού μέσου (coherently prepared medium), το οποίο εμφανίζει την OFID όταν ξαφνικά τεθεί εκτός συντονισμού από ένα εξωτερικό εξωτερικό πεδίο το οποίο προκαλεί μετατόπιση Stark. Η OFID επομένως προκύπτει όταν μία ομάδα από σύμφωνα διεγερμένα άτομα ή μόρια εκπέφυγαν αυθόρμητα ακτινοβολία, απουσία πλέον του εξωτερικού αττίου το οποίο έχει παύσει να δρά [17, 18]. Αντίστροφα, στα οπτικά ηλεκτρονικά (optoelectronics) είναι δυνατό η OFID να χρησιμοποιηθεί ως ένα ειδικό φασματικό φίλτρο (spectral filter) για την διερεύνηση της απότομης πτώσης ενός παλμού [19]. Η τεχνική αυτή ξεκινά με την διέγερση ενός ατομικού μέσου, οδηγώντας εν συνεχεία στήν παραγωγή συμφασικά ταλαντευόμενων διπολικών ροπών (phased arrays of dipole moments). Ως συνέπεια του γεγονότος αυτού τα δίπολα τείνονται εκτός φάσεως, με αποτέλεσμα η απόσβεση της OFID να οδηγεί σε στενότερους παλμούς σε σχέση με τον παλμό διέγερσης [20].
Στήν ενότητα αυτή μελετούμε το φαινόμενο της οπτικά επαγώμενης ατομικής μνήμης (optically free induction memory-OFIM) το οποίο σχετίζεται άμεσα με την απόκριση του στοιχείου συμφωνίας $\sigma_{12}(t)$ της διφωτονικής μετάβασης $|1\rangle \leftrightarrow |2\rangle$ όταν ο παλμός του εξωτερικά παρεχόμενου πεδίου υποστεί μία απότομη εκθετική πτώση στο μέγιστο του. Ουσιαστικά η OFIM προέρχεται από το φαινόμενο της OFID έτσι ώστε να περιορίζεται η επίδραση της απόσβεσης (decay) στο ατομικό σύστημα.

Ο νέος αυτός χρονικός παλμός που μας δίνει την OFIM ονομάζεται τετμημένος (truncated) και παριστάνεται με την μορφή: $\sec^2\left(\frac{t-\tau_c}{\tau_c}\right)$ για $\tau < 0$ και $\exp\left(-10\left(\frac{t-\tau_c}{\tau_c}\right)\right)$ για $\tau > 0$ αντίστοιχα. Ο τετμημένος αυτός παλμός χαρακτηρίζεται από εμβαδό $S_{\text{max}} = 1.17\pi$ και δεν είναι ο συνήθης 2π-παλμός που χρησιμοποιούσαμε στις παραγράφους 2.2 και 2.3 αντίστοιχα [12].

Σημειώνουμε ότι ο π-παλμός είναι ο παλμός εκείνος ο οποίος μεταφέρει πληθυσμό σε μία διεγερμένη κατάσταση $\pi. |i\rangle \leftrightarrow |j\rangle$. Ο 2π-παλμός μεταφέρει πληθυσμό σε μία διεγερμένη κατάσταση ενώ στην συνέχεια οδηγεί εκ νέου το άτομο στήν θεμελιώδη κατάσταση, μέσω εξαναγκασμένης εκπομπής ακτινοβολίας $\pi.\chi$. σύμφωνα με το σχήμα διέγερσης $|i\rangle \rightarrow |j\rangle \rightarrow |i\rangle$. Όπως δείχνουμε στα επόμενα η συγκεκριμένη μορφή του παλμού επάγει φαινόμενα ατομικής μνήμης στούς ατμούς του ατόμου του K. Καταλήγουμε κατόπιν ότι το συνδιασμένο αποτέλεσμα του παλμού αυτού και της μ-συντονιστικής διέγερσης των μεταλλικών ατμών οδηγεί στήν εμφάνιση της OFIM. Σημειώνουμε τέλος, ότι στήν περίπτωση της OFIM τα όποια φαινόμενα κρούσεων του ατόμου του K με τα άτομα του αδρανού αερίου ($\text{αλληλεπίδραση } K\text{-He}$) δεν ελήφθησαν υπόψη, σε μία πρώτη προσέγγιση.

2.4 Ελεύθερα επαγώμενη ατομική μνήμη

2.4.1 Μελέτη της συμπεριφοράς του στοιχείου συμφωνίας της διφωτονικής μετάβασης

Στο Σχήμα 2.11(a) δείχνουμε τον εισερχόμενο στο μέσο των ατμών χρονικό παλμό ο οποίος έχει χρονικό εύρος στο $\text{FWHM} \quad \tau_c = 5.10 \text{ nsec}$. Παρατηρούμε κατόπιν
την συμπεριφορά του πραγματικού μέρους του στοιχείου συμφωνίας \(\sigma_{12}(\zeta, \tau) \) σε συνάρτηση με τον καθυστερημένο χρόνο \(\tau \) για διάφορες τιμές του διφωτονικού αποσυντονισμού \(\Delta_{12} \).

Σχήμα 2.11 (a) Τετμημένος παλμός του διφωτονικού πεδίου. (b)-(c) Πραγματικό μέρος του στοιχείου συμφωνίας \(\sigma_{12} \) σε συνάρτηση του χρόνου για διάφορες τιμές του διφωτονικού αποσυντονισμού \(\Delta_{12} \). Παρατηρούμε ότι μακριά από τον συντονισμό (\(\Delta_{12} = 0 \)) σταθεροποιείται η μορφή της ταλάντωσης του στοιχείου συμφωνίας με ταυτόχρονη όμως μείωση του πλάτους αυτού. Στην τελευταία περίπτωση (d) επιτυγχάνεται η μέγιστη σταθεροποίηση της γενικευμένης συχνότητας Rabi. Οι τιμές των λοιπών παραμέτρων ήταν: \(I_{\text{max}} = 0.8 \text{MW/cm}^2 \), \(N_1 = 2 \times 10^{13} \text{cm}^{-3} \) στην θέση \(\zeta = 5 \text{ cm} \).
Στα Σχήματα 2.11(b)-(d) καταλαβαίνουμε ότι η τυχαία αρχική ταλαντωτική συμπεριφορά του στοιχείου συμφωνίας (Σχήμα 2.11(b)) σταθεροποιείται, όσο μεγαλώνει η τιμή του διφωτονικού αποσυντονισμού, παίρνοντας μια συγκεκριμένη μορφή για την τιμή $\Delta \frac{\sigma_{12}}{2\pi} = 6 \text{ GHz}$, ενώ το πλάτος της ταλάντωσης μικραίνει. Στήν συνέχεια από το Σχήμα 2.12 συνάγουμε ότι το χρονικό διάστημα της σταθεροποίησης της χρονικής εξέλιξης του $\sigma_{12} (\zeta, \tau)$ περιορίζεται γύρω στα $(\Delta t)_{\text{trunc}} = 16.6 \text{ nsec}$, ενώ το πραγματικό και το φανταστικό μέρος του έχουν την ίδια φάση και το ίδιο πλάτος, στο χρονικό αυτό διάστημα. Κατορθώνουμε επομένως να διατηρήσουμε την αρχικά παρεχόμενη πληροφορία στο σύστημα για μέγιστο χρόνο περίπου 4 φορές περισσότερο από το εύρος του τετμημένου παλμού, με την κατάλληλη πάντοτε επιλογή των παραμέτρων του συστήματος. Το γεγονός ότι το διφωτονικό στοιχείο συμφωνίας ταλαντώνεται με σταθερό πλάτος στο συγκεκριμένο χρονικό διάστημα $(\Delta t)_{\text{trunc}}$ είναι ενδεικτικό «επαγωγής» και αποδήκτευσης της αρχικής πληροφορίας στο μέσο των ατμόν του K, πολύ μετά τον παύση του αιτίου.

Σχήμα 2.12 Πραγματικό και φανταστικό μέρος του στοιχείου συμφωνίας σ_{12} σε συνάρτηση με τον χρόνο για την περίπτωση (d) του σχήματος 2.11. Παρατηρούμε ότι η χρονική σταθερότητα διαρκεί περίπου 16.6 nsec, χρόνος μεγαλύτερος από το εύρος τ_ω του διφωτονικού πεδίου διέγερσης.

Με αυτόν τον τρόπο η επαγωμένη σταθερότητα στήν χρονική ταλάντωση του $\sigma_{12} (\zeta, \tau)$ φέρει την ονομασία ελεύθερα επαγωμένη μνήμη και αποτελεί μία μορφή
ατομικής μνήμης η οποία στηρίζεται πρωτίστως, στήν σχεδόν απότομη πτώση του
dιωφωτονικού παλμού στο μεγιστό του (εξώτου και ο όρος «επαγώμενη»).
Δευτερεύοντος, η μεγιστοποίηση της μνήμης οφείλεται στήν παράμετρο του
dιωφωτονικού αποσυντονισμού η οποία συνεισφέρει στήν ελεύθερη ταλαντωτική
συμπεριφορά του $\sigma_{12}(\zeta, \tau)$.

Δεν παρατηρήθηκε ανάλογη συμπεριφορά των υπόλοιπων στοιχείων
συμφωνίας $\sigma_{ij}(\zeta, \tau)$ υπό την επίδραση του τετμημένου παλμού [12]. Τα
apοτελέσματα που παρουσίασαμε ελήφθησαν για την μέγιστη τιμή του πεδίου της
dιωφωτονικής ίση $I_{\text{max}} = 0.8 \text{ MW/cm}^2$, στήν μικρή ατομική πυκνότητα
$N_1 = 2 \times 10^{13} \text{ cm}^{-3}$.

Σχήμα 2.13 Καταστροφή της χρονικής σταθερότητας του στοιχείου συμφωνίας
σ_{12} με την αύξηση της μέγιστης τετμημένης διωφωτονικής έντασης. Οι τιμές των
λοιπών παραμέτρων ήταν: $N_3 = 8 \times 10^{13} \text{ cm}^{-3}$, $\frac{\Lambda_{14}}{2\pi} = 6 \text{ GHz}$ στήν θέση $\zeta = 5$
 cm.

Σε περίπτωση που αυξηθεί αρκετά η τιμή του πεδίου της διωφωτονικής
παρατηρούμε καταστροφή της κατάστασης της μνήμης όπως δείχνουμε στο Σχήμα
2.13, για την πυκνότητα $N_3 = 8 \times 10^{13} \text{ cm}^{-3}$. Η αύξηση επομένως του εξωτερικού
pedίου καταστρέφει την ελεύθερα επαγώμενη μνήμη. Αυτό συμβαίνει επειδή στήν
εξίσωση (1.8), (στήν κατάσταση της μνήμης του συστήματος), όλοι οι όροι της
συχνότητας $\text{Rabi} \Omega_{ij}(\zeta, \tau)$ είναι μηδέν (λόγο του μηδενισμού των παραγόμενων
πεδίων παράλληλα με τον μηδενισμό του τετμημένου πεδίου της διφωτονικής) με αποτέλεσμα στο δεύτερο μέλος της εξίσωσης να επιβιώνει μόνο ο πρώτος όρος και να προκύπτει η τελική σχέση: \(\sigma_{12} = i(\Delta_{12} + i\gamma_{12}) \sigma_{12} \), όπου πλέον υπάρχει εξάρτηση μόνο από τον αποσυντονισμό \(\Delta_{12} \) και από τον ρυθμό απόσβεσης \(\gamma_{12} = \frac{1}{\tau_{12}} \).

Σε αυτές τις συνθήκες η μνήμη επιτυγχάνεται και στήν συνέχεια καταστρέφεται αναπόφευκτα λόγω της παρουσίας του ρυθμού αποσυντονισμού \(\gamma_{12} (\tau_{12} = 153.8 \text{ nsec}) \). Η περαιτέρω αύξηση όμως του πεδίου της διφωτονικής μετάβασης μεταφέρει ενέργεια στούς \(\sigma \), της διαδρομής \(-1\), οι οποίοι πλέον να είναι μηδενικοί. Συνέπεια του τελευταίου είναι η εμφάνιση των εσωτερικά παραγόμενων πεδίων στην διαδρομή αυτή, άρα την τελική καταστροφή της κατάστασης της μνήμης. Στο ίδιο συμπερασμα καταλήγουμε και στήν συνέχεια της εμφάνιση των εσωτερικά παραγόμενων πεδίων στήν διαδρομή αυτή, άρα την τελική καταστροφή της κατάστασης της μνήμης.

2.4.2 Μελέτη της ευστάθειας της ελεύθερα επαγώμενης μνήμης

Για να μελετήσουμε την ευστάθεια της ελεύθερα επαγώμενης μνήμης εισάγουμε στήν μετάβαση \(|1\rangle \leftrightarrow |2\rangle\) τον παλμό με την κυματομορφή sech\(^2\)\(\left(\frac{\tau - \tau_c}{\tau_c}\right)\), 36 nsec μετά την κορυφή του κύριου παλμού, για διάφορες εντάσεις (\(I_{\text{max}}\))^2 όπου δείχνουμε στα Σχήματα 2.14 και 2.15 αντίστοιχα.

Παρατηρούμε ότι αρχικά, Σχήμα 2.14, ο καθυστερημένος παλμός προκαλεί απλά μία διαταραχή στήν χρονική ταλάντωση του \(\sigma_{12} (\zeta, \tau) \) χωρίς να καταστρέφει την συνολική κατάσταση της μνήμης. Αυτό οφείλεται στο γεγονός ότι τα πεδία \(\Omega_{12} (\zeta, \tau) \) στο δεύτερο μέλος της (1.8) δεν έχουν τέτοια τιμή ώστε να διαταράξουν το σύστημα από την κατάσταση της μνήμης, (\(\sigma_{12} = i(\Delta_{12} + i\gamma_{12}) \sigma_{12} \)). Κάτι τέτοιο δεν ισχύει στήν περίπτωση του Σχήματος 2.15 όπου ο πολύ ισχυρός καθυστερημένος
παλμός με ένταση \((I_{\text{max}})_2 = 4(I_{\text{max}})_1 \) καταστρέφει την όπου κατάσταση της επαγγόμενης μνήμης όπου πλέον \((\sigma_{12} \neq i(\Delta_{12} + i\gamma_{12})\sigma_{12}) \).

Σχήμα 2.14 Πραγματικό μέρος του στοιχείου συμφωνίας \(\sigma_{12} \) σε συνάρτηση του χρόνου για διαφορετική μέγιστη ένταση του διαταρακτικού πεδίου \(\left(I_{\text{max}} \right)_2 \). Από τις περιπτώσεις (b) και (d) παρατηρούμε μια διαταραχή στην χρονική σταθερότητα χωρίς όμως σημαντική μεταβολή στο πλάτος ταλάντωσης του. Οι τιμές των λοιπών παραμέτρων ήταν:

\[(I_{\text{max}})_1 = 0.8 \text{MW/cm}^2, \quad N_1 = 2 \times 10^{13} \text{ cm}^{-3}, \quad \frac{\Delta_{14}}{2\pi} = 3 \text{ GHz} \quad \text{στήν θέση} \]
\[\zeta = 5 \text{ cm}. \]
Σχήμα 2.15 Πραγματικό μέρος του στοιχείου συμφωνίας σ_{12} σε συνάρτηση του χρόνου για διαφορετική μέγιστη ένταση του διαταρακτικού πεδίου I_{\max} για τις παραμέτρους του σχήματος 2.14. Η χρονική σταθερότητα έχει καταστραφεί ολοκληρωτικά (θ) με αποτέλεσμα να μην υφίσταται πλέον το φαινόμενο της ελεύθερα επαγώμενης μνήμης (OFIM).

Συνεπώς, η κατάσταση της ατομικής μνήμης, για μικρές τιμές της ατομικής πυκνότητας ($N_1 = 2 \times 10^{13}$ cm$^{-3}$ και $N_2 = 4 \times 10^{13}$ cm$^{-3}$ αντίστοιχα) και για μέγιστη ένταση $I_{\max} = 0.8$ MW/cm2, είναι σχετικά ευσταθής και καταστρέφεται ολοκληρωτικά, όταν ο καθυστερημένος παλμός είναι πολύ ισχυρότερος του τετμημένου παλμού που δημιούργησε την ατομική μνήμη [12].

2.4.3 «Διάβασμα» της κατάστασης της μνήμης

Σε όσα παρουσιάσαμε στις παραγράφους 2.4.1. έως 2.4.2 είδαμε πως μπορεί να επιτευχθεί η ελεύθερα επαγώμενη μνήμη στο σύστημα των ατμών του K. Η χαρακτηριστική ταλάντωση του στοιχείου σ_{12} (ζ, τ) δηλώνει την έμμεση παρουσία της. Για να μπορέσουμε όμως να «διαβάσουμε» (read out) την μνήμη πρέπει να αλληλεπιδράσουμε με ένα ασθενές εξωτερικό πεδίο (ώστε να μην καταστραφεί η κατάσταση της επαγώμενης μνήμης) στην μετάβαση $\vert 4 \rangle \leftrightarrow \vert 1 \rangle$ για να παρατηρήσουμε τις συνέπειες αυτής της αλληλεπίδρασης στην αντίστοιχη μετάβαση $\vert 2 \rangle \leftrightarrow \vert 4 \rangle$. Στο Σχήμα 2.16 βλέπουμε ότι στο παραγόμενο πεδίο $\vert 2 \rangle \leftrightarrow \vert 4 \rangle$
εμφανίζονται κάποιες χαρακτηριστικές ταλαντώσεις στήν περιβάλλουσα του (envelope), για διάφορες θέσεις ζ στο κελί των ατμών του K. Οι χαρακτηριστικές αυτές ταλαντώσεις υποδηλώνουν με έναν πιο άμεσο τρόπο την κατάσταση μινήμης του συστήματος αφού πλέον μπορούμε με ένα ασθενείς εξωτερικό πεδίο \(I_{14} \approx 10^{-6} \text{ W/cm}^2 \) να «διαβάσουμε» (read-out) την επαγώμενη αυτή μνήμη [12].

Σχήμα 2.16 Εκπεμπόμενο πεδίο στη μετάβαση \(|2\rangle \leftrightarrow |4\rangle \) στήν περίπτωση εφαρμοζόμενου πεδίου θορύβου στήν μετάβαση \(|4\rangle \leftrightarrow |1\rangle \). Οι επαγώμενες ταλαντώσεις στήν περιβάλλουσα του παλμού είναι ένδειξη της παρουσίας και κατά συνέπεια της «ανάγνωσης» της ελεύθερα επαγώμενης μνήμης.

Περισσότερες λεπτομέρειες σχετικά με την συμπεριφορά των μεταλλικών ατμών του K, υπό την επίδραση της τετμημένης διφωτονικής διέγερσης, μπορούν να αναζητηθούν στη μεταπτυχιακή διπλωματική εργασία (MsC), του Θ. Μαρίνου [21].

Συμπεράσματα

Ενότητα I

- Η καταστρεπτική κβαντική συμβολή (destructive quantum interference) τροποποίησε την μη-γραμμική απόκριση στήν κύρια ατομική διαδρομή-1 του καλίου. Το γεγονός αυτό αποδείχτηκε από την μελέτη της έντασης της ακτινοβολίας στη μετάβαση \(|4\rangle \leftrightarrow |1\rangle \) σε συνάρτηση με την ένταση του
πεδίου laser. Επιπλέον, όταν η διαδρομή-1 εκορέστει τότε η παρεχόμενη ενέργεια διαβιβάστηκε στήν διαδρομή-2. Στήν κατάσταση (συνθήκη) κορεσμού της διαδρομής-1 παρατηρήθηκε ανακατανομή του πληθυσμού μεταξύ των καταστάσεων όπου έλαβε χώρα η μιζή τεσσάρων κυμάτων.

- Συνέπεια της αντιστροφής πληθυσμού αποτέλεσε το γεγονός ότι εάν μία ακτινοβολία με μήκος κύματος ίσο με αυτό της μετάβασης $|4\rangle \leftrightarrow |1\rangle$ αλληλεπίδροσε με το σύστημα, τότε δεν θα προκάλεσε κάποια σημαντική μεταβολή στήν κατάστασή του. Αυτό οφείλεται στο ότι λόγω της μεταφοράς πληθυσμού στήν κατάσταση $|4\rangle$ όπου $\sigma_{44} > \sigma_{11}$, η ακτινοβολία αυτή δεν βρήκε πληθυσμό (ή βρήκε ελάχιστο) στήν $|1\rangle$ ώστε να τον ανεβάσει. Αρα με αυτό τον τρόπο επιτεύχθηκε κάποιο είδος διαφάνειας στη μετάβαση $|1\rangle \leftrightarrow |4\rangle$ του ατομικού καλίου στις μικρές ατομικές πυκνότητες ($N < 10^{14}$ cm$^{-3}$).

- Η σύγκριση του θεωρητικού μοντέλου με τα πειραματικά αποτελέσματα κρίθηκε αρκετά ικανοποιητική. Η απόκλιση από τις πειραματικές τιμές προέκυψε από το γεγονός ότι στήν προσομοίωση δεν συμπεριλήφθηκε η κωνική εκπομπή καθώς και η διάδοση των παραγόμενων ακτινοβολιών ASE ή ΣΗΣ στήν αντίθετη διεύθυνση του πεδίου laser.

Ενότητα II

- Εξαιτίας της επίδρασης του τετμημένου παλμού διφωτονικής διέγερσης, $\text{sech}^{2}\left(\frac{\tau - \tau_c}{\tau_c}\right)$ για $\tau < 0$ και $\exp\left(-10\left(\frac{\tau - \tau_c}{\tau_c}\right)\right)$ για $\tau > 0$, το ατομικό σύστημα των ατμών του K μπόρεσε να αποθηκεύσει την παρεχόμενη πληροφορία για έναν ορισμένο χρονικό διάστημα (Δt_{range}). Βασική παράμετρος για την επίτευξη της ελεύθερης επαγώμενης μνήμης ήταν ο διφωτονικός αποσυντονισμός Δ_{12}. Τότε το στοιχείο συμφωνίας $\sigma_{12}(\tau)$ χαρακτηρίστηκε από σταθερές σε πλάτος ταλαντώσεις σε ένα συγκεκριμένο χρονικό διάστημα όπου ισχύει η σχέση $\sigma_{12} = i(\Delta_{12} + i\gamma_{12})\sigma_{12}$. Κατόπιν η μνήμη καταστράφηκε εξαιτίας της αποσυμφωνίας (decay rate) γ_{12}, η οποία
επαναφέρει το ατομικό σύστημα στήν κατάσταση ηρεμίας (relaxation processes). Επίσης, η επίδραση ενός ασθενούς πεδίου στήν μετάβαση \(|4\rangle \leftrightarrow \lvert l\rangle\) δημιούργησε κάποιες ανεπαίσθητες ταλαντώσεις στο χρονικό προφίλ της μετάβασης \(|2\rangle \leftrightarrow |4\rangle\). Το τελευταίο μας έδωσε την δυνατότητα να «διαβάσουμε» την μνήμη αυτή.

♦ Τόσο η επαγώμενη διαφάνεια όσο και η επαγώμενη μνήμη αποτελούν ορισμένα από τα πιο αξιόλογα θέματα της σύγχρονης Φυσικής, κάτι το οποίο προβλέπτηκε και επιτεύχθηκε σε κάποιο βαθμό, με την χρήση του απλοποιημένου θεωρητικού μοντέλου των ατμών του καλίου.

Βιβλιογραφία

ΚΕΦΑΛΑΙΟ 3

Παραμετρική μίξη τεσσάρων κυμάτων σε μεταλλικούς ατμούς καλίου υπό fsec διφωτονική διέγερση.

Εισαγωγή

Τα τελευταία 25 χρόνια δημοσιεύτηκαν αρκετές σχετικές με την εκπομπή εσωτερικά παραγόμενων ακτινοβολιών από μεταλλικούς ατμούς αλκαλίων. Οι P. L. Zhang et.al. [1] ήταν οι πρώτοι που μελέτησαν την μίξη τεσσάρων και έξι κυμάτων κατά την διφωτονική διέγερση της κατάστασης $|8S_{\nu_2}\rangle$ των ατμών του καλίου (K), μεγάλης ατομικής πυκνότητας ($N \sim 10^{16} \text{ cm}^{-3}$), με την χρήση παλμικών laser χρωστικής (dye laser) όπου παρατηρήθηκε η εκπομπή υπεριώδης (UV) και υπέρυθρης (IR) ακτινοβολίας αντίστοιχα. Επίσης, οι M. A. Moore et.al. [2] μελέτησαν τους παραπάνω μηχανισμούς μίξης σε μεταλλικούς ατμούς νατρίου, ενώ οι R. K. Wunderlich et.al. [3] διερεύνησαν διεξοδικά το φαινόμενο της διφωτονικής ακύρωσης (two-photon cancelation effect) στο οποίο η καταστρεπτική κβαντική συμβολή (QI) τροποποίησε την μη-γραμμικότητα ενός αρχικά μη-γραμμικού μέσου, (π.χ. άτομο νατρίου), όπως εξηγήσαμε σχετικά στο προηγούμενο κεφάλαιο.

Πιο πρόσφατα οι V. Vaicaitis και A. Piskarskas [4], με την χρήση πολύ ισχυρών πεδίων αντλήσεις, παρατήρησαν παραμετρική ταλάντωση καθώς και κονική εκπομπή στήν περιοχή του υπεριώδους κενού (VUV) σε μέσο ατμόν υδραργύρου (Hg). Στις περιπτώσεις [1-3] η συχνότητα του πεδίου αντλήσεως βρισκόταν κοντά στόν nsec διφωτονικό συντονισμό του μη-γραμμικού μέσου, (καθώς και στόν psec αντίστοιχα κατά την μελέτη της περίπτωσης [4]), έτσι ώστε να αυξηθεί κατά μείζονα λόγο η μη-γραμμική επιδεκτικότητα καθώς επίσης και να επιτευχθεί μεγαλύτερη απολαβή (gain) παρά τις σημαντικές απώλειες, εξαιτίας της διφωτονικής απορρόφησης, που υπέστη το σύστημα με την χρήση ισχυρών πεδίων αντλήσεως και μεγάλων ατομικών πυκνοτήτων αντίστοιχα. Υπό αυτές τις συνθήκες, όπως αναφέραμε εν συντομία στήν εισαγωγή της διδακτορικής διατριβής, ένας αριθμός μη-γραμμικών φαινομένων

χρήση παλμού με εύρος στο FWHM 150 fsec, σε αντίθεση με τον παλμό εύρους 2 psec και ακόμα στενότερο, ο οποίος βρισκόταν στην nsec περιοχή. Όσο πιο στενός γινόταν φασματικά ο παλμός διέγερσης, τόσο περισσότερες διακολίες εμφανίζονταν κατά τον διαχωρισμό του αξονικού από το κωνικό μέρος [14].

Στο παρόν κεφάλαιο μελετούμε πειραματικά την παραμετρική μίξη στο σύστημα των τεσσάρων επιπέδων των ατμών του K όταν η κατάσταση 2⟩=|6S_{1/2}⟩

διεγείρεται διφωτονικά από fsec παλμό laser, μήκους κύματος λ = 728 nm και ενέργειας, ενός φωτονίου, k = 13736.3 cm⁻¹, με αποτέλεσμα σημαντική αύξηση της μη-γραμμικότητας του συστήματος. Όπως δείχνουμε παρακάτω τα αποτελέσματα που προκύπτουν στήν περίπονη αυτή παρουσιάζουν ορισμένες ομοιότητες και στις δύο περιπτώσεις διφωτονικής διέγερσης, (nsec και fsec αντίστοιχα), με κάποιες ουσιαστικές διαφορές όμως, οι οποίες σχετίζονται με τους μηχανισμούς παραγωγής των ακτινοβολιών 3/2,1/2 1/25P 4S (κεντρικού μήκους κύματος 404 nm), της διαδρομής -1 και 6S_{1/2}⟩ ↔ 4P_{3/2,1/2}⟩ (κεντρικού μήκους κύματος 694 nm) καθώς και 4P_{3/2,1/2}⟩ ↔ 4S_{1/2}⟩ (κεντρικού μήκους κύματος 766 nm), της διαδρομής -2 αντίστοιχα.

3.1 Πειραματική διάταξη

Στο Σχήμα 3.1 δείχνουμε την πειραματική διάταξη με την οποία πραγματοποιήσαμε τα πειράματα μας. Οι ατμοί του ατομικού K παράγονταν εντός θερμαινόμενου κυλινδρικού ανοξείδωτου χαλύβδινου κελιού με μήκος 30 cm. Χρησιμοποιήσαμε το αδρανές αέριο (buffer gas) αργό (Ar) με πίεση 10 mbar ώστε να εμποδιστούν οι ατμοί του K να αγγίξουν τα παράθυρα (windows) του κελιού. Κρατήσαμε σταθερή την ατομική πυκνότητα του K ίση με 15 351 0 c m⁻³, που αντιστοιχεί σε θερμοκρασία γύρω στους 0.300 C (ή σε 0.3 mbar, πίεση των ατμών του K), ενώ ταυτόχρονα κινηθήκαμε σε χαμηλότερες πυκνότητες ώστε να προσδιορίσουμε την κρίσιμη εκείνη περιοχή πυκνοτήτων όπου εμφανίστηκαν τα παραγόμενα πεδία της διαδρομής-1. Χρησιμοποιήσαμε ακόμα, έξι θερμοκρασίες (thermocouples) ώστε να καταγράψουμε την θερμοκρασία κατά μήκος του κελιού. Οι θερμοκρασίες μετρήθηκαν σε mV και στήν συνέχεια με την χρήση της σχέσης
βαθμονόμησης \(T(0\,^°C) = 24.4\, (mV) + 12 \), μετατράπηκαν στήν θερμοκρασιακή μονάδα των βαθμών κελσίου \((^°C) \).

Σχήμα 3.1 Πειραματική διάταξη για την μελέτη της μίξης τεσσάρων κυμάτων με τη χρήση συγκλίνοντα φακού εστιακής απόστασης \(F=66.7 \text{ cm} \). Οι παραγόμενες ακτινοβολίες αναλύθηκαν φασματικά από έναν ψηφιακό φασματογράφο με τη χρήση CCD κάμερας, στην έξοδο του κελιού, και στην συνέχεια επεξεργάστηκαν από έναν υπολογιστή.

Το σύστημα laser αποτελούνταν από μια γεννήτρια οπτικής παραμετρικής ακτινοβολίας (optical parametric generator-OPG) η οποία αντλούνταν από ένα fs τιματο οπτικής παραμετρικής ακτινοβολίας (optical parametric generator-OPG) η οποία αντλούνταν από ένα fs τιματο Ti: Sapphire laser ("Spitfire", Spectra Physics, Ltd) laser αντίστοιχα, με μέγιστη ενέργεια παλμού 13 \(\mu J \) και διάρκεια 120 fs. Η διάμετρος της δέσμης εξόδου από το σύστημα laser ήταν περίπου 3 mm η οποία κατόπιν εστιάστηκε ισχυρά στο κέντρο του κελιού παράγοντας μέγιστη ένταση περίπου \(I_{max} = 0.3 \text{TW/cm}^2 \). Η χρήση συγκλίνοντα φακού εστιακής απόστασης \(F = 66.7 \text{ cm} \), \(1/F=1.5 \text{ D} \), κρίθηκε απαραίτητη ώστε να παραχθεί η κατάλληλη εκείνη ένταση των πεδίων, καθώς η
ανεστίστη δέσμη ήταν εξαιρετικά ευρεία σε διατομή ενώ τα παραγόμενα πεδία δεν μπορούσαν να παρατηρηθούν εύκολα. Χρησιμοποιήθηκε ένας ψηφιακός φασματογράφος (CCD camera) "Ocean Optics" (HR2000) για την καταγραφή των φάσματα των παραγόμενων ακτινοβολιών των ατομικών διαδρομών-1 και 2 αντίστοιχα. Τέλος, χρησιμοποιήσαμε συγκεκριμένα φίλτρα συμβολής (interference filters-Edmund scientific) με εύρος στo FWHM 3 nm, ώστε να απομονώσουμε την ακτινοβολία του laser καθώς και τις ακτινοβολίες που παράγονταν εσωτερικά στο ατομικό μέσο, πλην αυτών που ενδιαφερόμασταν να καταγράψουμε [14].

3.2 Παραμετρική μίξη τεσσάρων κυμάτων υπό fsec 4S1/2-6S1/2 διέγερση

Το πολύ ισχυρό πεδίο laser προκαλεί σε γενικές γραμμές μετατόπιση Stark (Stark effect) της θεμελιώδους κατάστασης |4S1/2〉 όσο και της πρώτης διεγερμένης κατάστασης |6S1/2〉. Από τη μελέτη των Z. J. Jabbour et.al. [12] υπολογίζουμε την αντίστοιχη μετατόπιση των δύο καταστάσεων. Κάνοντας χρήση της σχέσης

\[\omega_{4S_{1/2}} = -\sum_{m=3}^{4} \left| \mu_{2m} \right|^2 \varepsilon_0^2 \frac{\omega_{1m}}{2\hbar^2} \omega_{1m}^{-} - \omega_{1m}^{+} \left| E(t) \right|^2 , \]

βρίσκουμε ότι η μέγιστη μετατόπιση Stark της θεμελιώδους κατάστασης, σε μονάδες αντιστρόφου μήκους κύματος, είναι 9.4×10⁻⁴ cm⁻¹, ενώ για την πρώτη διεγερμένη κατάσταση χρησιμοποιώντας την σχέση

\[\omega_{6S_{1/2}} = -\sum_{m=3}^{4} \left| \mu_{2m} \right|^2 \varepsilon_0^2 \frac{\omega_{2m}}{2\hbar^2} \omega_{2m}^{-} - \omega_{2m}^{+} \left| E(t) \right|^2 \]

προκύπτει ότι είναι αντίστοιχα 6.8×10⁻⁴ cm⁻¹. Σημειώνουμε ότι με E(t) συμβολίζουμε το πλάτος του πεδίου άντλησης, με ε₀ την επιδεκτικότητά του ελεύθερου χώρου ενώ με μᵢₘ παριστάνονται τα στοιχεία πίνακα, (matrix elements της διπολικής προσέγγισης), των αντίστοιχων μεταβάσεων [15]. Συμπεραίνουμε επομένως ότι η τάξη μεγέθους TW / cm² της έντασης του πεδίου laser έχει ως αποτέλεσμα μία μη-δυνάμενη να παρατηρηθεί φασματική μετατόπιση (shift) των εσωτερικά παραγόμενων ακτινοβολιών, κάτι που επαληθεύθηκε και πειραματικά μίας και τα καταγράφομενα φάσματα, των υπό μελέτη ακτινοβολιών, παρατηρήθηκαν στο ίδιο μήκος κύματος με αυτά της nsec διωφτονικής διέγερσης [8, 9].
3.2.1 Διαδρομή-1

Εξαιτίας της έλλειψης υπέρυθρου ανιχνευτή, για την καταγραφή της υπέρυθρης ακτινοβολίας στήν μετάβαση $|6S_{1/2}\rangle \leftrightarrow |5P_{3/2,1/2}\rangle$, η πειραματική μελέτη στήν διαδρομή-1 επικεντρώνεται μόνο στήν εκπομπή $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ η οποία καταγράφεται γύρω στα 404.7 nm και 404.4 nm, αντίστοιχα (doublet states). Η συμπεριφορά των ακτινοβολιών αυτών δίνει έμμεσα ενδείξεις και για τον φυσικό μηχανισμό που βρίσκεται πίσω από την παραγωγή της υπέρυθρης στήν μετάβαση $|6S_{1/2}\rangle \leftrightarrow |5P_{3/2,1/2}\rangle$. Στο Σχήμα 3.2 παρουσιάζουμε το φάσμα διέγερσης (excitation spectrum) της $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ ως συνάρτηση του διφωτονικού αποσυντονισμού $\Delta_{4S_{1/2} \rightarrow 6S_{1/2}}$.

Σχήμα 3.2 Φάσμα διέγερσης της ακτινοβολίας στήν μετάβαση $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ σαν συνάρτηση του διφωτονικού αποσυντονισμού $\Delta_{4S_{1/2} \rightarrow 6S_{1/2}}$ για τρεις διαφορετικές ατομικές πυκνότητες (a) $N = 2.5 \times 10^{15}$ cm$^{-3}$, (b) $N = 5 \times 10^{15}$ cm$^{-3}$ και (c) $N = 9 \times 10^{15}$ cm$^{-3}$, αντίστοιχα. Παρατηρούμε ότι σε όλες τις περιπτώσεις το μέγιστο σημείο σμπομίας φάσεως ($\Delta k = 0$) βρίσκεται πάνω από τον συντονισμό, ένδειξη παραμετρικής γέννας της ακτινοβολίας αυτής.

Στο Σχήμα αυτό δείχνουμε μόνο την αξονική εκπομπή όταν ο φασματογράφος μετατοπίζεται παράλληλα με τον οπτικό άξονα του κελιού, (άξονας ζ), σε απόσταση
I. Αρχικά παρατηρούμε το σχετικά μεγάλο εύρος της παρουσίας της εν λόγω ακτινοβολίας σε σχέση με τον διφωτονικό αποσυντονισμό Λ48s2−68s2. Το εύρος αυτό στις τρεις ατομικές πυκνότητες (α)-(c) έχει μία μέση τιμή περίπου 600 cm⁻¹ που αντιστοιχεί σε 30 nm. Συνάγουμε επομένως, ότι με την χρήση fsec παλμών η διφωτονική περιοχή παρατηρήσεως της |5P3/2,1/2⟩ ↔ |4S1/2⟩ διευρύνεται αρκετά σε σύγκριση με την nsec περίπτωση, στην οποία οι N. Merlemis et.al. [8] για μέγιστη ενέργεια παλμού 8 mJ στήν ατομική πυκνότητα N = 9.2×10¹⁴ cm⁻³, βρήκαν ότι το μέγιστο εύρος ήταν 1.2 cm⁻¹. Στήν fsec περίπτωση το εύρος του laser στο FWHM είναι περίπου 190 cm⁻¹ (αντιστοιχεί σε 10 nm), εξαιρετικά μεγάλο σε σχέση με το nsec laser. Συνέπεια του τελευταίου είναι ευρεία παρουσία των |5P3/2,1/2⟩ ↔ |4S1/2⟩ σε συνάρτηση με το Λ48s2−68s2 [14].

II. Η μέγιστη τιμή της συνθήκης συμφωνίας φάσεως (phase matching) Δk = k12 − k24 − k41 βρίσκεται πάντοτε πάνω από τον διφωτονικό συντονισμό (Δ48s2−68s2 > 0). Στήν μικρότερη πυκνότητα N = 2.5×10¹⁵ cm⁻³, Σχήμα 3.2(a), η θέση αυτή καταγράφηκε για Δ48s2−68s2 = 75.7 cm⁻¹, ενώ στήν μεγαλύτερη N = 9×10¹⁵ cm⁻³, Σχήμα 3.2(c), για Δ48s2−68s2 = 38.7 cm⁻¹, αντίστοιχα. Παρατηρούμε μία μείωση της τιμής αυτής με την αύξηση της πυκνότητας. Ένας λόγος για αυτό είναι η σημαντική παρουσία της κωνικής εκπομπής, Ι(Ω) = Ι(Ω), η οποία επηρεάζει την αξονική συνθήκη της συμφωνίας φάσεως, μίας και σε μεγαλύτερες ατομικές πυκνότητες η κωνική εκπομπή είναι πιο έντονη με αποτέλεσμα να επιδρά στην αλλαγή της αξονικής συμφωνίας φάσεως [14].

III. Παρατηρούμε επίσης, ένα βύθισμα (deep) σε μιά περιοχή κοντά στήν συνθήκη του διφωτονικού συντονισμού (Δ48s2−68s2 = 0). Η συμπεριφορά αυτή σχετίζεται με την πιθανότητα διφωτονικής απορρόφησης και μετάβασης στο συνεχές (continuum) μέσω της απορρόφησης ενός ακόμα φωτονίου δηλαδή την μερική μεταφορά
πληθυσμού στήν κατάσταση $|6S_{1/2}\rangle$ να ακολουθεί είτε ο ιονισμός, ή η εκπομπή
ενισχυμένης αυθόρμητης εκπομπής (ASE) στήν μετάβαση $|6S_{1/2}\rangle \rightarrow |5P_{3/2,1/2}\rangle$ [14].
Το πρώτο είναι πιθανότερο για τους στενούς fssec παλμούς παρά για τους nssec παλμούς αντίστοιχα.

Σχήμα 3.3 Μέγιστη ένταση της παραγόμενης ακτινοβολίας στήν μετάβαση $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ σαν συνάρτηση της ατομικής πυκνότητας N, για τη μέγιστη ένταση του laser $I_L = 0.3$ TW/cm2, όταν βρισκόμαστε ακριβώς πάνω στο διφωτονικό συντονισμό $\Delta_{s_1/2-s_1/2} = 0$. Παρατηρούμε ότι το αξονικό της μέρος εξακολουθεί να αυξάνει σχεδόν μονοτονικά στήν περιοχή πυκνοτήτων μεταξύ $N = 1.2 \times 10^{14}$ cm3 και $N = 3 \times 10^{15}$ cm3 αντίστοιχα. Το γεγονός αυτό σχετίζεται με την ύπαρξη ισχυρής αξονικής εκπομπής. Επιπρόσθετα, παρατηρούμε την παρουσία δύο διαφορετικών ευθειών με κλίσεις $s_{NL} = 3.51$ (μη-γραμμική περιοχή) και $s_{L} = 1.67$ (γραμμική περιοχή) αντίστοιχα, συνέπεια της καταστρεπτικής κβαντικής συμβολής.

Τα συμπεράσματα των παραγράφων Ι-III είναι όμοια με όσα καταγράφηκαν στήν μελέτη των N. Merlemis et.al. [8] η οποία πραγματοποιήθηκε για nssec διφωτονική διέγερση. Στο Σχήμα 3.3. δείχνουμε, σε λογαριθμικό διάγραμμα, την μέγιστη αξονική τιμή της $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ στήν συνθήκη του διφωτονικού συντονισμού $\Delta_{s_1/2-s_1/2} = 0$, σαν συνάρτηση της ατομικής πυκνότητας N. Παρατηρούμε συνεχή, σχεδόν, μονοτονική αύξηση της μέγιστης τιμής της, με την αύξηση της ατομικής πυκνότητας, ξεκινώντας από την τιμή $N = 1.2 \times 10^{14}$ cm3 και
Σχήμα 3.4 Μέγιστη ένταση της παραγόμενης ακτινοβολίας στην μετάβαση \(|5\text{P}_{3/2,1/2}\rangle \leftrightarrow |4\text{S}_{1/2}\rangle \) σαν συνάρτηση της γωνίας εκπομπής \(\theta \) από τον οπτικό άξονα του κελιού για τρείς αποσυντονισμούς (πάνω, επί, και κάτω από την \(|6\text{S}_{1/2}\rangle \) κατάσταση), και για δύο διαφορετικές ατομικές πυκνότητες: \(N = 4.5 \times 10^{14} \text{ cm}^{-3} \) για τις περιπτώσεις (a)-(c) και \(N = 2.5 \times 10^{15} \text{ cm}^{-3} \) για τις περιπτώσεις (d)-(f) αντίστοιχα.

φτάνοντας μέχρι και την τιμή \(N = 3 \times 10^{15} \text{ cm}^{-3} \). Φαίνεται επομένως ότι το αξονικό μέρος της ακτινοβολίας στην μετάβαση \(|5\text{P}_{3/2,1/2}\rangle \leftrightarrow |4\text{S}_{1/2}\rangle \) ακολουθεί την αύξηση της ατομικής πυκνότητας. Σε μεγαλύτερες όμως ατομικές πυκνότητες
Σχήμα 3.5 Φωτογραφίες μακρινού πεδίου στήν μετάβαση 5P3/2,1/2 ↔ 4S1/2 σε συνάρτηση με τον διφωτονικό συντονισμό: (a) Δ4s1/2−6s1/2 = 191.3 cm−1, (b) Δ4s1/2−6s1/2 = 0 και (c) Δ4s1/2−6s1/2 = -186.2 cm−1 αντίστοιχα. Παρατηρούμε ότι στόν συντονισμό, περιπτώση (b), τόσο το αξονικό όσο και το κωνικό μέρος είναι παρόντα, ενώ πάνω και κάτω από την 6S1/2 κατάσταση διακρίνεται μία ασύμμετρη αμιδρή αξονική και κωνική εκπομπή αντίστοιχα.

N > 3×10^{15} \text{ cm}^{-3} το μέγιστο υψηλότερης κωνικής εκπομπής (η οποία μεγιστοποιείται εκτός του οπτικού άξονα του κελιού) σε σχέση με τις μικρότερες πυκνότητες. Παράλληλα βλέπουμε δύο κύριες ευθείες οι οποίες μας υποδηλώνουν την μετάβαση από την μη-γραμμική στη γραμμική περιοχή, μία εικόνα παρόμοια με εκείνη στήν nsec διφωτονική διέγερση (ενότητα I, κεφάλαιο 2).

Στο Σχήμα 3.4 δείχνουμε την γωνιακή κατανομή (angular profile), δηλαδή, την μέγιστη ένταση της ακτινοβολίας σε συνάρτηση με τη γωνία εκπομπής από το κέντρο του κελιού, σε δύο διαφορετικές πυκνότητες: το Σχήμα 3.4(a)-(c) αναφέρεται στήν πυκνότητα N = 4.5×10^{14} \text{ cm}^{-3} ενώ το Σχήμα 3.4(d)-(f) στήν N = 2.5×10^{15} \text{ cm}^{-3} αντίστοιχα. Σε όλες τις μορφές της ακτινοβολίας του Σχήματος αυτού, παρατηρούμε ότι το κωνικό μέρος δεν είναι εύκολα ορατό με τον φασματογράφο, σε αντίθεση με το αξονικό που διακρίνεται ευκολότερα. Η δυσκολία αυτή σχετίζεται για ακόμα μία φορά με το εύρος (190 cm^{-1}) του υπεύθυνου για την ατομική διέγερση laser, όπου δεν επιτρέπει τον ακριβή διαχωρισμό των στοιχείων (components) της εκπομπής. Η δυσκολία αυτή αίρεται, σε κάποιο βαθμό, με τις φωτογραφίες μακρινού πεδίου που παρουσιάζονται στο Σχήμα 3.5. Στόν συντονισμό, (Δ4s_{1/2}−6s_{1/2} =0), και τα δύο συστατικά της εκπομπής είναι παρόντα, δηλαδή αξονική και κωνική εκπομπή αντίστοιχα. Πάνω από τον συντονισμό, (Δ4s_{1/2}−6s_{1/2} =191.3 \text{ cm}^{-1}), παρατηρείται ασύμμετρη αμιδρή αξονική εκπομπή ενώ κάτω από αυτόν, (Δ4s_{1/2}−6s_{1/2} =−186.2 \text{ cm}^{-1}), η κωνική εκπομπή φαινεται να κυριαρχεί με την μορφή ενός δακτυλιδιού (ring-shaped cone) [14].
Σημειώνουμε ότι στήν fsec διφωτονική διέγερση δεν ήταν δυνατόν να ξεχωρίσουν φασματικά οι κορυφές στα 404.7 nm και 404.4 nm, αντίστοιχα, εξαιτίας της ισχυρής διέγερσης (I_{max} = 0.3 TW/cm²) και του ευρύ φασματικά laser. Το τελευταίο παρατηρήθηκε και στήν nsec περίπτωση, όπου για μεγαλύτερες ενέργειες η διπλέτα εξαφανίζοταν [8]. Ο μηχανισμός παραγωγής της ακτινοβολίας αυτής μπορεί να είναι παραμετρικής φύσεως (PFWM) με την ταυτόχρονη εκπομπή φωτονίων στις μεταβάσεις |6S_{1/2}⟩ ↔ |5P_{3/2,1/2}⟩ και |5P_{3/2,1/2}⟩ ↔ |4S_{1/2}⟩ αντίστοιχα ή μπορεί να είναι μίξη τεσσάρων κυμάτων (FWM) με την εκπομπή στήν μετάβαση |6S_{1/2}⟩ ↔ |5P_{3/2,1/2}⟩ ακτινοβολίας SHRS η οποία στη συνέχεια αναμιγνύεται με τα δύο φωτόνια του laser.

Δεν ανιχνεύτηκε τέλος, συνιστώσα του παραγόμενου πεδίου η οποία να κατευθύνεται αντίθετα (backward propagation) σε σχέση με την κατεύθυνση του laser, όπως θα συνέβαινε εάν ήταν αυθόρμητα ενισχυμένη εκπομπή (ASE).

Συνοψίζοντας, αποφαίνουμε ότι και στις δύο περιπτώσεις διφωτονικής διέγερσης (nsec και fsec αντίστοιχα), για ισχυρότερη ένταση άντλησης, η ακτινοβολία στήν μετάβαση |5P_{3/2,1/2}⟩ ↔ |4S_{1/2}⟩ χαρακτηρίζεται από τον ίδιο φυσικό μηχανισμό, δηλαδή, αυτόν της παραμετρικής μίξης των τεσσάρων κυμάτων [14]. Με βάση τα αποτελέσματα του κεφαλαίου 2, σχετικά με την πιθανότητα κορεσμού, μπορούμε να πιθανολογήσουμε ότι σε αυτές τις συνθήκες είναι δυνατή η ανακατανομή πληθυσμού μεταξύ των καταστάσεων με συνέπεια την καταστολή (suppression or efficiency reduction) της παραμετρικής μίξης, στις δύο ατομικές διαδρομές.

3.2.2 Διαδρομή-2

Η μελέτη της διαδρομής-2 προσκρούει αρχικά σε μια αντικειμενική δύσκολια. Η δύσκολια αυτή έγραφε στο ότι, στήν περιοχή του διφωτονικού συντονισμού, μεταξύ Δ_{4S_{1/2}→6S_{1/2}} = 912 cm⁻¹, (αντίστοιχοι σε 48 nm πάνω από τον συντονισμό), και Δ_{4S_{1/2}→6S_{1/2}} = -228 cm⁻¹, (αντίστοιχοι σε 12 nm κάτω από τον συντονισμό), το φίλτρο συμβολής της |6S_{1/2}⟩ ↔ |4P_{3/2,1/2}⟩ δεν περιορίζει πλήρως την ακτινοβολία της δέσμης του laser, ώστε να διεξάγουμε αξιόπιστες μετρήσεις. Αναγκαζόμαστε λοιπόν να εστιάσουμε την μελέτη μας στήν περιοχή ακτινοβολίας της μετάβασης |4P_{3/2,1/2}⟩ ↔ |4S_{1/2}⟩. Όπως εξηγήσαμε στο κεφάλαιο 2, η ενεργοποίηση (activation)
της διαδρομής-2 δεν γίνεται παράλληλα με την διαδρομή-1. Η ενεργοποίηση της πραγματοποιείται σε μεγαλύτερες ατομικές πυκνότητες, για δεδομένη ενέργεια αντλήσης, και εξαρτάται έντονα από την τιμή του διφωτονικού αποσυντονισμού \(\Delta_{4S_{1/2}-6S_{1/2}} \).

Σχήμα 3.6 Φάσμα της παραγόμενης ακτινοβολίας στις μετάβασεις \(|4P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle \) κατά μήκος του οπτικού άξονα του κελιού, σε τρεις διαφορετικές ατομικές πυκνότητες: (a)-(c) στόν διφωτονικό συντονισμό \(\Delta_{4S_{1/2}-6S_{1/2}} = 0 \), καθώς και (d)-(f) 186.2 cm\(^{-1}\) κάτω από αυτόν. Τα φάσματα ελήφθησαν πάνω στόν οπτικό άξονα του κελιού και επομένως απεικονίζουν το αξονικό μέρος των παραγόμενων ακτινοβολιών.
Παρατηρήσαμε ότι η εμφάνιση της διαδρομής-2 συμβαίνει όταν η ατομική πυκνότητα πλησιάζει την περιοχή των μέσων πυκνοτήτων, \(N \sim 10^{14} \text{ cm}^{-3} \), για ενέργειες της τάξεως του 1 mJ στην nsec διωτονική διέγερση. Το συμπέρασμα αυτό είναι παρόμοιο και στις δύο περιπτώσεις διωτονικής διέγερσης (nsec και fsec αντίστοιχα). Ειδικότερα:

I. Στο Σχήμα 3.6 παρουσιάζουμε τα φάσματα εκπομπής (emission spectrum) της υπό μελέτη ακτινοβολίας σε τρεις διαφορετικές ατομικές πυκνότητες: (a) \(N = 4.5 \times 10^{14} \text{ cm}^{-3} \), (b) \(N = 1.5 \times 10^{15} \text{ cm}^{-3} \) και (c) \(N = 2.5 \times 10^{15} \text{ cm}^{-3} \) αντίστοιχα.

Παρατηρούμε ότι, σε αντίθεση με την ακτινοβολία \(\frac{3}{2}, \frac{1}{2} \leftrightarrow \frac{1}{2} \) της διαδρομής-1, οι μεταβάσεις της διπλέτας που μας ενδιαφέρουν είναι φασματικά διακριτές. Βέβαια σημαντικό ρόλο διαδραματίζει η φασματική τους απόσταση η οποία βρίσκεται στα 3.3 nm σε αντίθεση με την φασματική απόσταση των 0.3 nm των δύο κορυφών της μετάβασης \(\frac{5}{2}, \frac{3}{2}, \frac{1}{2} \leftrightarrow \frac{1}{2} \). Από το Σχήμα 3.6(a)-(c) παρατηρούμε ότι στήν κατάσταση του διφωτονικού συντονισμού, κατά μήκος του οπτικού άξονα του κελιού (άξονας \(\zeta \)), τα φάσματα είναι ιδιαίτερα στενά με σημαντική μείωση τους \(\text{όταν αυξάνει η ατομική πυκνότητα} \), ένδειξη ισχυρότερης κωνικής εκπομπής ενώ η συμπεριφορά της εξαρτάται από τον οπτικό άξονα του κελιού. Ως στοιχείο στην ακτινοβολία της μετάβασης \(\frac{5}{2}, \frac{3}{2}, \frac{1}{2} \leftrightarrow \frac{1}{2} \) στο Σχήμα 3.6(d)-(f) όπου βρίσκομαστε κάτω από τον διφωτονικό συντονισμό, \(\Delta_{\text{fs}} = -186.2 \text{ cm}^{-1} \), οι ακτινοβολίες εμφανίζουν μεγαλύτερο εύρος και παύουν να είναι στενές φασματικά κάτι που μας υποδηλώνει για ακόμη μία φορά την παρουσία ισχυρής κωνικής εκπομπής η οποία μπορεί να εξελιχθεί στο φασματικά σε αντίθεση με την κωνική συμπεριφορά της ακτινοβολίας της διαδρομής-1 [14].

II. Στο Σχήμα 3.7 παρουσιάζουμε τη γωνιακή κατανομή (far field spatial profiles) της ακτινοβολίας της μετάβασης \(\frac{4}{2}, \frac{3}{2}, \frac{1}{2} \leftrightarrow \frac{1}{2} \) (όμοια συμπεράσματα ισχύουν και για την ακτινοβολία στήν μετάβαση \(\frac{4}{2}, \frac{3}{2}, \frac{1}{2} \leftrightarrow \frac{1}{2} \)) για δύο διαφορετικές ατομικές πυκνότητες. Παρατηρούμε ότι τόσο στόν διφωτονικό συντονισμό, \(\Delta_{\text{fs}} = 0 \) Σχήμα 3.7(a) και 3.7(c) αντίστοιχα, όσο και κάτω από αυτόν, το αξονικό μέρος δεν εξελιχθεί σε σχέση με το κωνικό, Σχήμα 3.7(b) και 3.7(d).
Επίσης, η εν λόγω κατανομή μοιάζει με έναν γεμάτο κώνο (filled-in cone) με εύρος γύρω στα 40 mrad. Το γεγονός ότι η κωνική εκπομπή είναι κάπως διαφορετική και ατολούς σχηματισμένη (imperfectly shaped) από έκκενθή του Σχήματος 3.5(b)-(c) οφείλεται για ακόμα μία φορά στο εύρος του laser που διεγέρει το σύστημα των ατόμων του K και τα «πολλά» μήκη κύματος που περιέχει.

Σχήμα 3.7 Μέγιστη ένταση της παραγόμενης ακτινοβολίας στην μετάβαση $|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ σαν συνάρτηση της γωνίας εκπομπής θ μετρούμενης από τον οπτικό άξονα του κελιού, για δύο ατομικές πυκνότητες: $N = 4.5 \times 10^{14}$ cm$^{-3}$ για τις περιπτώσεις (a)-(b) και $N = 1.5 \times 10^{15}$ cm$^{-3}$ για τις περιπτώσεις (c)-(d) αντίστοιχα. Παρατηρούμε την μορφή ενός γεμάτου (filled-in) και ιδιαίτερα εκτεταμένου κώνου με εύρος περίπου 40 mrad.
Η ακτινοβολία στήν μετάβαση $|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ γεννάται από τον μηχανισμό της παραμετρικής μίξης ($PFWM$) μιάς και δεν ανιχνεύτηκε συνιστώσα του πεδίου η οποία να κατευθύνεται αντίθετα από το πεδίο του laser, κάτι που παρατηρήθηκε στη μελέτη των M. Katharakis et al. [7]. Η ακτινοβολία αυτή ήταν ως επί το πλείστον ενισχυμένη αυθόρμητη εκπομπή (ASE). Το τελευταίο διαχωρίζει τις δύο περιπτώσεις της διψιφωτονικής διέγερσης ($nsec$ από $fsec$ αντίστοιχα) του ατόμου του K. Σε περίπτωση όπου η ατομική πυκνότητα αυξηθεί περαιτέρω σε $N = 2.5 \times 10^{15} \text{ cm}^{-3}$ τότε παίρνουμε την γονιακή κατανομή του Σχήματος 3.8.

![Σχήμα 3.8 Μέγιστη ένταση της παραγόμενης ακτινοβολίας στήν μετάβαση $|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ σαν συνάρτηση της γωνίας εκπομπής θ μετρούμενης από τον οπτικό άξονα του κελιού, για την ατομική πυκνότητα $N = 2.5 \times 10^{15} \text{ cm}^{-3}$. Παρατηρούμε ότι η μορφή των κατανομών μετατρέπεται από αξονική για διψιφωτονική διέγερση πάνω από την $|6S_{1/2}\rangle$, σε μικτή (αξονική και κωνική) για διέγερση πάνω στήν $|6S_{1/2}\rangle$ και τέλος σε καθαρή κωνική κάτω από αυτήν.]

Η κατανομή αυτή θυμίζει την αντίστοιχη της ακτινοβολίας στήν μετάβαση $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ της διαδρομής-1. Σε αυτή την περίπτωση για διέγερση πάνω από τον διψιφωτονικό συντονισμό το αξονικό μέρος κυριαρχεί, στόν συντονισμό συνυπάρχουν η αξονική και η κωνική, ενώ κάτω από το συντονισμό το κονικό μέρος ξεχωρίζει. Σε αντίθεση με τις παραμέτρους του Σχήματος 3.7, καταγράφουμε μη-μηδενικό σήμα πάνω από τον διψιφωτονικό συντονισμό,
Δ₄ₛ₁₋₆ₛ₂ = 191.3 cm⁻¹ για την μεγαλύτερη πυκνότητα των N = 2.5 × 10¹⁵ cm⁻³.

Συμπεραίνουμε επομένως ότι η ατομική πυκνότητα επιδρά σημαντικά στόν σχηματισμό της αξονικής και της κωνικής δομής σε συνδυασμό με τον διφωτικό αποσυντονισμό της διέγερσης αυτής.

III. Σε προηγούμενη μελέτη οι M. Katharakis et.al. [7] προσδιόρισαν δύο κύριες φασματικές κορυφές της ακτινοβολίας στήν μετάβαση |4P₃/₂⟩ ↔ |4S₅/₂⟩ για πολύ χαμηλή nsec διέγερση. Η μία κορυφή πάνω από την |4P₃/₂⟩, στα 766.5 nm, ονομάστηκε (high energy peak-HEP) ενώ η άλλη κάτω από την |4P₃/₂⟩, στα 766.61 nm, ονομάστηκε (low energy peak-LEP). Υπέθεσαν τότε, ότι η πρώτη φασματική γραμμή (HEP) παραγόταν με τον μηχανισμό της μίξης τεσσάρων κυμάτων μέσω δύο βημάτων (two-step four-wave mixing) όπου το πρώτο βήμα αφορούσε την δημιουργία εξαναγκασμένης υπέρ σκέδασης-Raman στήν μετάβαση |6S₅/₂⟩ ↔ |4P₃/₂⟩ και την επακόλουθη δημιουργία ενός τέταρτου φωτονίου στήν μετάβαση |4P₃/₂⟩ ↔ |4S₅/₂⟩ αντίστοιχα. Η δεύτερη φασματική γραμμή (LEP) προέκυπτε από το κανάλι |4S₅/₂⟩ ↔ |5P₃/₂⟩ ↔ |5S₅/₂⟩ ↔ |4P₃/₂⟩ ↔ |4S₅/₂⟩ ακολουθούμενη από την αξονική εκπομπή |5P₃/₂⟩ ↔ |4S₅/₂⟩ αυτή τη φορά. Και οι δύο φασματικές κορυφές διαδίδονταν κατά την διέγερση του πεδίου laser (forward propagation). Τα αποτελέσματα αυτά ελήφθησαν για μικρές σχετικά εντάσεις διέγερσης Iₘₕ ≤ 2 MW/cm². Για μεγαλύτερες εντάσεις διέγερσης (Iₘₕ ≥ 2 MW/cm²), η ακτινοβολία στήν μετάβαση |4P₃/₂⟩ ↔ |4S₅/₂⟩ δημιουργούνταν με βάση τον μηχανισμό της αυθόρμητα ενισχυμένης εκπομπής (ASE) χωρίς να μπορούμε να διακρίνουμε τις φασματικές κορυφές HEP και LEP αντίστοιχα. Στήν περίπτωση της fsec διέγερσης δεν παρατηρήθηκαν οι δύο φασματικές κορυφές, εξαιτίας της μεγάλης έντασης του πεδίου laser και του γεγονότος ότι οι στενοί χρονικοί παλμοί δεν ευνοούν την συγκέντρωση πληθυσμού σε υψηλότερες ενεργειακές καταστάσεις.

Σημειώνουμε ότι στήν fsec διφωτική διέγερση δεν κατέστη δυνατό να μετρήσουμε τους χρονικούς παλμούς των παραγόμενων ακτινοβολιών (to repetition rate του fsec laser ήταν ίσο με 1 KHz), ώστε να επιβεβαιώσουμε την χρονική
καθυστέρηση η οποία χαρακτηρίζει τις δύο διαδρομές, όπως δείχνουμε σχετικά στήν παράγραφο 2.3.1 και έχουμε παρατηρήσει πειραματικά σε προηγούμενες μελέτες [7, 8].

Σχήμα 3.9 Φάσμα του fsec laser μέσα στο κελί των ατμών του K σε δύο διαφορετικές ατομικές πυκνότητες a) \(N = 4.5 \times 10^{14} \text{ cm}^{-3} \) και b) \(N = 9 \times 10^{14} \text{ cm}^{-3} \) για διαφορετικές τιμές του διφωτονικού αποσυντονισμού \(\Delta \varepsilon_{1/2} - \varepsilon_{1/2} \). Παρατηρούμε ότι η μορφή των Gaussian φασμάτων είναι παρόμοια, με μεγάλο εύρος στο FWHM.

Τέλος, το βύθισμα στο φάσμα διέγερσης της υπό μελέτη ακτινοβολίας της διαδρομής-1, Σχήμα 3.2, υποδηλώνει κάποιο ασθενή ιονισμό ή κάποια ισχυρή απορρόφηση, όπως σχολιάσαμε σχετικά. Εάν όντως ο ιονισμός ήταν ισχυρότερος και
πλήρης, (μηδενικά σημεία στο φάσμα διέγερσης, δηλαδή 100% ιονισμός ο οποίος οδηγούσε σε καταστροφή του μέσου), τότε δεν θα μετρούσαμε σύμφωνη παραμετρική ακτινοβολία (η οποία απαιτεί την ικανοποίηση της συνθήκης συμφωνίας φάσεως).

Επίσης, η συνεπαγόμενη μετάβαση των ηλεκτρονίων στο συνεχές (continuum) δεν θα οδηγούσε σε παραγωγή ακτινοβολίων στις μεταβάσεις της διαδρομής-1 και διαδρομής-2 αντίστοιχα, μιάς και θα δημιουργούσαν ένα ανοικτό σύστημα (opened system) με εκροή ηλεκτρονίων. Για αυτόν ακριβώς τον λόγο δεν πραγματοποιήθηκαν μετρήσεις σήματος ιονισμού στα πειράματα μας. Στο Σχήμα 3.9 παρουσιάζουμε τα φάσμα του fsec laser εντός του κελιού των άτομων του καλίου, για διάφορες τιμές του διφωτονικού αποσυντονισμού Δ4S2-6S2. Παρατηρούμε ότι είναι σε μεγάλο βαθμό συμμετρικό, μιάς και πρακτικά βρισκόμαστε κοντά στήν συντονιστική συνθήκη Δ4S2-6S2=0, και αρκετά ευρύ (190 1cm⁻¹ στο FWHM) όπως τονίσαμε στις προηγούμενες παραγράφους.

Συμπεράσματα

- Συμπερασματικά, η fsec διφωτονική διέγερση, (η οποία χαρακτηρίστηκε από πολύ ευρύ φάσμα και ισχυρή ένταση), τροποποίησε τους φυσικούς μηχανισμούς παραγωγής των ακτινοβολίων στις δύο ατομικές διαδρομές. Αφενός μεν έκανε αδύνατο τον διαχωρισμό της διπλέτας 5P3/2,1/2 ↔ 4S1/2 των φασματικών κορυφών HEP και LEP στήν μετάβαση 4P3/2 ↔ 4S1/2 αντίστοιχα, και αφετέρου δε δυσκόλεψε την παρατήρηση (διαχωρισμό) του αξονικού από το κωνικό μέρος της 4P3/2 ↔ 4S1/2.
- Παρόλες τις διαφορές, το εκπεμπόμενο πεδίο στη διαδρομή-1 έδωσε μέγιστο PFWM σημείο πάνω από τον διφωτονικό συντονισμό, κάτι που παρατηρήθηκε και στήν nsec περίπτωση.
- Όλες οι παραγόμενες ακτινοβολίες είχαν συνιστώσα στόν θετικό οπτικό άξονα (+ζ) που σήμαινε, ότι δημιουργήθηκαν μέσω του μηχανισμού της παραμετρικής μίξης ή της μίξης των τεσσάρων κυμάτων. Καμιά ακτινοβολία ASE (+ζ και −ζ αντίστοιχα) δεν ανιχνεύτηκε στις συνθήκες
του πειράματος. Οι ακτινοβολίες \(|5\text{P}_{3/2,1/2}\rangle \leftrightarrow |4\text{S}_{1/2}\rangle \) παρουσίασαν έντονα
dιαχωριζόμενο αξονικό και κωνικό μέρος (Σχήμα 3.5) ενώ οι ακτινοβολίες
\(|4\text{P}_{3/2,1/2}\rangle \leftrightarrow |4\text{S}_{1/2}\rangle \) παρουσίασαν διευρυμένο κωνικό αντίστοιχα.

♦ Όπως και στήν αντίστοιχη \(n\text{sec} \) διωφοτονική διέγερση, παρατηρήθηκε πρώτα
η ενεργοποίηση της διαδρομής-1, και κατόπιν ακολούθησε η ενεργοποίηση
της διαδρομής-2.

Βιβλιογραφία

Am. B. 1, 9, 1984.

matched parametric four-wave and six-wave mixing in pure sodium vapour”,

“Nonlinear optical processes near the sodium 4D two-photon resonance”, Phys.

vapor excited with tunable femtosecond light pulses”, Phys. Rev. A. 75, 033808,
2007.

mixing and parametric four-wave mixing near the 4P-4S transition of the

emissions and quantum interference in potassium atom-laser interaction”, J.

ΚΕΦΑΛΑΙΟ 4

Μελέτη της μίξης κυμάτων σε πολυεπίπεδο ατομικό σύστημα μεταλλικών ατμών καλίου υπό nsec διφωτονική διέγερση.

Ενότητα I

Εισαγωγή ενότητας I

Σε προηγούμενες πειραματικές μελέτες, στις οποίες αντλήθηκε διφωτονικά η μετάβαση \(|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle\) του ατόμου του καλίου (K), οι T. Eftihimiopoulos et al. [1, 2], M. Katharakis et al. [3] και N. Merlemis et al. [4] περιορίστηκαν κοντά στην γειτονιά της κατάστασης \(|6S_{1/2}\rangle\) όπου ο διφωτονικός αποσυντονισμός μεταβλήθηκε το πολύ κατά \(|\Delta_{4S_{1/2}-6S_{1/2}}| = 1.2\, \text{cm}^{-1}\), το οποίο αντιστοιχούσε σε απόλυτη μεταβολή ίση με 0.0638 nm. Το κοινό σε όλες αυτές τις μελέτες ήταν η ενεργοποίηση πρώτα της διαδρομής-1 και στη συνέχεια, εξαιτίας του υπό προϋποθέσεις κορεσμού της πρώτης (όπως περιγράψαμε στο κεφάλαιο 2 και 3), ακολουθούσε η ενεργοποίηση της διαδρομής-2 με σημαντική χρονική καθυστέρηση και μικρότερη ενέργεια σε σχέση με την πρώτη διαδρομή. Ο συνεπαγόμενος ανταγωνισμός των διαφόρων καναλιών διέγερσης, εξαιτίας της βαντικής συμβολής, και η καταστολή (suppression) της παραγωγής ορισμένων ακτινοβολιών σε κάποιες δευθύνσεις (π.χ. περιορισμός της forward-FWD ASE από την forward παραμετρική) μας δίνει την αφορμή να διερευνήσουμε περαιτέρω τα διάφορα ανταγωνιστικά φαινόμενα κατά την διέγερση σε υψηλότερες ενεργειακές καταστάσεις π.χ. τις \(|nS_{1/2}\rangle\) με \(n > 6\).

Παράδειγμα διφωτονικής διέγερσης σε υψηλότερες ενεργειακές καταστάσεις αποτέλεσε η μελέτη των P. L. Zhang et al. [5] οι οποίοι άντλησαν διφωτονικά το κάλιο στήν κατάσταση \(|8S_{1/2}\rangle\), ενώ παρατηρήθηκαν συνολικά 32 γραμμές ακτινοβολίας. Οι παραγόμενες ακτινοβολίες προέκυψαν μέσω διαδικασιών μίξης τεσσάρων ή έξι κυμάτων.
Στο κεφάλαιο αυτό διεγείρουμε διωφοτονικά την κατάσταση \(|7S_{1/2}\rangle\) με την χρήση nsec παλμού laser μήκους κόματος \(\lambda = 606.6\) nm και κυματικό αριθμό \(k = 15137.8\) cm\(^{-1}\), (ενός φωτονίου), ο οποίος διαδίδεται κατά μήκος του θετικού οπτικού άξονα \(\xi\) (unidirectional propagation). Ένα πολυεπίπεδο (multi-level) ατομικό σύστημα σχηματίζεται, στο οποίο διερευνούμε την φύση των μηχανισμών της εκπομπής και τα όπωρα ανταγωνιστικά φαινόμενα εμφανίζονται.

Το ενεργειακό διάγραμμα του πολυεπίπεδου συστήματος απεικονίζεται στο Σχήμα 4.1 όπου δείχνουμε τις διαδικασίες οι οποίες είναι σχετικές με την μίξη τεσσάρων κυμάτων, καθώς και ορισμένες ανωτέρας τάξεως, σχετικές με την μίξη \(\xi\) και οχτώ κυμάτων αντίστοιχα. Οι τελευταίες είναι πιθανό να πραγματοποιηθούν αλλά με μικρότερη ενέργεια εκπομπής. Ορισμένες από τις πιθανές μονοφωτονικές εκπομπές ακτινοβολίας είναι οι εξής [6]: \(|7S_{1/2}\rangle \leftrightarrow |6P_{3/2,1/2}\rangle, |6P_{3/2,1/2}\rangle \leftrightarrow |6S_{1/2}\rangle, |6S_{1/2}\rangle \leftrightarrow |5P_{3/2,1/2}\rangle, |6S_{1/2}\rangle \leftrightarrow |4P_{3/2,1/2}\rangle, |5P_{3/2,1/2}\rangle \leftrightarrow |5S_{1/2}\rangle, |5S_{1/2}\rangle \leftrightarrow |4P_{3/2,1/2}\rangle, |4P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle, |7S_{1/2}\rangle \leftrightarrow |5P_{3/2,1/2}\rangle, |7S_{1/2}\rangle \leftrightarrow |4P_{3/2,1/2}\rangle, |6P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle \) και \(|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle\).

Σχήμα 4.1 Πολυεπίπεδο ενεργειακό διάγραμμα του ατόμου του καλίου καθώς και οι ακτινοβολίες οι οποίες προκύπτουν μέσω της nsec διωφοτονικής διέγερσης της μετάβασης \(|4S_{1/2}\rangle \leftrightarrow |7S_{1/2}\rangle\) από πεδίο laser μήκους κόματος \(\lambda = 660.6\) nm. Στο διάγραμμα δείχνονται οι διαδικασίες μίξης τεσσάρων κυμάτων (FWM-διακακουμένες γραμμές) καθώς και οι διεργασίες ανωτέρας τάξεως (SWM και EWM-έγχρωμες γραμμές) οι οποίες είναι αυθεντικές σε σχέση με τη μίξη των τεσσάρων κυμάτων. FWM: μίξη τεσσάρων, SWM: μίξη \(\xi\) και EWM: μίξη οκτώ κυμάτων, αντίστοιχα.
Από αυτές ενδιαφέρομαστε, κατά μείζονα λόγο, για τις μεταβάσεις οι οποίες βρίσκονται πλησίον του οπτικού παραθύρου και συγκεκριμένα για τις πέντε που ακολουθούν, εξαιτίας της έλλειψης υπόχρεων αντιγραμμή όπως έχουμε ήδη σημειώσει, και το όποιο μειονέκτημα μπορεί εμμέσως να ξεπεραστεί με την σπουδή των παραγόμενων ακτινοβολίων που συνοδεύουν την εκπομπή των αντίστοιχων υπορύθρων: i) τις ακτινοβολίες \(|6P_{3/2,1/2} \rangle \leftrightarrow |4S_{1/2} \rangle \) (κεντρικό μήκος κύματος 344 nm) και \(|7S_{1/2} \rangle \leftrightarrow |4P_{3/2,1/2} \rangle \) (κεντρικό μήκος κύματος 579 nm) αντίστοιχα, ii) την \(|5P_{3/2,1/2} \rangle \leftrightarrow |4S_{1/2} \rangle \) (κεντρικό μήκος κύματος 404 nm) της διαδρομής-1 και iii) τις \(|6S_{1/2} \rangle \leftrightarrow |4P_{3/2,1/2} \rangle \) (κεντρικό μήκος κύματος 694 nm) και \(|4P_{3/2,1/2} \rangle \leftrightarrow |4S_{1/2} \rangle \) (κεντρικό μήκος κύματος 766 nm) αντίστοιχα της διαδρομής-2.

4.1 Πειραματική διάταξη για την μελέτη του πολυεπίπεδου ατομικού συστήματος

Στο Σχήμα 4.2 δείχνουμε την πειραματική διάταξη με την οποία πραγματοποιήθηκαν τα πειράματα. Οι ατμοί των ατόμων του \(K \) δημιουργήθηκαν εντός θερμανόμενου κυλινδρικού ανοξείδωτου μεταλλικού κελιού με μήκος 11 cm. Κάνοντας χρήση του ηλίου (\(He \)) ως αδρανού αερίου με πίεση 10 mbar περιορίσαμε τα ατόμα του \(K \) από τη συμπύκνωση τους πάνω στα παράθυρα τα οποία ψύχονταν με παγωμένο νερό. Περιοριστήκαμε σε τρείς ατομικές πυκνότητες \(N_1 = 2.6 \times 10^{14} \text{ cm}^{-3} \), \(N_2 = 5.5 \times 10^{14} \text{ cm}^{-3} \) και \(N_3 = 1.5 \times 10^{15} \text{ cm}^{-3} \) που αντιστοιχούσαν στις θερμοκρασίες \(T_1 = 212 ^\circ \text{C} \), \(T_2 = 236 ^\circ \text{C} \) και \(T_3 = 254 ^\circ \text{C} \), κάνοντας χρήση ενός βαθμονομημένου θερμομεταλλου (\(J \) Constantan) στο μέσο του κελιού, ώστε να μετρηθεί η θερμοκρασία. Το σύστημα laser περιλάμβανε μία γεννήτρια οπτικής παραμετρικής ακτινοβολίας (optical parametric operator-OPO) η οποία αντλήθηκε από ένα nsec Nd:Yag laser ("Ekspla", NT342/3/UVE/AW) με μέγιστη ενέργεια παλμού 2 mJ, διάρκεια 4 nsec και φασματικό εύρος στο FWHM 39.5 cm\(^{-1}\) (σε μονάδες μήκος κύματος αντιστοιχεί σε 1.7 nm). Η διάμετρος της δέσμης εξόδου από το σύστημα laser ήταν περίπου 3 mm η οποία κατόπιν εστιάστηκε στο κέντρο του κελιού με την χρήση συγκλίνοντα σφακού εστιακής απόστασης 40 cm, παράγοντας μέγιστη ένταση περίπου \(I_0 = 10 \text{ GW/cm}^2 \). Ενας
ψηφιακός φασματογράφος (CCD camera) "Ocean Optics" κατέγραψε τα φάσματα των παραγόμενων ακτινοβολιών με διακριτική ικανότητα περίπου 2.3 cm⁻¹ (αντίστοιχεί σε 0.1 nm). Χρησιμοποιήσαμε ακόμα τα απαραίτητα φίλτρα συμβολής (interference filters-Edmund scientific) με εύρος στο FWHM 69.7 cm⁻¹ (αντίστοιχεί σε 3 nm), ώστε να απομονώσουμε την ακτινοβολία του laser από εκείνες που παράγονταν εσωτερικά στο ατομικό μέσο καθώς και ουδέτερα φίλτρα (neutral intensity filters-Melles Griot), ώστε να περιορίσουμε η επίδραση του laser αντίστοιχα. Σημειώνουμε ότι το βήμα αλλαγής του διφωτονικού αποσυντονισμού στα πειράματα ήταν σχετικά μεγάλο και συγκεκριμένα 2.3 cm⁻¹ σε αντίθεση με τις προηγούμενες μελέτες [1-4] το οποίο ήταν 0.1 cm⁻¹ (αντίστοιχεί σε 0.0043 nm). Το τελευταίο ήταν συνέπεια του συστήματος αλλαγής της γωνίας πρόσπτωσης στον κρύσταλλο του OPO laser που χρησιμοποιήσαμε [6].

![Diagram](image.png)

Σχήμα 4.2 Πειραματική διάταξη για τη μελέτη της μίξης κυμάτων σε ατμός ατόμων καλίου. Χρησιμοποιήθηκε συγκλίνοντας φακός εστιακής απόστασης F=40 cm. Τα παραγόμενα φάσματα, προς τις δύο διευθύνσεις του ατομικού μέσου (forward: συνεχής γραμμή και backward: διακεκομμένη γραμμή), καταγράφηκαν από έναν ψηφιακό φασματογράφο με τη χρήση CCD κάμερας και αναλυθηκαν από έναν υπολογιστή (PC). Με BS1 και BS2 δείχνονται οι διαφορές δέσμες.
4.2 Μίξη κυμάτων υπό nsec 4S_{1/2}-7S_{1/2} διέγερση

4.2.1 Διαδρομή-1

Στο Σχήμα 4.3 παρουσιάζεται το εκπεμπόμενο αξονικό φάσμα διέγερσης των ακτινοβολιών στην μετάβαση $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ σε τρεις διαφορετικές ατομικές πυκνότητες: $N_1 = 2.6 \times 10^{14}$ cm$^{-3}$, $N_2 = 5.5 \times 10^{14}$ cm$^{-3}$ και $N_3 = 1.5 \times 10^{15}$ cm$^{-3}$ αντίστοιχα. Παρατηρούμε ότι η μέγιστη ένταση της ακτινοβολίας αυτής εξαρτάται απόλυτα από τον διφωτονικό αποσυντονισμό $\Delta_{4S_{1/2}-7S_{1/2}}$ μιάς και η μεταβολή του $\Delta_{4S_{1/2}-7S_{1/2}}$ κατά 5 cm$^{-1}$ την μηδενίζει (για τα δεδομένα του βήματος-scanning step του συστήματος laser που χρησιμοποιούμε). Πάνω από τον συντονισμό η ακτινοβολία μεγιστοποιείται, ενώ κάτω από αυτόν μηδενίζεται απότομα, ένδειξη της ισχυρότερης αξονικής κατανομής της. Το τελευταίο συνάγεται από το γεγονός ότι, όσο πιο αξονική είναι η κατανομή μιάς εσωτερικά παραγόμενης ακτινοβολίας τόσο μειώνεται απότομα η ένταση της για $\Delta_{4S_{1/2}-7S_{1/2}} < 0$ σε αντίθεση με την κονική κατανομή της, η οποία βασικά εμφανίζεται για $\Delta_{4S_{1/2}-7S_{1/2}} < 0$. Δεν μπορέσαμε να διακρίνουμε τις δύο γειτονικές κορυφές (doublet states) στο φάσμα της $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ στα 404.7 nm και 404.4 nm αντίστοιχα, εξαιτίας του πολύ ισχυρού εισερχόμενου πεδίου που προκύπτει ως αποτέλεσμα της εστίασης. Η συγκεκριμένη ακτινοβολία εμφανίζει συνιστώσα μόνο κατά τη διεύθυνση του laser (forward) που σημαίνει ότι προκύπτει από τον μηχανισμό της παραμετρικής μίξης (σύμφωνα ακτινοβολία). Από το Σχήμα 4.1. μπορούμε να πούμε ότι η ακτινοβολία στήν μετάβαση $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ γεννάται μέσω των πιθανών διαδρομών: $|7S_{1/2}\rangle \leftrightarrow |5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$, $|6S_{1/2}\rangle \leftrightarrow |5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ (μίξη τεσσάρων κυμάτων) καθώς και της διαδοχικής (cascade) διαδρομής $|7S_{1/2}\rangle \leftrightarrow |6P_{3/2,1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \leftrightarrow |5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ (μίξη έξι κυμάτων) αντίστοιχα, όπου συμπεριλαμβάνονται τοιχία οι καταστάσεις του πολυεπίπεδου ατομικού συστήματος πλήν της $|5S_{1/2}\rangle$. Παρόμοια συμπεριφορά των ακτινοβολιών στις μεταβάσεις $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ καταγράφηκε σε προηγούμενη μελέτη [4] όπου στις πολύ μεγάλες έντασες η διπλέτα $|5P_{3/2,1/2}\rangle$ δεν διακρίνονταν φασματικά [6].
Σημειώνουμε ότι η παρατηρούμενη ακτινοβολία δεν ήταν ορατή με γυμνό οφθαλμό, σε αντίθεση με την μελέτη των N. Merlemis et al. [4], εξαιτίας του γεγονότος ότι οι τεχνικές προδιαγραφές του συστήματος του laser δεν μας έδωσαν την δυνατότητα μικρών διφωτονικών μεταβολών κοντά στον συντονισμό $Δ_{4S_{1/2}-7S_{1/2}} = 0$. Επιπρόσθετα, όπως δείχνουμε στην επόμενη παράγραφο, η διαδρομή-1 συμπεριφέρεται διαφορετικά στο σύστημα μας σε σχέση με την διαδρομή-2 (βλέπε κεφάλαια 2 και 3 αντίστοιχα). Η διεργασία παραγωγής της $|5P_{3/2,1/2}⟩ \leftrightarrow |4S_{1/2}⟩$ είναι αμιγώς παραμετρική (απουσία της πρός τα πίσω, backward-IBWD, συνιστώσας) για τις τιμές των παραμέτρων που χρησιμοποιήσαμε συμφωνώντας με τα συμπεράσματα που εξήχθησαν σε προηγούμενη μελέτη [4].

Σχήμα 4.3 Φάσμα διέγερσης της ακτινοβολίας στην μετάβαση $|5P_{3/2,1/2}⟩ \leftrightarrow |4S_{1/2}⟩$ σε συνάρτηση με τον διφωτονικό αποσυντονισμό $Δ_{4S_{1/2}-7S_{1/2}}$ για τρεις διαφορετικές ατομικές πυκνότητες: (a) $N_1 = 2.6 \times 10^{14}$ cm$^{-3}$, (b) $N_2 = 5 \times 10^{14}$ cm$^{-3}$ και (c) $N_3 = 1.5 \times 10^{15}$ cm$^{-3}$ αντίστοιχα. Η ακτινοβολία παρατηρήθηκε μόνο στην forward-IFWD κατεύθυνση. Η εντάση του laser ήταν $I_L = 10$ GW / cm2.

4.2.2 Διαδρομή-2

Στο Σχήμα 4.4 δείχνουμε το φάσμα διέγερσης της αξονικά διαδιδόμενης ακτινοβολίας στην μετάβαση $|6S_{1/2}⟩ \leftrightarrow |4P_{3/2,1/2}⟩$ σε δύο ατομικές πυκνότητες. Τόσο η εκπομπή στην μετάβαση $|5P_{3/2,1/2}⟩ \leftrightarrow |4S_{1/2}⟩$, της διαδρομής-1, όσο και η εκπομπή
στήν εν λόγω μετάβαση, χαρακτηρίζονται από μεγαλύτερη μεταβολή της μέγιστης έντασης τους σε σχέση με τον διφωτονικό αποσυντονισμό $\Delta_{\text{SHRS},7S_{1/2}}$. Επίσης, η εκπομπή αυτή δεν παρουσιάζει αντίθετα διαδιδόμενο πεδίο σε σχέση με την διεύθυνση του laser, και για $\Delta_{\text{SHRS},7S_{1/2}} = \pm 5 \text{ cm}^{-1}$ μηδενίζεται.

Η δημιουργία της ακτινοβολίας προκύπτει από την πιθανή διαδρομή αποδιέγερσης $|6S_{1/2}\rangle \leftrightarrow |4P_{3/2,1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \leftrightarrow |4P_{3/2,1/2}\rangle$ (μίξη έξι κυμάτων) όπου μεταφέρεται πλήθος στήν κατάσταση $|6S_{1/2}\rangle$ λόγω της SHRS στήν μετάβαση $|7S_{1/2}\rangle \leftrightarrow |6P_{3/2,1/2}\rangle$ και την επακόλουθη μίξη της SHRS η οποία περιλαμβάνει τις κατώτερες ατομικές καταστάσεις όπως τις $|6S_{1/2}\rangle$, $|5S_{1/2}\rangle$ και $|4P_{3/2,1/2}\rangle$ αντίστοιχα [6]. Σαν συνέπεια των διαδικασιών αυτών η $|6S_{1/2}\rangle \leftrightarrow |4P_{3/2,1/2}\rangle$ δεν είναι SHRS (η οποία διαδίδεται σε δύο διευθύνσεις) αλλά παραμετρική ακτινοβολία, εξής και η διαδιδόμενη στήν πορεία του laser (I_{FWD}) συνιστώσα της.
Η ακτινοβολία στη μετάβαση $\left| 4P_{3/2,1/2} \right\rangle \leftrightarrow \left| 4S_{1/2} \right\rangle$ χαρακτηρίζεται φασματικά από έντονο υπόβαθρο (background) σε μία μεγάλη περιοχή του διφωτονικού αποσυντονισμού $\Delta_{4S_{1/2}-7S_{1/2}}$ ίση με ±200 cm$^{-1}$ (σε απόλυτη τιμή αντιστοιχεί σε 8.6 nm). Το τελευταίο οφείλεται στην μονοφωτονική διέγερση της $\left| 4S_{1/2} \right\rangle \rightarrow \left| 4P_{3/2,1/2} \right\rangle$ η οποία είναι παρούσα για πολύ μεγάλο εύρος του διφωτονικού αποσυντονισμού. Το φαινόμενο αυτό παρατηρήθηκε και στην $fsec$ διφωτονική διέγερση του K όπως περιγράψαμε στο κεφάλαιο 3. Στήν προσπάθεια μας να εξάγουμε το φάσμα διέγερσης της ακτινοβολίας αυτής αφαιρέσαμε το υπόβαθρο ώστε να απομονώσουμε το εκπεμπόμενο σήμα. Οι πιθανές διαδρομές που είναι συνυπεύθυνες για την παραγωγή της είναι οι εξής τέσσερις:

i) $\left| 7S_{1/2} \right\rangle \leftrightarrow \left| 6P_{3/2,1/2} \right\rangle \leftrightarrow \left| 6S_{1/2} \right\rangle \leftrightarrow \left| 5P_{3/2,1/2} \right\rangle \leftrightarrow \left| 5S_{1/2} \right\rangle \leftrightarrow \left| 4P_{3/2,1/2} \right\rangle \leftrightarrow \left| 4S_{1/2} \right\rangle$ (μίξη οκτώ κυμάτων ή αλλιώς 8ης τάξεως διαδικασία) η οποία είναι ασθενέστερη, ii) $\left| 7S_{1/2} \right\rangle \leftrightarrow \left| 5P_{3/2,1/2} \right\rangle \leftrightarrow \left| 5S_{1/2} \right\rangle \leftrightarrow \left| 4P_{3/2,1/2} \right\rangle \leftrightarrow \left| 4S_{1/2} \right\rangle$ (μίξη έξι κυμάτων ή 6ης τάξεως διαδικασία, ασθενέστερη επίσης) και τέλος iii) $\left| 7S_{1/2} \right\rangle \leftrightarrow \left| 4P_{3/2,1/2} \right\rangle \leftrightarrow \left| 4S_{1/2} \right\rangle$ και $\left| 6S_{1/2} \right\rangle \leftrightarrow \left| 4P_{3/2,1/2} \right\rangle \leftrightarrow \left| 4S_{1/2} \right\rangle$ που αποτελούν μίξη τεσσάρων κυμάτων (4ης τάξεως διαδικασία).

Σύμφωνα με το πείραμα η ακτινοβολία παράγεται κατά την διεύθυνση του laser (I_{FWD}) καθώς και αντίθετα (I_{BWD}) ως πρός αυτήν. Επομένως δεν προκύπτει με τον μηχανισμό της παραμετρικής μίξης αλλά, κατά πάσα πιθανότητα, πρόκειται για ακτινοβολία από αυθόρμητη ενισχυμένη εκπομπή (ASE). Στο Σχήμα 4.5 βλέπουμε το φάσμα διέγερσης της $\left| 4P_{3/2,1/2} \right\rangle \leftrightarrow \left| 4S_{1/2} \right\rangle$ σε συνάρτηση με τον διφωτονικό αποσυντονισμό $\Delta_{4S_{1/2}-7S_{1/2}}$ για την forward και την backward συνιστώσα αντίστοιχα. Παρατηρούμε ότι κοντά στην περιοχή του $\Delta_{4S_{1/2}-7S_{1/2}} = 0$ η ένταση των συνιστωσών είναι η μέγιστη δυνατή. Όσο μετακινούμαστε διφωτονικά είτε πάνω ($\Delta_{4S_{1/2}-7S_{1/2}} > 0$) ή κάτω ($\Delta_{4S_{1/2}-7S_{1/2}} < 0$) από την κατάσταση $\left| 7S_{1/2} \right\rangle$, τόσο μειώνεται εκθετικά η τιμή τους με τον τελικό μηδενισμό τους γύρω στα $\Delta_{4S_{1/2}-7S_{1/2}} = ±10$ cm$^{-1}$ [6]. Παρατηρούμε ότι η I_{BWD} συνιστώσα της είναι μεγαλύτερη από την I_{FWD}. Αυτό οφείλεται στο ότι η παραμετρική I_{FWD} ακτινοβολία στήν μετάβαση $\left| 6S_{1/2} \right\rangle \leftrightarrow \left| 4P_{3/2,1/2} \right\rangle$ καταστέλλει εν μέρει την I_{FWD} ASE στήν μετάβαση.
| 4P_{3/2,1/2} \rangle \leftrightarrow | 4S_{1/2} \rangle \} με αποτέλεσμα η \(I_{BWD} \) συνιστώσα που παραμένει να είναι τελικά μεγαλύτερη.

![Diagram](image)

Σχήμα 4.5 Φάσμα διέγερσης της ακτινοβολίας στην μετάβαση
\(| 4P_{3/2,1/2} \rangle \leftrightarrow | 4S_{1/2} \rangle \} συναρτήσει του διφωτονικού αποσυντονισμού \(\Delta_{4S_{1/2}-7S_{1/2}} \) για δύο διαφορετικές τιμές της ατομικής πυκνότητας: \(N_1 = 2.6 \times 10^{14} \text{ cm}^{-3} \) και \(N_2 = 5 \times 10^{14} \text{ cm}^{-3} \) αντίστοιχα. Στα διαγράμματα που παρουσιάζονται έχει αφαιρεθεί το υπόβαθρο που οφείλεται στο μονοφωτονικό αποικισμό μέσω \(SHRS \) της \(| 4P_{3/2,1/2} \rangle \} η οποία στη συνέχεια δίνει ASE και στις δύο κατευθύνσεις. Η ένταση του \(laser \) ήταν \(I_L = 10 \text{ GW/cm}^2 \).

Στο Σχήμα 4.6 παραθέτουμε το σύστημα του \(K \) των τεσσάρων με αυτό των επτά ενεργειακών καταστάσεων ώστε να ανιχνεύσουμε τις διαφορές μεταξύ των διαδρομών-1 και 2 αντίστοιχα. Στη μελέτη \([4]\), η διαδρομή-1 ήταν ισχυρότερη από την 2 και εμφανίζοταν νωρίτερα, ενώ στην παρούσα μελέτη οι αποδιέγερση είναι σύγχρονη \([6]\). Το γεγονός αυτό οφείλεται στο ότι στο πρώτο σύστημα η \(SHRS \) είναι παρουσία στις μεταβάσεις \(| 6S_{1/2} \rangle \leftrightarrow | 5P_{3/2,1/2} \rangle \) και \(| 6S_{1/2} \rangle \leftrightarrow | 4P_{3/2,1/2} \rangle \) μεταφέροντας πληθυσμό στις καταστάσεις \(| 5P_{3/2,1/2} \rangle \) και \(| 4P_{3/2,1/2} \rangle \) έτσι ώστε να προκαλεί την δημιουργία του τέταρτου φωτονίου στις μεταβάσεις \(| 5P_{3/2,1/2} \rangle \leftrightarrow | 4S_{1/2} \rangle \) και \(| 4P_{3/2,1/2} \rangle \leftrightarrow | 4S_{1/2} \rangle \) αντίστοιχα.
Σχήμα 4.6 Πολυεπίπεδο ατομικό σύστημα του ατόμου του καλίου τεσσάρων και επτά ενεργειακών καταστάσεων, όπου το εξωτερικό πεδίο οδηγεί τη μετάβαση: (a) \[4S_{1/2} \leftrightarrow 6S_{1/2} \], με συχνότητα \(\omega \), και (b) \[4S_{1/2} \leftrightarrow 7S_{1/2} \], με συχνότητα \(\omega' \), αντίστοιχα. Οι διακεκομμένες γραμμές παριστάνουν τα εκπεμπόμενα πεδία των διαδρομών 1 και 2, αντίστοιχα, στα οποία επικεντρώνεται η μελέτη μας.

Στο δεύτερο σύστημα η SHRS είναι παρούσα κυρίως στήν μετάβαση \[7S_{1/2} \leftrightarrow 6P_{3/2,1/2} \] με αποτέλεσμα ο πληθυσμός να αφήνεται στήν \[6P_{3/2,1/2} \] κατάστασή. Από εκεί και πέρα το σύστημα απλά αποδειγείται (de-excitation) περιγράφομενο από τον μηχανισμό της παραμέτρικης μίξης κυμάτων και κατά συνέπεια οι παραγόμενες ακτινοβολίες διαδίδονται στήν IFWD διεύθυνση. Αυτό επιβεβαιώνεται από το φάσμα διέγερσης της ακτινοβολίας στήν μετάβαση \[6S_{1/2} \leftrightarrow 4P_{3/2,1/2} \]. Σχήμα 4.4, η οποία δεν περιγράφεται από τον μηχανισμό SHRS μιάς και καταγράφηκε μόνο στήν IFWD διεύθυνση. Η ASE όμως στήν μετάβαση \[4P_{3/2,1/2} \leftrightarrow 4S_{1/2} \] χαμηλή και καταγράφηκε μόνο στήν IFWD διεύθυνση. Η ASE όμως στήν μετάβαση \[4P_{3/2,1/2} \leftrightarrow 4S_{1/2} \] χαμηλή και καταγράφηκε μόνο στήν IFWD διεύθυνση. Το αποτέλεσμα αυτό οφείλεται πιθανόν στο κλειστό σύστημα \[4S_{1/2} \], \[5S_{1/2} \] και \[4P_{3/2,1/2} \] το οποίο διεγείρεται μονοφωτονικά. Είναι λοιπόν, πιθανή η εμφάνιση SHRS στήν μετάβαση \[5S_{1/2} \leftrightarrow 4P_{3/2,1/2} \] και μέσω αυτής η δημιουργία ASE στήν \[4P_{3/2,1/2} \leftrightarrow 4S_{1/2} \] αντίστοιχα. Τέλος, οι ακτινοβολίες \[7S_{1/2} \leftrightarrow 4P_{3/2,1/2} \] με μήκος κύματος 579 nm καθώς και η \[6P_{3/2,1/2} \leftrightarrow 4S_{1/2} \] με μήκος κύματος 344 nm, δεν καταγράφηκαν στις
θερμοκρασίες του πειράματος μας. Η δεύτερη εξ’ αυτών εμφανίστηκε αμφότερα στην
ατομική πυκνότητα $N_3 = 1.5 \times 10^{15}$ cm$^{-3}$, έχοντας μόνο I_{FWD} συνιστώσα όντας
εξαιρετικά ευαίσθητη σε σχέση με την μεταβολή του διφωτονικού αποσυντονισμού
$\Delta_{4S_{1/2}-7S_{1/2}}$ [6].

![Diagram](image)

Σχήμα 4.7 Χρονικοί παλμοί των ακτινοβολιών $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$, $|6S_{1/2}\rangle \leftrightarrow |4P_{3/2,1/2}\rangle$ και $|4P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ αντίστοιχα, στην ατομική
πυκνότητα $N_4 = 5 \times 10^{15}$ cm$^{-3}$ για ένταση του πεδίου $I_L = 4$ GW/cm2.
Καμιά χρονική καθυστέρηση μεταξύ των διαδρομών -1 και 2 δεν παρατηρήθηκε
σε αντίδιστηλη με την $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle$ διφωτονική διέγερση όπου η δεύτερη
διαδρομή καθυστερεί σε σχέση με την πρώτη.

Στο Σχήμα 4.7 παρουσιάζουμε τους χρονικούς παλμούς των ανιχνεύσιμων
ακτινοβολιών στην ατομική πυκνότητα $N_4 = 5 \times 10^{14}$ cm$^{-3}$, για την ένταση του πεδίου
$I_{max} = 4$ GW/cm2. Παρατηρούμε ότι δεν υπάρχει χρονική καθυστέρηση μεταξύ των
ακτινοβολιών των δύο διαδρομών. Στο πολυεπίπεδο ατομικό σύστημα η διαδρομή -1
και 2 δεν ανταγωνίζονται έντονα μεταξύ τους σε σύγκριση με την $|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle$
διφωτονική διέγερση, όπως περιγράφαμε στα κεφάλαια 2 και 3.

Η συμπεριφορά αυτή είναι αποτέλεσμα της de-excitation από την $|6S_{1/2}\rangle$
κατάσταση, σύμφωνα με την προηγούμενη εξήγηση. Η διαδρομή -2 είναι ισχυρότερη
από την 1, επειδή σε αυτή την περίπτωση $|4P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ μετάβαση είναι πιο
πιθανή μίας και έχει μεγαλύτερο στοιχείο πίνακα, -5.17 [a.u.], (σε ατομικές μονάδες-
atomic units) σε σχέση με τις ακτινοβολίες \(|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle \), (-0.453 [a.u.]), και \(|6S_{1/2}\rangle \leftrightarrow |4P_{3/2,1/2}\rangle \), (1.07 [a.u.]), αντίστοιχα.

Τα συμπεράσματα που προκύπτουν στην ενότητα I του κεφαλαίου 4 μας δίνουν την δυνατότητα να επιτύχουμε πειραματικά των σύμφωνων έλεγχο (coherent control), και συγκεκριμένα να συγχρονίσουμε τις παραγόμενες ακτινοβολίες, στις ατομικές διαδρομές-1 και 2, με την χρήση μόνο ενός εξωτερικού πεδίου αντλήσης (δεν χρησιμοποιείται η τεχνική *pump-probe*). Όπως γίνεται αντιληπτό, όσο περισσότερες είναι οι ενεργειακές καταστάσεις που συμμετέχουν στο υπό μελέτη ατομικό σύστημα τόσο πιο ανταγωνιστικά είναι τα όποια φαινόμενα εμφανίζονται και η πιθανότητα δημιουργίας ενός \(V \)-τύπου ατομικού συστήματος είναι αρκετά δύσκολο να πραγματοποιηθεί.

Συνοψίζοντας, στήν \(nsec \) περίπτωση του συστήματος των επτά ενεργειακών επιπέδων, η διφωτονική μετάβαση εκτός του διφωτονικού συντονισμού \(\Delta_{4S_{1/2}-7S_{1/2}} = 0 \) δεν παρήγαγε *forward* διαδιδόμενη ακτινοβολία στήν μετάβαση \(|4P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle \), ώστε να επιτευχθεί το \(V \)-τύπου ατομικό σύστημα που προσπαθήσαμε να δημιουργήσουμε.
Ενότητα II

Εισαγωγή ενότητας II

Στην ενότητα αυτή παρουσιάζουμε την περίπτωση της αμφίδρομης διάδοσης της δέσμης του πεδίου laser, δηλαδή, την περίπτωση εκείνη όπου το πεδίο της άντλησης διαδίδεται κατά μήκος τόσο του θετικού (+ζ), όσο και του αρνητικού οπτικού άξονα (−ζ), σε ένα μη-γραμμικό μέσο των μεταλλικών ατμών του Κ. Η διάδοση αυτή οδηγεί σε εξαιρετικά ενδιαφέροντα αποτελέσματα στα οποία εμφανίζεται, μεταξύ άλλων, παραμετρική αξονική ή κονική σύμφωνη ακτινοβολία. Οι V. Vaicaitis et.al. [7] παρατήρησαν ορατή (589 nm) και υπέρυθρη (820 nm) ακτινοβολία κατά τη διέγερση της κατάστασης 3D του ατόμου του νατρίου με παλμούς laser οι οποίοι διαδίδονταν σε αντίθετες διευθύνσεις. Ως γνωστόν, ο ανταγωνισμός μεταξύ των φαινομένων που προκύπτουν σε αυτές τις συνθήκες, (κεφάλαιο 3), όπως η ASE, η παραμετρική μίξη και η SHRS ήταν ιδιαίτερα έντονος [8-11]. Στο κεφάλαιο 2 αναφέραμε την σημασία της QI στις διάφορες ανταγωνιστικές διάδικασεις που εκδηλώνονται στο μη-γραμμικό σύστημα, η οποία συνεπάγεται τον περιορισμό των ακτινοβολιών που διαδίδονται κατά την φορά του πεδίου άντλησης (forward) όπως είναι η ASE και η SHRS από την παραμετρικά παραγόμενη forward ακτινοβολία της μίξης των τεσσάρων κυμάτων (PFWM). Σύμφωνα με την αρχή διατήρησης της ορμής η μίξη κυμάτων οδηγεί σε εκπομπή σύμφωνης ακτινοβολίας κατά μήκος του οπτικού άξονα του πεδίου laser [12-14]. Σε αυτές τις μελέτες προσδιορίστηκε πειραματικά το φαινόμενο του περιορισμού των μερικώς ασύμφωνων ακτινοβολιών ASE και SHRS από την σύμφωνη παραμετρική. Παράλληλα, το αντίθετα διαδιδόμενο πεδίο (backward) του μερικός σύμφωνων ακτινοβολιών δεν επηρεάστηκε από την παρουσία της παραμετρικής ακτινοβολίας καθώς και της ακτινοβολίας που προέκυψε από την μίξη τεσσάρων κυμάτων (forward), οι οποίες διαδίδονται κατά μήκος του θετικού οπτικού άξονα ζ. Οι A. E. Pomerarantz και R. N. Zare [15] έδειξαν, ότι η χρήση αμφίδρομα διαδιδόμενων δεσμών οδήγησε σε επιπλέον αύξηση του σήματος των παραγόμενων ακτινοβολιών, ενώ η ένταση της άντλησης παρέμεινε σταθερή.

Ο ρόλος της QI ακυρώνεται στην περίπτωση της αμφίδρομης διάδοσης του πεδίου laser, με κυματανύσματα k_{L1} και k_{L2} ($k_{L1} = k_{L2}$) αντίστοιχα, περιορίζοντας...
την παραγωγή των ASE και SHRS κατά την διεύθυνση του laser. Η διέγερση αυτή λοιπόν, όπου δεν εμφανίζεται το φαινόμενο Doppler, ως προς το σύστημα αναφοράς του ατόμου του μέσου, γίνεται με συνήθητα \(\omega_{L1} + \omega_{L2} = \omega + \omega - (k_{L1} - k_{L2}) \cdot V \), με αποτέλεσμα να προκύψει η σχέση \(\omega_{L1} + \omega_{L2} = 2\omega \), ανεξάρτητα από την ταχύτητα \(V \) [15]. Το τελευταίο είναι ορθό όταν το κάθε ένα από τα δύο φωτόνια \(\omega_{L1} \) και \(\omega_{L2} \) προέρχεται από διαφορετικές δέσμες. Όταν όμως τα δύο φωτόνια προέρχονται από την ίδια δέσμη το παραπάνω συμπέρασμα δεν ισχύει.

Στήν ενότητα αυτή μελετούμε την δυναμική των εσωτερικά παραγόμενων ακτινοβολιών στήν περίπτωση της αμφιδρόμης διάδοσης του πεδίου του laser κατά την διωφοτονική διέγερση της κατάστασης \(|6S_{1/2}\rangle \) με την χρήση \(nsec \) παλμού μήκους κύματος \(\lambda = 728.6 \text{ nm} \), όπου φαίνεται χαρακτηριστικά στο Σχήμα 4.8. Δείχνουμε ότι η παρουσία του πεδίου της άντλησης και στις δύο διευθύνσεις είναι ικανή να τροποποιήσει τη μη-γραμμικότητα του ατομικού συστήματος των ατομών του \(K \) αυξάνοντας έμμεσα τον ενεργό αριθμό των ατόμων που συμμετέχουν στήν συνολική διαδικασία, χωρίς να αυξηθεί παρατηρώντας η ατομική πυκνότητα, μέσω της αύξησης της θερμοκρασίας του κελιού [16].

Σχήμα 4.8 Ενεργειακό διάγραμμα πέντε επιπέδων του ατόμου του καλίου όπου η κατάσταση \(|6S_{1/2}\rangle \) διεγείρεται διωφοτονικά από \(nsec \) πεδίο laser μήκους κύματος \(\lambda = 728.6 \text{ nm} \). Οι καταστάσεις \(|5P_{3/2,1/2}\rangle \) και \(|4P_{3/2,1/2}\rangle \) δείχνονται με έντονο χρώμα για να δηλωθεί η διπλή υφή τους (doublet states).

120
Ακόμα, μελετούμε την συσχέτιση των ανταγωνιστικών φαινομένων που εμφανίζονται στο μη-γραμμικό σύστημα και στήν περίπτωση της μονόδρομης διφωτονικής διέγερσης, και συγκρίνουμε μεταξύ τους τις δύο αυτές διακριτές περιπτώσεις: i) την μονόδρομη (unidirectional) διάδοση της δέσμης του laser κατά μήκος του θετικού οπτικού άξονα ζ διάδοσης της δέσμης του laser κατά μήκος του θετικού οπτικού άξονα ζ όπου αποτελεί την πρώτη περίπτωση διφωτονικής διέγερσης, καθώς και ii) την αμφίδρομη (bidirectional case ή counter-propagation) διάδοση της δέσμης του laser όπου αποτελεί την δεύτερη περίπτωση διφωτονικής διέγερσης αντίστοιχα [16].

4.3 Πειραματική διάταξη για την μελέτη των παραγόμενων ακτινοβολιών κατά την διάδοση του laser προς τις δύο διευθύνσεις του κελιού

Στο Σχήμα 4.9 δείχνουμε την πειραματική διάταξη με την οποία πραγματοποιήθηκαν τα πειράματα. Ένας ταλαντωτής-ενισχυτής laser χρωστικής (dye laser), LUMONICS Hyperdye 300, αντλήθηκε από ένα XeCl laser διμερών, LUMONICS HYPER-X, ώστε να επιτευχθεί η διφωτονική διέγερση της μετάβασης \(|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \) του \(K \) με κυματικό αριθμό, (ενός φωτονίου), \(k = 13725.3 \text{ cm}^{-1} \). Η μέγιστη ενέργεια του laser της χρωστικής ήταν 12 mJ/pulse S-polarized.

Στην πειραματική διάταξη για την περίπτωση της αμφίδρομης διφωτονικής διέγερσης η δέσμη του laser διαχωρίστηκε σε δύο ίσα μέρη και εισήλθε στο κελί των ατμών από αντίθετες διευθύνσεις κάνοντας χρήση ενός συνόλου από τρία μερικώς (BS1) και υψηλά (M') ανακλόντα κάτοπτρα αντίστοιχα, τα οποία επιλέχθηκαν για την ίση παροχή της πολωμένης δέσμης laser σε δύο διαφορετικές διευθύνσεις με την ίδια ένταση (συνεχής και διακομμένη γραμμή στο Σχήμα 4.9). Τα οπτικά μήκη (optical path lengths) και στοιχεία (components) σχεδιάστηκαν προσεκτικά εξασφαλίζοντας ότι οι δύο δέσμες που εισέρχονται στο κελί, να έχουν τις ίδιες ιδιότητες, όπως ένταση, πόσωση, ενεργός διατομή της δέσμης, κλπ, ενώ παράλληλα οι δύο δέσμες ευθυγραμμίστηκαν κατάλληλα για την καλύτερη επικάλυψη (overlapping) τους στο κελί των ατμών.

Τα πειράματα με την χρήση μόνο μίας δέσμης αντλήσης πραγματοποιήθηκαν με την χρήση επιπέδων αποκοπής της δέσμης (beam stops) όπου ήταν αυτό απαραίτητο, ώστε να επιτραπεί μόνο η μία από τις δύο αντίθετες διαδιδόμενες δέσμες να εισέλθει στο κελί. Υπό την συγκεκριμένη διάταξη μόνο ακτινοβολίες οι οποίες
Διαδίδονταν κατά μήκος του θετικού (I_{FWD}) ή του αρνητικού οπτικού άξονα (I_{BWR}) αντίστοιχα μπορούσαν να καταμετρηθούν.

Οι εκπεμπόμενες ακτινοβολίες καταγράφηκαν από τον μονοχρωμάτορα (Jobin Yvon H.R. 1000 M) και αντιγραφόταν μέσω ενός φωτοπολλαπλασιαστή (HAMAMATSU R955). Χρησιμοποιήσαμε τα απαραίτητα φίλτρα συμβολής, ώστε να καταγράψουμε τις ακτινοβολίες της διαδρομής-1 και 2 που ενδιέφεραν την μελέτη που παρουσιάζουμε, όπως και χρωματικά φίλτρα ώστε να περιορίσει η παρουσία της δέσμης του laser, συγκρίνοντας το πηλίκο του σήματος προς τον θόρυβο (signal to noise ratio) από το σκεδαζόμενο laser εντός του μονοχρωμάτορα.

Σχήμα 4.9 Πειραματική διάταξη για την μελέτη της ακτινοβολίας που παράγεται κατά τη διεύθυνση διάδοσης του laser (forward) καθώς και στην αντίθετη (backward) στο κελί των ατμών του καλλιού. Στην περίπτωση των αντίθετα διαδιδόμενων δεσμών του laser (BOTH) οι δύο δέσμες εισέρχονται στο κελί από αντίθετες διεύθυνσεις μέσω της διαίρεσης της δέσμης του laser σε δύο ίσες δέσμες (συνεχής και διακεκομμένη γραμμή, αντίστοιχα). Σημειώνεται ότι με M, M' αναπαριστάνονται τα κάτοπτρα, με BS, $BS1$, $BS2$ οι διαιρέτες δέσμης και με V η ηλεκτρική τάση.

Χρησιμοποιήθηκε επίσης ένα σύστημα καταμέτρησης της μέσης τιμής των παλμών από την φωτοδιοδό (Boxcar Averager SRS model SR250) καταγράφοντας το τελικό σήμα σε υπολογιστή με την χρήση SRS λογισμικού. Το φασματικό εύρος του laser άντλησης ήταν 0.0043 nm (σε μονάδες αντιστρόφου μήκος κύματος αντιστοιχεί
σε 0.1 cm⁻¹), με διάρκεια 25 nsec αντίστοιχα. Οι ατμοί του K δημιουργήθηκαν εντός θερμαινομένου κυλινδρικού ανοξείδωτου μεταλλικού κελιού με μήκος 17 cm κάνοντας χρήση του ηλίου ως αδρανούς αερίου για να περιοριστεί η επαφή των ατόμων του K με τα οπτικά παράθυρα και να ρυθμιστεί η συμφωνία φάσεως των δημιουργούμενων ακτινοβολιών. Ένας ελεγκτής θερμοκρασίας (temperature controller) χρησιμοποιήθηκε, ώστε να μεταβάλει την ατομική πυκνότητα του K μεταξύ της τιμής 10¹³ cm⁻³ και 5x10¹⁶ cm⁻³ που αντιστοιχούσε στήν θερμοκρασιακή περιοχή μεταξύ 150 °C και 400 °C αντίστοιχα. Η ομοιομορφία στήν θερμοκρασία στο κελί των ατμών βρέθηκε ίση με 3% κάνοντας χρήση τριών θερμοζευγών.

Τέλος, καταμετρήθηκε το σήμα ιονισμού, το οποίο σχετιζόταν με τον πολυφωτονικό ιονισμό του ατόμου του K από την |4S₈/₂⟩ ↔ |6S₉/₂⟩ διφωτονική διέγερση, ώστε να προσδιοριστεί η ακριβής θέση του αποσυντονισμού, Δ_{4S_{8/2}-6S_{9/2}}, της σύμφωνης μετάβασης [16].

4.4 Μίξη τεσσάρων κυμάτων υπό nsec 4S₈/₂-6S₉/₂ διέγερση στις δύο περιπτώσεις διφωτονικής διέγερσης

Η μελέτη των χαρακτηριστικών των παραγόμενων ακτινοβολιών παρουσιάζεται, αρχικά στήν πρώτη περίπτωση της διφωτονικής διέγερσης (μονόδρομη διάδοση) και στήν συνέχεια στήν δεύτερη (αμφίδρομη διάδοση), όπου και στις δύο αυτές περιπτώσεις μελετάται μόνο η διαδρομή-2 του συστήματος των τεσσάρων ενεργειακών επιπέδων. Θέτουμε τον διφωτονικό αποσυντονισμό

\[\Delta_{4S_{8/2}-6S_{9/2}} = 2\omega - \frac{E(6S_{9/2}) - E(4S_{8/2})}{h} \]

αρχικά στήν τιμή \(\Delta_{4S_{8/2}-6S_{9/2}} = 0 \) (on resonance) μεταβάλλοντας κατόπιν την τιμή αυτή, την ατομική πυκνότητα N και τέλος την πίεση του αδρανούς αερίου \(P_{bg} \) [16].

4.4.1 Ακτινοβολία 6S₁/₂−4P₃/₂ της διαδρομής-2

Στο Σχήμα 4.10 δείχνουμε την ένταση της ακτινοβολίας στήν μετάβαση |6S₈/₂⟩ ↔ |4P₃/₂⟩ σε συνάρτηση με τον διφωτονικό αποσυντονισμό \(\Delta_{4S_{8/2}-6S_{9/2}} \) η οποία διαδίδεται προς τις δύο διευθύνσεις του μέσου (forward και backward αντίστοιχα),

123
στήν πρώτη περίπτωση και στήν δεύτερη περίπτωση της διφωτονικής διέγερσης αντίστοιχα, \(I_{BOTH} \), με ένταση του πεδίου άντλησης \(I_L = 1.3 \text{ MW/cm}^2 \).

Σχήμα 4.10 (a) Ένταση σαν συνάρτηση του διφωτονικού αποσυντονισμού \(\Delta 5s_{1/2} \leftrightarrow 5s_{1/2} \) για το πεδίο στήν \(I_{IFWD} \) κατεύθυνση, στήν \(I_{IBWD} \) στήν αρδευση \(I_{ISUM} \) των προηγούμενων περιπτώσεων και τέλος στήν περίπτωση των αντίθετα διαδιδόμενων δεσμών \(I_{BOTH} \) της μετάβασης \(|5s_{1/2}\rangle \leftrightarrow |4p_{3/2}\rangle \) αντίστοιχα. Το πεδίο άντλησης έχει την ίδια τιμή \(I_{\text{max}} = 1.3 \text{ MW/cm}^2 \), και στις δύο περιπτώσεις της διφωτονικής διέγερσης με την ατομική πυκνότητα να είναι \(N = 1.5 \times 10^{15} \text{ cm}^{-3} \). (b) Το ίδιο διάγραμμα αλλά για την ατομική πυκνότητα \(N = 8 \times 10^{15} \text{ cm}^{-3} \).
Στην πρώτη περίπτωση της διφωτονικής διέγερσης, η συνιστώσα \(I_{FWD} \) είναι μεγαλύτερη από την συνιστώσα \(I_{BWD} \) αποτέλεσμα παραμετρικής διαδικασίας, ανεξάρτητα από την τιμή του διφωτονικού αποσυντονισμού \(\Delta_{4S_{2s}→6S_{2s}} \). Αντίθετα, το \(I_{BWD} \) στοχεύει την SHRS και της ASE, ως μερικός σύμφωνες ακτινοβολίες, δεν επηρεάζεται από την παρουσία της \(QI \).

Στην αμφίδρομη διάδοση, η ένταση της συνιστώσας \(I_{BOTH} \) είναι μεγαλύτερη από το ολικό άθροισμα \(I_{FWD} \) και \(I_{BWD} \) της πρώτης περίπτωσης, \(I_{SUM}=I_{FWD}+I_{BWD} \), κατά δύο τάξεις μεγέθους όταν το πεδίο laser βρίσκεται εκτός του διφωτονικού συντονισμού \(\Delta_{4S_{2s}→6S_{2s}}=0.10 \text{ cm}^{-1} \) και \(\Delta_{4S_{2s}→6S_{2s}}=0.15 \text{ cm}^{-1} \) αντίστοιχα, στήν μεγαλύτερη ατομική πυκνότητα \(N=8×10^{15} \text{ cm}^3 \), Σχήμα 4.10(b), κάτι αναμενόμενο στήν περίπτωση όπου οι δύο διευθύνσεις \((+\xi)\) και \((-\xi)\) δρούν ανεξάρτητα από την άλλη.

Τα φαινόμενα αυτά σχετίζονται με την ακύρωση του φαινομένου της \(QI \) μιάς και δεν παρατηρήθηκε μίζη κυμάτων στήν περίπτωση της αμφίδρομης διάδοσης. Επίσης, η ακύρωση του φαινομένου Doppler έχει ως συνέπεια την παρουσία περισσότερων ατόμων στο συντονισμό με το πεδίο ανεξάρτητα από την ταχύτητα τους, το οποίο είναι εντονότερο στήν περίπτωση όπου η ατομική πυκνότητα αυξηθεί, Σχήμα 4.10(b). Ενώ στήν μονόδρομη διάδοση οι \(I_{FWD} \) και \(I_{BWD} \) έχουν διαφορετική καταγωγή (παραμετρική και SHRS αντίστοιχα), στήν αμφίδρομη διάδοση οι εν λόγω ακτινοβολίες χαρακτηρίζονται από τον ίδιο κύριο μηχανισμό παραγωγής, δηλαδή SHRS. Τέλος, στήν δεύτερη περίπτωση της διφωτονικής διέγερσης, και στις δύο ατομικές πυκνότητες, η ένταση των ακτινοβολιών ήταν μεγαλύτερη κατά δύο τάξεις μεγέθους, (κυρίως εκτός του διφωτονικού συντονισμού), σε σχέση με τις συνιστώσες \(I_{FWD} \) και \(I_{BWD} \) της πρώτης περίπτωσης [16].

Για να μπορέσουμε να διερευνήσουμε την καταγωγή των ακτινοβολιών στα 693.9 pm (παραμετρική, ASE ή SHRS) προβαίνουμε στόν έλεγχο της κανονικοποιημένης έντασης της ακτινοβολίας στήν μετάβαση \(|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle \) σε συνάρτηση με την πίεση \(P_{bg} \) του αδρανούς αερίου. Σημειώνουμε προκαταρκτικά ότι η πιθανή ακτινοβολία ASE της \(|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle \) προκύπτει με διαδικασία δύο βημάτων, δηλαδή απουσίας της \(|6S_{1/2}\rangle \) από το πεδίο της άντλησης (πρώτο βήμα) και στη συνέχεια εκπομπή της ακτινοβολίας \(|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle \) (δεύτερο βήμα). Οι
διάφορες κρούσεις που εμφανίζονται στο σύστημα των ατμών του K είναι δυνατόν να οδηγήσουν σε παρατέρω αύξηση της, λόγω της διεύρυνσης της κατάστασης $|6S_{1/2}\rangle$ με περισσότερα ηλεκτρόνια, παράλληλα με την αύξηση της πίεσης του αδρανούς αερίου. Αντίθετα, η πιθανότητα για SHRS αναμένεται να μειωθεί απότομα με την αύξηση της πίεσης P_{bg} επειδή οι κρούσεις ανακόπτουν την διαδικασία ενός βήματος της SHRS (μεταφορά ηλεκτρόνιων από τη θεμελιώδη κατάσταση στην κατάσταση $|4P_{3/2}\rangle$). Ακόμα, η πιθανότητα της παραμετρικής φύσης της $|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle$ αλλάζει ελαφρώς με την μεταβολή της πίεσης εξαιτία της μικρής επιδράσης της στήν συνθήκης συμφωνίας φάσεως, μιάς και τα άτομα του αδρανούς αερίου δεν χαρακτηρίζονται από σύμφωνη μετάβαση κοντά στο μήκος κύματος (693.9 nm) της υπό μελέτη ακτινοβολίας.

Σχήμα 4.11 Κανονικοποιημένες εντάσεις I_{FWD}, I_{BWD}, I_{BOTH} της ακτινοβολίας $|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle$ αντίστοιχα σαν συνάρτηση της πίεσης P_{bg} του ουδέτερου αέριου για τις δύο περιπτώσεις της διφωτονικής διέγερσης. Όταν η πίεση του αδρανούς αερίου εκτεταμένη την κρίσιμη τιμή $(P_{bg})_c = 10$ mbar η συνιστώσα πού κατευθύνεται στον $+\zeta$ οπτικό άξονα καθώς και στήν περίπτωση των αντίθετων διαδιδόμενων διαφόρον οπτικό άξονα $-\zeta$ ενδείξη του SHRS μηχανισμού παραγωγής αυτός ο οποίος εξαρτάται από τη τιμή του αδρανούς αερίου σε αντίθεση με την παραμετρική I_{FWD}.

Στήν περίπτωση της μονόδρομης διάδοσης, βλέπουμε ότι για την τιμή της πίεσης μεγαλύτερη από $P_{bg} = 50$ mbar η I_{FWD} συνιστώσα της $|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle$ δεν
μεταβάλλεται σημαντικά, ένδειξη παραμετρικής ακτινοβολίας, σε αντίθεση με την I_{BWD} συνιστόσα της η οποία μειώνεται κατά δύο τάξεις μεγέθους, κάτι που σχετίζεται με $SHRS$ ακτινοβολία όπως βλέπουμε χαρακτηριστικά στο Σχήμα 4.11.

Αντιθέτως, στην δεύτερη περίπτωση της διφωτονικής διέγερσης, I_{BOTH}, το αποτέλεσμα μας προσανατολίζει πρός την $SHRS$ ακτινοβολία, για μεγαλύτερες πιέσεις του αδρανού αερίου [16].

Συνάγουμε επομένως ότι: i) Η I_{BWD} στην μονόδρομη διάδοση χαρακτηρίζεται από τον μηχανισμό της $SHRS$, όπου η ένταση της εξαρτάται ισχυρά από την πίεση του αδρανού αερίου, ii) Η I_{FWD} στην ιδιαί περίπτωση, προκύπτει βασικά από το μηχανισμό της παραμετρικής μίξης μίας και δεν εξαρτάται σημαντικά από το P_{bg} και τέλος, iii) Η φύση της εκπομπής στην αμφίδρομη διάδοση φαίνεται να είναι $SHRS$, μιάς και η εξάρτησή της από την πίεση του αδρανού αερίου μοιάζει με την I_{BWD} $SHRS$ της μονόδρομης διάδοσης, αντίστοιχα.

<table>
<thead>
<tr>
<th>Κατεύθυνση laser</th>
<th>Σημείο παράτηρησης</th>
<th>Ένταση στη μετάβαση $6S_{1/2} \leftrightarrow 4S_{1/2}$ (arb.units)</th>
<th>Ένταση στη μετάβαση $6S_{1/2} \leftrightarrow 4S_{3/2}$ (arb.units)</th>
<th>Ένταση στη μετάβαση $6S_{1/2} \leftrightarrow 4S_{3/2}$ (arb.units)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔΔ_\perp=0.1cm$^{-1}$</td>
<td>ΔΔ_\parallel=0</td>
<td>ΔΔ_\perp=0.1cm$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>0.5 MW/cm2</td>
<td>FWD</td>
<td>2.3</td>
<td>4.0</td>
<td>3.2</td>
</tr>
<tr>
<td>0.5 MW/cm2</td>
<td>BWD</td>
<td>3.0</td>
<td>4.6</td>
<td>1.4</td>
</tr>
<tr>
<td>0.5 MW/cm2</td>
<td>0.5 MW/cm2</td>
<td>13.0</td>
<td>20.0</td>
<td>12.0</td>
</tr>
<tr>
<td>1 MW/cm2</td>
<td>FWD</td>
<td>3.6</td>
<td>5.6</td>
<td>7.4</td>
</tr>
<tr>
<td>1 MW/cm2</td>
<td>BWD</td>
<td>11.4</td>
<td>16.0</td>
<td>9.0</td>
</tr>
<tr>
<td>1 MW/cm2</td>
<td>1 MW/cm2</td>
<td>40.0</td>
<td>45.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

Πίνακας 4.1. Χαρακτηριστικές τιμές της έντασης της ακτινοβολίας στην μετάβαση $6S_{1/2} \leftrightarrow 4P_{3/2}$ για δύο διαφορετικές τιμές της έντασης του $laser$. Η ατομική πυκνότητα ήταν $N = 9 \times 10^{15}$ cm$^{-3}$, με την τιμή του αδρανού αερίου να διαμορφώνεται στα $P_{bg} = 1.3$ mbar.
Στόν πίνακα 4.1 δείχνουμε κάποια συγκεντρωτικά αποτελέσματα, για τρεις διαφορετικές τιμές του διφωτονικού αποσυντονισμού \(\Delta_{4S_{1/2}-6S_{1/2}} \), σε δύο διαφορετικές εντάσεις αντλήσεως, \(I_{\text{max}} = 0.5 \text{ MW/cm}^2 \) και \(I_{\text{max}} = 1 \text{ MW/cm}^2 \) αντίστοιχα, στήν ατομική πυκνότητα \(N = 9 \times 10^{15} \text{ cm}^{-3} \). Παρατηρούμε ότι στη δεύτερη περίπτωση της διφωτονικής διέγερσης, όταν βρισκόμαστε στήν συνθήκη του διφωτονικού συντονισμού, η ένταση της \(I_{\text{FWD}} \) αυξάνεται κατά ένα παράγοντα 5 όταν η εισερχόμενη ένταση διπλασιάζεται (0.5 MW/cm\(^2\) η κάθε δέσμη). Το φαινόμενο είναι εντονότερο στήν αμφίδρομη περίπτωση των \(2 \times 1 \text{ MW/cm}^2 \) όπου η ένταση της ακτινοβολίας αυξάνεται κατά τον παράγοντα 8, ένα κατ' εξοχήν μη-γραμμικό φαινόμενο [16].

4.4.2 Ακτινοβολία \(4P_{3/2}-4S_{1/2} \) της διαδρομής 2

Σε προηγούμενη εργασία τους, στήν μονόδρομη διάδοση της ακτινοβολίας, οι N. Merlemis et al. [4] προσδιόρισαν δύο φασματικές κορυφές της ακτινοβολίας στη μετάβαση \(|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle \). Η μία από αυτές με μήκος κύματος \(\lambda = 766.5 \text{ nm} \) ονομάστηκε \(I_{\text{HEP}} \) (high energy peak) ενώ η άλλη με μήκος κύματος \(\lambda = 766.6 \text{ nm} \) ονομάστηκε \(I_{\text{LEP}} \) (low energy peak). Οι δύο διακριτές κορυφές χαρακτηρίστηκαν από διαφορετική φυσική περιγραφή. Η πρώτη ήταν αποτέλεσμα παραμετρικής διεργασίας, μαζί με την ακτινοβολία στήν μετάβαση \(|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle \), ενώ η δεύτερη ήταν αποτέλεσμα της μίξης τεσσάρων κυμάτων δύο βημάτων (two-step FWM) όπου αρχικά εκδηλώθηκε με την δημιουργία ενός φωτονίου συχνότητας \(\omega_c \) στήν μετάβαση \(|6S_{1/2}\rangle \leftrightarrow |5P_{3/2}\rangle \) το οποίο στήν συνέχεια δημιούργησε ένα φωτόνιο στήν μετάβαση \(|5P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle \) της διαδρομής 1. Κατόπιν γεννήθηκε παραμετρικά η \(I_{\text{LEP}} \) με την συμμετοχή των μεταβάσεων \(|5P_{3/2}\rangle \leftrightarrow |5S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle \) και \(|5P_{3/2}\rangle \leftrightarrow |3D_{5/2}\rangle \leftrightarrow |4P_{3/2}\rangle \) αντίστοιχα.

Στο Σχήμα 4.12 δείχνουμε την εξάρτηση της φασματικής κορυφής \(I_{\text{HEP}} \) από τον διφωτονικό αποσυντονισμό \(\Delta_{4S_{1/2}-6S_{1/2}} \), στήν πυκνότητα \(N = 5 \times 10^{15} \text{ cm}^{-3} \) για ένταση \(I_{\text{max}} = 1 \text{ MW/cm}^2 \) στην πρώτη περίπτωση της διφωτονικής διέγερσης. Παρατηρούμε ότι η κορυφή αυτή διαδίδεται κατά μήκος του θετικού οπτικού άξονα \(\xi \) (κατά την διεύθυνση διάδοσης του πεδίου laser). Για μεγαλύτερες εντάσεις του πεδίου laser η
Η ένταση του πεδίου αντλήσεως αυξάνεται μία δεύτερη διευρυμένη κορυφή κοντά στήν \(I_{HEP} \) εμφανίζεται. Η κορυφή αυτή διαδίδεται και πρός τις δύο διευθύνσεις και σχετίζεται φυσικά με \(ASE \) ακτινοβολία. Σχετικά πρόσφατα θεωρητικοί υπολογισμοί [17] έδειξαν ότι υπό παρόμοιες συνθήκες η ενίσχυση χωρίς αντιστροφή πλθυσμού (AWT) της εκπαρουμένης \(ASE \) στήν μετάβαση αυτή είναι δυνατό να εμφανιστεί λόγω των πολύ ισχυρών πεδίων στις μεταβάσεις \(|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle \) και \(|5P_{3/2}\rangle \leftrightarrow |4S_{3/2}\rangle \) αντίστοιχα. Οι ακτινοβολίες αυτές σχηματίζουν ένα cascade ή ένα \(V \)-τύπου ατομικό σύστημα.

\[\Delta_{\text{two-photon}} \text{ detuning} \]

Σχήμα 4.12 Ένταση της \(I_{NVD} \) ακτινοβολίας \(|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle \) σε συνάρτηση με τον διφωτονικό αποσυντομισμό \(\Delta_{4S_{1/2}-6S_{1/2}} \) για την πρώτη περίπτωση της διφωτονικής διέγερσης (μονόδρομη διάδοση) του laser (διάδοση στόν \(+\zeta \) οπτικό άξονα) για τη φασματική κορυφή \(I_{HEP} \). Η ατομική πυκνότητα ήταν \(N = 5 \times 10^{15} \text{ cm}^{-3} \).

Στο Σχήμα 4.13 συγκρίνουμε τις δύο περιπτώσεις της διφωτονικής διάδοσης για την περίπτωση της ακτινοβολίας στήν μετάβαση \(|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle \) σαν συνάρτηση της έντασης του πεδίου laser. Η παραγόμενη ένταση της \(|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle \) είναι μεγαλύτερη στήν αμφίδρομη διάδοση σε σχέση με την μονόδρομη διάδοση. Αυτό παρατηρείται και για τις δύο παραγόμενες ακτινοβολίες της διαδρομής-2. Στήν δεύτερη περίπτωση της διφωτονικής διέγερσης η ακτινοβολία στήν μετάβαση
Σχήμα 4.13 Ένταση της ακτινοβολίας $I_{\text{FWD}}, I_{\text{BWD}}$ και I_{BOTH} στην μετάβαση $|4S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle$ απορρόφησης. Όπως δείχνει, η παραμετρική $|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ στήν μονόδρομη διάδοση αντικαθίσταται από την ASE (I_{FWD} και I_{BWD} συνιστώσα) όταν η μέγιστη ένταση του πεδίου άντλησης υπερβαίνει μία κρίσιμη τιμή, ενώ τέλος στήν αμφίδρομη διάδοση είναι πιθανόν να προκύπτει ASE χωρίς αντιστροφή πλήθους [17].

|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ είναι μικρότερη από την πρώτη εξαττίας της ισχυρότερης $|4S_{1/2}\rangle \rightarrow |4P_{3/2}\rangle$ απορρόφησης. Όπως δείχνουμε, η παραμετρική $|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ στήν μονόδρομη διάδοση αντικαθίσταται από την ASE (I_{FWD} και I_{BWD} συνιστώσα) όταν η μέγιστη ένταση του πεδίου άντλησης υπερβαίνει μία κρίσιμη τιμή, ενώ τέλος στήν αμφίδρομη διάδοση είναι πιθανόν να προκύπτει ASE χωρίς αντιστροφή πλήθους [17].

![Graph](image)

Σχήμα 4.13 Ένταση της ακτινοβολίας $I_{\text{FWD}}, I_{\text{BWD}}$ και I_{BOTH} στην μετάβαση $|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle$ απορρόφησα σε συνάρτηση με την ένταση του πεδίου laser. Παρατηρούμε ότι η I_{BWD} είναι πιο ισχυρή στην πρώτη περίπτωση διαφωτιστικής διέγερσης (μονόδρομη διάδοση). Πάνω από τα $I_{\text{max}} = 0.6$ MW/cm2 η εκπομπή φαίνεται να υφίσταται καθώς η ατομική πυκνότητα N είναι 8×10^{15} cm$^{-3}$.

Καταλήγοντας, μπορούμε να πούμε ότι το πείραμα που περιγράψαμε στήν ενότητα II του παρόντος κεφαλαίου μας έδωσε την ευκαιρία να ανεξάρτητα μιας έντασης του πεδίου laser. Παρατηρήσαμε την αλλαγή της φύσης των παραγόμενων ακτινοβολιών, π.χ. η ακτινοβολία στήν μετάβαση $|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle$ εξελίχθηκε από σύμφωνη παραμετρική
στήν πρώτη περίπτωση (μονόδρομη διφωτονική διέγερση) σε μερικώς σύμφωνη ASE στήν δεύτερη περίπτωση (αμφίδρομη διφωτονική διέγερση) αντίστοιχα.

Συμπεράσματα

Ενότητα I

♦ Στήν \(|4S_{1/2}\rangle \leftrightarrow |7S_{1/2}\rangle\) διφωτονική διέγερση παρατηρήθηκε ότι η διαδρομή-1 καθώς και η διαδρομή-2 εμφανίστηκαν ταυτόχρονα, σε αντίθεση με την \(|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle\) διφωτονική διέγερση όπου η διαδρομή-2 καθυστέρησε σε σχέση με τη αλλαγή της έντασης του πεδίου διέγερσης της διαδρομής-1. Οι εκπεμπόμενες ακτινοβολίες στις μεταβάσεις που μελετήσαμε καταγράφηκαν κατά την διεύθυνση του laser, με εξαίρεση την ακτινοβολία στήν μετάβαση \(|4P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle\) η οποία προέκυψε με τον μηχανισμό της ASE (+\(\zeta\) και \(\zeta\) συνιστόσα αντίστοιχα).

♦ Στο πολυεπίπεδο ατομικό σύστημα (multilevel system) τα ανταγωνιστικά φαινόμενα (περιορισμός forward ASE από την forward παραμετρική) ήταν εντονότερα σε σχέση με την \(|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle\) διφωτονική διέγερση.

♦ Παρόλο που επιτύχαμε να συγχρονήσουμε τα πεδία των διαδρομών-1 και 2, στο πολυεπίπεδο ατομικό σύστημα με την διέγερση \(|4S_{1/2}\rangle \leftrightarrow |7S_{1/2}\rangle\), η εμφανιζόμενη πολυπλοκότητα έκανε αρκετά δύσκολη την σχετική θεωρητική μοντέλοποίηση.

Ενότητα II

♦ Στήν μονόδρομη διάδοση της δέσμης του laser η ακτινοβολία στήν μετάβαση \(|6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle\) περιγράφηκε από την παραμετρική μίξη τεσσάρων κυμάτων για την forward συνιστώσα της και από τον SHRS μηχανισμό για την backward συνιστώσα της αντίστοιχα.

♦ Η ακτινοβολία στήν μετάβαση \(|4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle\) χαρακτηρίστηκε μόνο από forward συνιστώσα για εντάσεις της τάξεως του 1MW/cm². Για
μεγαλύτερες εντάσεις προέκυψε με τον μηχανισμό της ASE (+ζ και −ζ συνιστώσα αντίστοιχα).

♦ Η αμφιδρομή διάδοση της δέσμης του laser μας έδωσε την δυνατότητα να συζήσουμε τον ενεργό αριθμό των ατόμων που συμμετείχαν στο μη-γραμμικό φαινόμενο, διατηρώντας σταθερή την ατομική πυκνότητα. Σε αυτή την περίπτωση οι εκπεμπόμενες ακτινοβολίες καταγράφηκαν και ως πρός τις δύο διεύθυνσεις του πεδίου laser.

♦ Στήν δεύτερη περίπτωση διφωτονικής διάδοσης οι ακτινοβολίες στις μεταβάσεις |6S_{1/2}\rangle \leftrightarrow |4P_{3/2}\rangle και |4P_{3/2}\rangle \leftrightarrow |4S_{1/2}\rangle είχαν μερικώς σώμφωνο χαρακτήρα (+ζ και −ζ συνιστώσα).

♦ Στήν δεύτερη περίπτωση διφωτονικής διέγερσης δεν εμφανίστηκε η καταστρεπτική κβαντική συμβολή, (ακύρωση της καταστρεπτικής QD), λόγω του αντίθετου κυματάρθιμου των συμμετέχοντων φωτονίων από τις αντίθετα διαδιδόμενες δέσμες laser. Στο μέσο των ατμών χαρακτηρίστηκε από έντονη μη-γραμμικότητα. Η ακύρωση του φαινομένου Doppler, από την άλλη μεριά, συνεπαγόταν την παρουσία περισσοτέρων ατόμων στο συντονισμό με το πεδίο ανεξάρτητα από την ταχύτητα τους.

Βιβλιογραφία

ΚΕΦΑΛΑΙΟ 5

Γέννεση της τρίτης αρμονικής σε μεταλλικούς ατμούς.

Ενότητα 1

Εισαγωγή ενότητας 1

Όπως δείχναμε και εξηγήσαμε στο κεφάλαιο 3, η μεγιστοποίηση της έντασης της παραμετρικής ακτινοβολίας (PFWM), στήν μετάβαση |5P_{3/2}| ↔ |4S_{1/2}|, εμφανίζοταν όταν βρισκόμασταν πάνω από την κατάσταση |6S_{1/2}|. Παρατηρήσαμε επομένως, ότι η συνθήκη συμφωνίας φάσεως ΔΦ (ΔΦ = k_{init} - k_{fin}) διαδραμάτιζε σημαντικό ρόλο. Πολλές φορές όμως, η συνθήκη τέλειας συμφωνίας φάσεως (ΔΦ =0) είναι δύσκολο να επιτευχθεί επειδή η διάθλαση n(ω,k) ορισμένων υλικών (π.χ. κρυστάλλων και μεταλλικών ατμών) εμφανίζει ένα φαινόμενο γνωστό ως κανονική διασπορά (normal dispersion). Στο φαινόμενο αυτό ο δείκτης διάθλασης n(ω) αυξάνεται σε τιμή με την αύξηση της κυκλικής συχνότητας ω, έτσι ώστε η συνθήκη για την τέλεια συμφωνία φάσεως, σε συγγραμμικές δέσμες (collinear beams), να μην ισχύει πλέον [1]. Αντιθέτως, στήν ανόμια διασπορά (anomalous dispersion) ο δείκτης διάθλασης n(ω) μειώνεται με την αύξηση της κυκλικής συχνότητας ω [2]. Στήν πρώτη περίπτωση η συνθήκη συμφωνίας φάσεως είναι αρνητική (ΔΦ_{norm} <0) ενώ στήν δεύτερη είναι θετική (ΔΦ_{anom} >0), σε μία καθορισμένη φασματική περιοχή χαρακτηριστική του εκάστοτε υλικού.

Κατά την μελέτη της τρίτης αρμονικής (third harmonic generation-THG) σε μεταλλικούς ατμούς αλκαλίων παρατηρήθηκε, ότι η περίπτωση του νατρίου (Na) εμπίπτει σε υλικά με κανονική διασπορά, στήν φασματική περιοχή μηκών κύματος μικρότερη από το μήκος κύματος λ_{Na}^1 =589.5 nm. Αντίθετα, στήν περίπτωση του καλλίου (K) η THG εμφανίζοταν σε υλικά με ανώμαλη διασπορά, για την φασματική
περιοχή μηκών κύματος μεγαλύτερη από την τιμή $\lambda_i^K = 404.4$ nm. Όπως αναφέραμε και στήν εισαγωγή της διδακτορικής διατριβής είναι δυνατό να επιτευχθεί μείωση της ταχύτητας ομάδας (group velocity) u_g της ακτινοβολίας (και κατά συνέπεια επίτευξη αργού φωτός-slow light), στο μη-γραμμικό μέσο, σε μέσα (υλικά) με αρνητική διασπορά. Το τελευταίο μας οδηγεί σε πεδία μελέτης όπου εμφανίζονται διάφορα «εξωτικά» φαινόμενα, μεταξύ των οποίων η ηλεκτρομαγνητικά επαγόμενη διαφάνεια (electromagnetically induced transparency-EIT), η οποία μας προσανατολίζει σε μια ανεξάντλητη θεωρητική συζήτηση με πολύ πιθανές τεχνολογικές προεκτάσεις.

Η γέννηση επομένως, της τρίτης αρμονικής σε μεταλλικούς ατμός ατόμων Na με την χρήση μη-γραμμικών όρων 3^{3s} τάξεως αποτέλεσε μία από τις κατεξοχήν πηγές για την παραγωγή της υπεριώδης ακτινοβολίας (ultra violet-UV) καθώς και της υπεριώδης ηλεκτρονικής (vacuum ultra violet-VUV), αντίστοιχα. Η απόδοση της (efficiency) αυξήθηκε με την χρήση δεσμών laser οι οποίες είχαν υποστεί εστίαση. Παρατηρήθηκε, ότι σε υλικά τα οποία εμφανίζουν κανονική, ισοτροπική, διασπορά ($\chi^{(n)} = 0$, όπου η άριτς αριθμός) το φως που γεννώνταν από την εφαρμοζόμενη εστίαση συνέβαλλε καταστρεπτικά με το παραγόμενο φώς μετά την εστίαση με αποτέλεσμα η συνολική απόδοση της τρίτης αρμονικής να είναι μικρότερη, παρά τις ισχυρές συνθήκες εστίασης [3]. Η αλλαγή στο μήκος κύματος λ (tunability) αυτών των πηγών, περιορίστηκε σε στενές φασματικές περιοχές σε υλικά όμως, τα οποία παρουσίαζαν ανώμαλη διασπορά. Παράλληλα, με την χρήση ισχυρών οπτικών πεδίων οι μεγαλύτερες τάξεως πολώσεις μπορούσαν να γίνουν συγκρίσιμες ή και μεγαλύτερες από τις μικρότερες τάξεως αντίστοιχα. Η γέννηση της τρίτης αρμονικής, όπως δείχνουμε στήν πρώτη ενότητα, είναι πιθανόν να πραγματοποιηθεί με τον μηχανισμό της μίξης έξι κυμάτων (six wave mixing) ο οποίος παρατηρείται σε μέσα (υλικά) με κανονική διασπορά κατόπιν πολύ ισχυρής εστίασης (tightly focusing conditions). Η κατανομή της έντασης του μακρινού πεδίου (far field intensity) της ακτινοβολίας που γεννάται με αυτή την διαδικασία, σε υλικά με κανονική διασπορά, θεωρήθηκε αρχικά ταυτόσημη με την μορφή ενός συμμετρικού διακτύλιου (circularly symmetric ring pattern) σύμφωνα με τις θεωρητικές μελέτες των A. Lago et.al. [4] καθώς και των J. Kutzner και H. Zacharias [5] αντίστοιχα, κάτι που όμως δεν επιβεβαιώθηκε από τον πειραματικό έλεγχο. Συγκεκριμένα οι A. Lago et.al. [4], χρησιμοποίησαν μία αναλυτική μέθοδο επίλυσης των ολοκληρωτικών εξισώσεων του ηλεκτρικού πεδίου (οπτική μίξη συχνοτήτων) και κατά συνέπεια της παραγόμενης
παρουσίασαν την περίπτωση του Na. Η ποσότητα b είναι
με w0 το εύρος της δέσμης του πεδίου στήν περιοχή εστίασης. Αν και η
μέθοδος αυτή είχε πολλά προβλήματα, αποτέλεσε οδηγό στήν κατοπινή μελέτη της
κοινικής εκπομπής.

Επιπρόσθετα, ποικίλες κοινικές δομές μελετήθηκαν στο παρελθόν σε γηρά, αέρια καθώς και στόν ατμοσφαιρικό αέρα όστε να προσδιοριστεί η φύση των
εκπομπών αυτών [5-9], όπως επίσης και η εμφανιζόμενη κοινική ακτινοβολία κατά την εκπομπή ακτίνων x (x-ray generation) [10]. Οι H. Skenderovic et.al. [8]
μελέτησαν την κοινική εκπομπή ως συνέπεια της απο-εστίασης (defocusing) και αυτο-
εστίασης (self-focusing) της δέσμης άντλησης αντίστοιχα, στις μεταβάσεις D1 και D2 του ατμοκο ρουβιδίου (Rb). Επίσης, οι H. Xiong et.al. [9] προσδιόρισαν πειραματικά την χαρακτηριστική δακτυλοειδή μορφή της κοινικής εκπομπής σε
μικρές εντάσεις άντλησης χρησιμοποιώντας υπέρυθρο fscc παλμό laser σε νημάτα (filaments) που περείχαν αέρα. Ακόμα, η γέννηση της τρίτης αρμονικής με την
μορφή δακτυλοιδίου (ring-shaped pattern) καταγράφηκε από πειράματα και σε
πλάσμα ηλίου και υδρογόνου [11], καθώς και σε άλλα αέρια, με την διαφορά ότι η
κοινική εκπομπή, συγκεκριμένα, δεν ερμηνεύτηκε ποτέ ως αποτέλεσμα της μέγις έξι
κυμάτων. Επίσης, καταγράφηκαν πολλές αναφορές περί ασύνηθης εξάρτησης της
απόδοσης της τρίτης αρμονικής από την ένταση της εισερρόμενης δέσμης (fundamental wave). Η εν λόγω συμπεριφορά ερμηνεύτηκε ως συνέπεια μη-
γραμμικών μετατοπίσεων φάσεως (phase shift) των αλληλεπιδρόντων πεδίων όπου
έπαιχταν από το οπτικό φαινόμενο Kerr [12-14]. Οι R. A. Ganeev et.al. [13] έδειξαν
ότι η παραγόμενη τρίτη αρμονική, στόν ατμοσφαιρικό αέρα, υπό συνθήκες ισχυρής
εστίασης (tight focusing conditions) σταθεροποιήθηκε πάνω από το κατώφλι του
ιονισμού και επηρεάστηκε λιγότερο από τις χώρο-χρονικές μετατοπίσεις (spatiotemporal) της δέσμης του laser. Συνέπεια του γεγονότος αυτού ήταν το ότι η τρίτη αρμονική μπορούσε να χρησιμοποιηθεί ως σύμφωνη πηγή UV ακτινοβολίας με πολύ υψηλή απόδοση (high efficiency). Μόνο σε λίγες εργασίες ο τριπλασιασμός της συχνότητας του laser (laser tripling) αναμενόταν ως συνέπεια (δηλαδή ερμηνεία) της μίξης εξή κυμάτων όπως έδειξαν χαρακτηριστικά οι R. A. Ganeev et al. [14].

Σχήμα 5.1 Διάγραμμα κυματανύσματων στη μετάβαση $|3S\leftrightarrow 3P|$ του ατόμου του νατρίου στα οποία απεικονίζεται: (a) η κοινή τρίτη αρμονική (THG) καθώς και (b)-(e) η μίξη εξή κυμάτων σε ατομικά μέσα με κανονική διασπορά. Στήν περίπτωση (a) και (b) δείχνεται η τρίτη αρμονική όταν τα κυματανύσματα είναι συγγραμμικά (collinear beam) ενώ στις περιπτώσεις (c)-(e) όταν η δέσμη του laser υφίσταται εστίαση (non-collinear beam). Παρατηρούμε ότι στις περιπτώσεις (a) και (b) δεν ισχύει η συνθήκη συμφωνίας φάσεως με αποτέλεσμα το όλο φαινόμενο να είναι αμελητέο. Αντιθέτως υπό συνθήκες συμφωνίας εστίασης, περιπτώσεις (c)-(e), είναι επιτρεπτή μια μη-συγγραμμική συνθήκη συμφωνίας φάσεως (non-collinear phase matching) οι οποίες σχετίζονται με την μίξη εξή κυμάτων. Επειδή η ένταση της εστιασμένης Gaussian δέσμης είναι μικρότερη εκτός του οπτικού άξονα του κελιού οι περιπτώσεις με τη μεγαλύτερη απόδοση, κατά τη γέννηση της τρίτης αρμονικής, είναι αυτές που παρουσιάζονται στα σχήματα (c) έως (e) αντίστοιχα.

Στήν ενότητα I του παρόντος κεφαλαίου δείχνουμε αποτελέσματα θεωρητικής και πειραματικής ανάλυσης σε μέσα με κανονική διασπορά όπως οι ατομοί του Na, στα οποία γεννάται η τρίτη αρμονική. Διεγείρουμε με τρία φωτόνια την μονοφωτονική μετάβαση $|3S\leftrightarrow 3P|$ όπου τα μήκη κύματος του laser της άντλησης κυμαίνονται μεταξύ $\lambda_1 = 1770\text{ nm}$, (το οποίο αντιστοιχεί 0.5 nm κάτω από την $|3P|$ κατάσταση), και $\lambda_1 = 2200\text{ nm}$, (το οποίο αντιστοιχεί 143.8 nm κάτω από την $|3P|$ κατάσταση) αντίστοιχα. Δείχνουμε, ότι η τρίτη αρμονική προκύπτει ως μίξη τεσσάρων εξή κυμάτων για διάφορα μήκη κύματος λ_1 του laser, για διάφορες
συνθήκες συμφωνίας φάσεως Δk, υπό ποικίλες συνθήκες εστίασης F (ισχύ φακών: 1/F). Δείχνουμε επίσης ότι το πρότυπο της εκπομπής (emission pattern), έχει την μορφή συμμετρικού δακτυλίου ενώ σε ορισμένες περιπτώσεις πιο σύνθετες μορφές της τρίτης αρμονικής είναι δυνατά να εμφανιστούν, στις οποίες συνυπάρχουν τόσο το αξονικό όσο και το κονικό μέρος, αντίστοιχα.

Στο Σχήμα 5.1 παρουσιάζουμε τους πιθανούς μηχανισμούς στήν γέννηση της τρίτης αρμονικής σε άτομα Na, μέσω της σχέσης των κυματανυστάτων k₁ και k₃, η οποία μελετάται στήν ενότητα I. Στο Σχήμα 5.1(a) δείχνουμε την κοινή τρίτη αρμονική (THG) ως μίξη τεσσάρων κυμάτων, ενώ στα Σχήματα 5.1(b)-(e) αναπαριστάται η μίξη εξί κυμάτων σε ατομικά μέσα με κανονική διασπορά, όπως έχουμε ήδη περιγράψει. Στις περιπτώσεις των Σχήματος 5.1(a) και 5.1(b) δείχνουμε την THG όταν τα κυματανύσματα είναι συγγραμματικά (collinear beam). Στις περιπτώσεις αυτές δεν ισχύει η συνθήκη συμφωνίας φάσεως με αποτέλεσμα το όλο φαινόμενο να είναι αμελητέο (negligible).

Αντίθετα, στις περιπτώσεις των Σχήματος 5.1(c)-(e) δείχνουμε την THG όταν η δέσμη του laser υφίσταται πολύ ισχυρή εστίαση (non-collinear beam). Η τιμή της συμφωνίας φάσεως αυξάνεται εξαιρετικά της εστίασης, όπως ξεκινάει και στήν κοινή τρίτη αρμονική (Σχήμα 5.1(a)). Επιτρέπεται όμως, μία μη-συγγραμμική συμφωνία φάσεως (non-collinear phase matching) στήν περίπτωση της μίξης εξί κυμάτων, Σχήματα 5.1(c)-(e) αντίστοιχα, όπως δείχνουμε σε όσα ακολουθούν.

5.1 Πειραματική διάταξη της τρίτης αρμονικής για την περίπτωση των μεταλλικών ατμών του Na

Στο Σχήμα 5.2 παρουσιάζουμε την πειραματική διάταξη με την οποία πραγματοποιήσαμε τα πειράματα μας. Οι ατμοί του Na και του K εσωκλείονται εντός θερμαινόμενου κυλινδρικού ανοξειδωτού χαλύβδινου κελιού με μήκος 15-20 cm. Χρησιμοποιήσαμε το αδρανές αέριο argon (Ar) ως buffer gas, σταθερής πίεσης σε όλη την διάρκεια των πειραμάτων ίσης με 10 mbar, καθώς και εξί θερμοζεύγη, ώστε να παρακολουθήσουμε την θερμοκρασία κατά μήκος του κελιού. Οι θερμοκρασίες μετρήθηκαν σε mV και μετασχηματίστηκαν σε θερμοκρασιακούς βαθμούς (°C) μέσω της σχέσης T(°C) = 24.4(mV) + 12. Το σύστημα laser αποτελούνταν από μία γεννήτρια οπτικής παραμετρικής ακτινοβολίας (optical parametric generator-OPG) η
οποία αντλήθηκε από ένα fs:ს ტშაფ ლაσერ (“Spitfire”, Spectra Physics, Ltd) με μέγιστη ενέργεια ανά παλμό 0.5 mJ και διάρκεια 120 fs:ς. Η ενέργεια των υπέρυθρων fs:ς παλμών η οποία παράγεται από την γεννήτρια συχνοτήτων ήταν 4–6μJ. Η διάμετρος 2w₀ της δέσμης εξόδου από το σύστημα laser ήταν περίπου 10 mm η οποία κατόπιν εστιάστηκε ισχυρά στο κέντρο του κελιού με την χρήση διαφόρων συγκλίνοντων φακών εστιακής απόστασης F:ς. Τέλος, με την χρήση ψηφιακής κάμερας καταγράφηκε η εκκομή μακρινού πεδίου (far field) της ακτινοβολίας (σε Na και K) από την κεντρική περιοχή του κελιού (μαύρη γραμμή στο Σχήμα 5.1) [15], ενώ παράλληλα μετρήθηκε και το φάσμα της (κατά κύριο λόγο στο K), εκτός του οπτικού άξονα του κέντρου του κελιού (κόκκινη γραμμή στο Σχήμα 5.2).

Σχήμα 5.2 Πειραματική διάταξη για την μελέτη της γέννεσης της τρίτης αρμονικής από εστιασμένη fs:ς δέσμη laser σε μεταλλικούς ατμούς αλκαλίων. Οι παραγόμενες ακτινοβολίες καταγράφονται με την χρήση ψηφιακής φωτογραφικής κάμερας (photo camera) καθώς και CCD κάμερας στην περίπτωση των φασμάτων, αντίστοιχα. Με τη μάρτις γραμμή δείχνεται η κατανομή των εκόπτων μακρινού πεδίου των ακτινοβολίων (far field) κατά μήκος του άξονα συμμετρίας του κελιού ενώ με τη κόκκινη γραμμή η κατανομή των φασμάτων εκτός του άξονα συμμετρίας.
5.2 Θεωρητικό μοντέλο για τους μεταλλικούς ατμούς του Na

Όπως γνωρίζουμε η διάδοση του φωτός περιγράφεται, (κεφάλαιο 2), από τις εξισώσεις του Maxwell της μορφής \(\Delta \hat{E} = \mu_0 \frac{\partial^2 \hat{D}}{\partial t^2} \), με \(\hat{E} \) το ηλεκτρικό πεδίο και \(\hat{D} \) την διηλεκτρική μετατόπιση, η οποία εκφράζεται ως επαλληλιά ενός γραμμικού και ενός μη-γραμμικού όρου (\(\hat{D} = \hat{D}_l + \hat{D}_{NL} \)) αντίστοιχα. Αποδεικνύεται, ότι η εξίσωση της διάδοσης του πεδίου laser και του πεδίου της τρίτης αρμονικής είναι:

\[
[\Delta E_i + k_i^2 E_i] e^{-i\omega t} = \mu_0 \frac{\partial^2 D_{NL1}}{\partial t^2} \quad \text{και} \quad [\Delta E_3 + k_3^2 E_3] e^{-i\omega t} = \mu_0 \frac{\partial^2 D_{NL3}}{\partial t^2} \quad \text{αντίστοιχα, όπου}
\]

\(D_{NLi} \approx e^{-i\omega t} \) η μη-γραμμική διηλεκτρική μετατόπιση. Θεωρούμε, κατά τα γνωστά, ότι το ηλεκτρικό πεδίο δίνεται από την σχέση:

\[
E(\omega) = \hat{E}(\omega)e^{-i\omega t} + \text{c.c.} = A(\omega)e^{-i(\omega t-k_1)z} + \text{c.c.}
\]

ενώ οι πηγές του ηλεκτρικού πεδίου πολώσεις (source terms), 3\(^{\text{rd}} \) και 5\(^{\text{th}} \) τάξεως, είναι \(P^{(3)}(\omega_i) = \varepsilon_0 D^{(3)}(\chi^{(3)}E^{(3)}(\omega_i)) \) και \(P^{(5)}(\omega_i) = \varepsilon_0 D^{(5)}(\chi^{(5)}E^{(5)}(\omega_i)) \) αντίστοιχα. Με \(D^{(3)} = 1 \) και \(D^{(5)} = 5 \) συμβολίζονται οι παράγοντες εκφυλισμού των συμμετέχοντων πεδίων. Θεωρώντας την τρίτη αρμονική ως ασθενέστερη διαδικασία (\(\hat{E}^{(n)}(\omega_i) \approx 0 \) για \(n \gg 3 \)) η κυματική εξίσωση διάδοσης για το αργά μεταβαλλόμενο πεδίο της (SVEA) με μιγαδική (complex) περιβάλλουσα \(A_3(\omega) \), στην προσέγγιση της μη-αποσβεβόμενης δέσμης του laser (non-depleted pump approximation), δίνεται από την κάτω σχέση [15]:

\[
\frac{\partial A_3}{\partial z} - \frac{i}{2k_3} \Delta z A_3 - \frac{1}{u_3} \frac{\partial A_3}{\partial t} = i \left(\sigma^{(3)} + \sigma^{(5)} |A_i|^2 \right) A_i^* e^{i(k_1z - \omega t)}. \quad (5.1)
\]

Από την (5.1) με την βοήθεια του μετασχηματισμού Fourier \(S_3 = F \{ A_3 \} \) βρίσκουμε ότι το χωρικό μιγαδικό πλάτος \(S_3 \) της τρίτης αρμονικής ικανοποιεί την παρακάτω εξίσωση:

\[
\frac{\partial S_3}{\partial z} + \frac{ik_3^2}{2k_3} S_3 = F, \quad (5.2)
\]
όπου \(F = i \left(\sigma^{(3)} F_3 + \sigma^{(5)} F_5 \right) e^{i \Delta x} \) με \(F_3 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dy A_{3i} e^{-i k_x x - i k_y y} \) και

\(F_5 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dy |A_{3i}|^2 A_{3i} e^{-i k_x x - i k_y y} \), όπου η μιγαδική περιβάλλουσα \(A_1 (r, z, t) \) στήν προσέγγιση του καθυστερημένου χρόνου είναι \(A_1 (r, z, t) \equiv A_1 \left(r, z, t + \frac{Z}{u_3} \right) \).

Χρησιμοποιούμε τον δείκτη 1 αναφερόμενοι στο πεδίο του \textit{laser} και τον δείκτη 3 αναφερόμενοι στο πεδίο της τρίτης αρμονικής, αντίστοιχα. Επίσης, με \(\Delta k = 3 k_1 - k_3 \) συμβολίζουμε την συνήθη συμφωνία φάσεως του φαινομένου ενώ με \(\sigma^{(j)} \), όπου \(j = 1,3 \), είναι μη-γραμμικοί συντελεστές οι οποίοι συνδέονται με την \(3^{\text{η}} \) και την \(5^{\text{η}} \) τάξης μη-γραμμική οπτική επιδεικτικότητα \(\chi^{(3)} \) και \(\chi^{(5)} \) αντίστοιχα, σύμφωνα με τις σχέσεις [15]:

\[
\begin{align*}
\sigma^{(3)} &= \frac{k_1}{2n^2} D^{(3)} \chi^{(3)} (-\omega_3; \omega_1, \omega_1, \omega_1), \\
\sigma^{(5)} &= \frac{k_3}{2n^2} D^{(5)} \chi^{(5)} (-\omega_3; \omega_1, \omega_1, \omega_1, -\omega_1).
\end{align*}
\] (5.3) (5.4)

Υποθέτουμε στήν συνέχεια ότι η χωρική κατανομή της εισερχόμενης δέσμης εκφράζεται με την μορφή ενός εγκάρσιου ηλεκτρομαγνητικού πεδίου, ρυθμού \textit{TEM\(_{00}\)}, η οποία εστιάζεται ισχυρά σε μέσο με κανονική διασπορά, στήν θέση \(z = 0 \), και δίνεται από την παρακάτω μαθηματική σχέση:

\[
A_i (r, z, t) = \frac{A_{10}}{s} \exp \left(-\frac{1}{s} \left(\frac{r}{w} \right)^2 - \frac{1}{\tau^2} \left(t - \frac{Z}{u_3} \right)^2 \right),
\] (5.5)

όπου, \(s \) η ποσότητα \(s = 1 + i \frac{Z}{L_d} \), ενώ με \(w \) και \(L_d = \frac{k_3 w^2}{2} \) παριστάνονται η ακτίνα της δέσμης του \textit{laser} και το μήκος \textit{Rayleigh}, αντίστοιχα. Σημειώνουμε ότι το μήκος \textit{Rayleigh} είναι η διαμήκης απόδοσης, κατά μήκος της διάδοσης της δέσμης του \textit{laser} (άξονας \(z \)), από την διάμετρο (\textit{waist}) της δέσμης στήν θέση \(z = 0 \), από τον εμβαδό της ενεργού διατομής διπλασιάζεται. Αποτελεί μία σημαντική παράμετρο
ιδιαίτερα στις περιπτώσεις εκείνες όπου ο παλμός του laser μοντελοποιείται με την βοήθεια της Gaussian συνάρτησης (5.5). Με \(k_1 = \frac{\alpha \cdot n_1}{c} \) και \(k_3 = \frac{\alpha \cdot n_3}{c} \) συμβολίζουμε τον κυματάριθμο του laser και της τρίτης αρμονικής αντίστοιχα, \(n_1 \) και \(n_3 \) είναι ο δείκτης διάθλασης των πεδίων με συχνότητα \(\omega_1 \) και \(\omega_3 \) και τέλος \(\tau \) και \(u_1 \) το εύρος και η ταχύτητα ομάδας του laser.

Στο σημείο αυτό θέλουμε να υπογραμμίσουμε ότι το θεωρητικό μοντέλο δεν παίρνει υπόψη του τα μεγαλύτερα τάξεως φαινόμενα διασποράς, όπως η διασπορά της ταχύτητας \(\tau \) καθώς και άλλες μη-γραμμικές αλληλεπιδράσεις όπως \(\pi \cdot \chi \).

Η πειραματική παρατηρούμενη κατανομή της ακτινοβολίας μακρινού πεδίου είναι ανάλογη με την τιμή του ολοκλήρωμα \(\int |S_3|^2 dt \) όπου, το ολοκλήρωμα αυτό, σε συνδυασμό με την (5.2) δίνει [15]:

\[
S_3 = \int_0^\infty F(z') e^{-ik_z^3 (z-z')/2k} dz'.
\] (5.6)

Παίρνοντας υπόψη ότι η δέσμη του laser εστιάζεται στο κέντρο του μη-γραμμικού μέσου μήκους \(L \) εισάγουμε την μεταβλητή \(\zeta = \frac{(z' - L/2)}{L_d} \) και κατόπιν εκφράζουμε το πλάτος της τρίτης αρμονικής ως \(|S_3(0)| = L_d \pi w^2 A^3_{\omega 0} \left(\sigma^{(5)}M_3 + \sigma^{(5)}M_5 \right) \), όπου ορίσαμε την γωνία \(\theta \) σύμφωνα με την σχέση, \(\theta = \arccos(k_x/k_0) \), επειδή η εκπομπή της τρίτης αρμονικής εμφανίζεται κυλινδρικά συμμετρική, την εκφράζουμε με όρους γωνιακού φάσματος (angular spectrum). Κατόπιν με \(M_3 \) και \(M_5 \) ορίζονται οι ποσότητες:

\[
M_3(0,t) = \int_{\xi_0}^{\xi_0} U(0,\xi) T^3(t,z') m_3(0,\xi) d\xi
\]

και

\[
M_5(0,t) = \int_{\xi_0}^{\xi_0} U(0,\xi) T^5(t,z') m_5(0,\xi) d\xi,\ \text{αντίστοιχα.}\]

Επίσης, με \(\xi_0 \) και \(z' \) ορίσαμε
τις ποσότητες \(\xi_0 = \frac{L}{2L_d} \) και \(z' = L/2 + \xi L_d \), αντίστοιχα. Τέλος, οι συναρτήσεις \(U(\theta, \xi), T(t, z), m_3(0, \xi) \) και \(m_5(0, \xi) \) στα ολοκληρώματα δίνονται αντίστοιχα από τις εξής σχέσεις [15]:

\[
U(\theta, x) = e^{i\xi_0 \left(\frac{L}{2} x \right)} , \quad (5.7)
\]

\[
T(t, z) = e^{-i\frac{1}{2} \left(\xi - \frac{L}{2} \right)^2 ,} \quad (5.8)
\]

\[
m_3(0, \xi) = e^{-i\frac{1}{2} \xi^2} , \quad (5.9)
\]

\[
m_5(0, \xi) = e^{-i\frac{1}{2} \xi^2} , \quad (5.10)
\]

όπου \(s = 1 + i \xi \). Η σχέση (5.6) μετασχηματίζεται στην τελική αδιάστατη συνάρτηση:

\[
S(\theta) = \lim_{\tau \to \infty} \left| \int_{-\infty}^{\tau} \left[M_3(0, t) + \gamma M_5(0, t) \right] dt \right|^2 , \quad (5.11)
\]

όπου η σημαντική ποσότητα \(\gamma \) εκφράζεται από την σχέση: \(\gamma = A_1^2 \frac{\sigma^{(s)}}{\sigma^{(3)}} \).

Η σχέση (5.11) αποτελεί το τελικό επιστέγασμα της θεωρητικής μας μοντελοποίησης και η οποία πρόκειται να προσδιοριστεί αριθμητικά. Στο σημείο αυτό κρίνεται σώφρον να κάνουμε ένα πρώτο σχόλιο το οποίο προκύπτει αμέσως από την (5.11) και σχετίζεται με την τιμή της ποσότητας \(\gamma \). Όταν αληθεύει η ανισότητα: \(\gamma < 1 \), η τρίτη αρμονική γεννάται κυρίως μέσω της διαδικασίας που περιγράφει ο τανυστής \(\chi^{(3)} \) όπου επικρατεί ο μηχανισμός της μίξης των τεσσάρων κυμάτων (FWM). Όταν ικανοποιείται η ανισότητα: \(\gamma > 1 \), η επίδραση του τανυστή \(\chi^{(3)} \) κυριαρχεί πλέον με συνέπεια και υπερισχύει ο μηχανισμός της μίξης \(\xi \) κυμάτων (SWM) [15].
5.3 Αποτελέσματα για τους μεταλλικούς ατμούς του Na

5.3.1 Δυνατές περιπτώσεις στήν κονική κατανομή της τρίτης αρμονικής του Na

Η κονική τρίτη αρμονική παρατηρήθηκε για πυκνότητες του ατόμου του Na μεταξύ $N = 5 \times 10^{13} \text{cm}^{-3}$ και $N = 2 \times 10^{16} \text{cm}^{-3}$ αντίστοιχα καθώς και για μήκος κύματος λ_1 του laser μεταξύ 1770 nm και 2200 nm, όπως αναφέραμε στήν εισαγωγή της ενότητας I.

Σχήμα 5.3 Εξάρτηση της κανονικοποιημένης ποσότητας $\int |M_5(\theta,t)|^2 \, dt$ σε συνάρτηση με τη γωνία θ, για διαφορετικές συνθήκες εστίασης και συμφωνίας φάσεως Δk του στόχου του νατρίου. (a) Για την τιμή της συμφωνίας φάσεως $\Delta k = -0.4 \text{ cm}^{-1}$ έχουμε: (1) $w = 630 \mu\text{m}$, (2) $w = 210 \mu\text{m}$, (3) $w = 130 \mu\text{m}$ και (4) $w = 90 \mu\text{m}$, αντίστοιχα. (b) Για την διάμετρο της δέσμης του laser $w = 90 \mu\text{m}$ έχουμε: (1) $\Delta k = 0$, (2) $\Delta k = -3 \text{ cm}^{-1}$, (3) $\Delta k = -7 \text{ cm}^{-1}$ και (4) $\Delta k = -9 \text{ cm}^{-1}$, αντίστοιχα. Παρατηρούμε ότι επί ορισμένες μόνο περιπτώσεις σχηματίζεται ο χαρακτηριστικός δακτύλιος της κονικής τρίτης αρμονικής.
Στο Σχήμα 5.3 δείχνουμε το γράφημα της κανονικοποιημένης ποσότητας

\[\int_{-\infty}^{\infty} |M_3(0, t)|^2 \, dt \]

σε συνάρτηση με την γωνία διάδοσης \(\theta \) για διάφορες τιμές της διαμέτρου \(w \) της δέσμης \(l \) laser καθώς και για διάφορη \(\Delta k \). Παρατηρήθηκε, ότι σε πολλές περιπτώσεις η κατανομή της παραγόμενης τρίτης αρμονικής έχει τη δομή δακτυλίου, συμμετρικό ως προς τον οπτικό άξονα της δέσμης του πεδίου laser όπου φαίνεται στο Σχήμα 5.3(a) στις καμπύλες 3 και 4 καθώς και στο Σχήμα 5.3(b) στήν καμπύλη 2, αντίστοιχα. Ομοίως, για ένα σχετικά μεγάλο εύρος της παραμέτρου \(w \) και του \(\Delta k < 0 \) η τρίτη αρμονική συμπεριφέρεται διαφορετικά. Αποτελείται από ένα αξονικό μέρος ή από συνδυασμό τόσο αξονικού όσο και κωνικού μέρους, όπως βλέπουμε στο Σχήμα 5.3(a) στις καμπύλες 1 και 2 καθώς και στο Σχήμα 5.3(b) στις καμπύλες 1, 3 και 4, αντίστοιχα. Σε συνθήκες ασθενέστερης εστίασης \(\gamma < 1 \) η συνεισφορά του τανυστή 3\(\gamma \) τάξεως δεν είναι αμελητέα, προκαλώντας την παραγωγή κωνικής μεν αλλά και την ταυτόχρονη παρουσία αξονικής δε, εκπομπής. Επίσης, από το Σχήμα 5.3(b) και την καμπύλη 1 παρατηρούμε την παρουσία κωνικής τρίτης αρμονικής σε συνθήκες πλήρους συμφωνίας φάσεως. Το τελευταίο εμφανίζεται μόνο σε συνθήκες άντλησης με μικρό μήκος κύματος (short pump pulses) και συναρτάται άμεσα με την διασπορά της ταχύτητας ομάδας (group velocity dispersion) [15].

5.3.2 Απεικόνιση της τρίτης αρμονικής του Na

Στο Σχήμα 5.4 δείχνουμε μία τυπική φωτογραφία μακρινού πεδίου της τρίτης αρμονικής \(\gamma \) που και την γραφική παράσταση της δύο συνάρτησης της (intensity plot) σε συνάρτηση με την γωνία εκπομπής, μετρούμενη από το κέντρο του κελιού, στήν ατομική πυκνότητα \(N = 3 \times 10^{15} \text{ cm}^{-3} \). Βλέπουμε ξεκάθαρα, ότι η διατομή της τρίτης αρμονικής έχει δακτυλοειδή μορφή (δηλαδή ring-shaped form). Η γωνία εκπομπής μεγαλώνει σε συνάρτηση με την ισχύ \(1/F \) του συγκλίνοντα φακού όπως δείχνουμε στο Σχήμα 5.5 και στο Σχήμα 5.6(a) όπου για μικρή σχετική ισχύ του φακού δεν εμφανίζεται η κωνική εκπομπή. Το χαρακτηριστικό της συγκεκριμένης κωνικής εκπομπής είναι το μεγάλο γωνιακό ανάπτυγμα ή άνοιγμα (angular spread), το οποίο και εκφράζεται από την σχέση \(\Delta \theta / \theta_0 > 1 \) (όπου \(\Delta \theta \) είναι το πάχος του δακτυλιδιού και
θ_0 η απόσταση του μέσου του δακτυλιδιού από το κέντρο του κώνου), όπως μπορούμε να δούμε από την γραφική παράσταση της έντασης της, στο Σχήμα 5.4.

Η τελευταία σχέση ικανοποιεί τις θεωρητικές προβλέψεις όπου χαρακτηρίζουν την διαφορά της μίξης των συχνοτήτων (difference frequency mixing) σε ισοτροπικά υλικά [16, 17]. Οι Vaicaitis et al. [17] μελετούντας μία τεχνική παραγωγής της τρίτης αρμονικής, με βάση την μίξη τεσσάρων κυμάτων, έδειξαν ότι έτσι η επίτευξη της απαραίτητης εκείνης συμφωνίας φάσεως, τύπου Cherenkov ($n_1 - n_3 \cos \theta = 0$), όπου n_1 και n_3 οι δείκτες διάθλασης του laser και της γεννόμενης ακτινοβολίας αντίστοιχα, μεταβάλλοντας την γωνία της μίας εκ των δύο δεσμών (Bessel), του laser. Υπό αυτές τις συνθήκες επομένως, το Δk δεν εξαρτιόταν από την συγκόλημη των εισερχόμενων πεδίων (Gaussian και Bessel δέσμες), σε μέσο το οποίο εμφάνισε κανονική, πάντοτε, διασπορά.
Σχήμα 5.5 Εικόνες μακρινού πεδίου της τρίτης αρμονικής του ατόμου του Na για μήκος κύματος του laser $\lambda_1 = 1980$ nm και ατομική πυκνότητα $N = 3 \times 10^{15}$ cm$^{-3}$ για διαφορετικές τιμές της ισχύος του συγκλίνοντα φακού. (a) $1/F = 1D$, (b) $1/F = 1.5D$, (c) $1/F = 2D$ και (d) $1/F = 3D$ αντίστοιχα. Βλέπουμε ότι όσο μεγαλώνει η ισχύ του φακού εμφανίζεται η χαρακτηριστική δακτυλοειδή κονική εκπομπή.

5.3.3 Ποιοτικά χαρακτηριστικά της τρίτης αρμονικής στούς ατμούς του Na

Οι μη-γραμμικές οπτικές επιδεκτικότητες του Na υπολογίστηκαν από την κβαντομηχανική θεωρία των διαταραχών (perturbation theory) με την χρήση των τιμών των στοιχείων των πίνακα μ_{ij} των 12 χαμηλότερων ενεργειακών επιπέδων. Οι τιμές αυτές αναζητήθηκαν στη μελέτη των R. B. Miles και S. E. Harris [18]. Χρησιμοποιήθηκε το πακέτο Mathematica, ώστε να προςδιοριστούν οι άγνωστες ποσότητες $\chi^{(3)}$ και $\chi^{(5)}$. Επομένως, για το μήκος κύματος $\lambda_1 = 1980$ nm του laser, (που αντιστοιχεί σε 70.5 nm κάτω από την $|3P\rangle$ κατάσταση) στήν ατομική πυκνότητα $N = 3 \times 10^{15}$ cm$^{-3}$, οι υπολογισμοί για τις μη-γραμμικές επιδεκτικότητες έδωσαν αντίστοιχα: $\chi^{(3)} = 2.5 \times 10^{-26} \text{ (m} \cdot \text{V})^2$ και $\chi^{(5)} = 2.1 \times 10^{-45} \text{ (m} \cdot \text{V})^4$. Το πλάτος A_{10} του πεδίου laser στήν σχέση (5.5) δίνεται από την τιμή $A_{10} = \frac{(2/\pi)^{1/2}}{\varepsilon_0 c n_1} \frac{1}{\pi w^2 \tau} E_1$, όπου με
\(E_{1} \) συμβολίζουμε την ενέργεια του πεδίου laser (πρώτο αρμονικό πεδίο-first harmonic field) η οποία εκφράζεται από το ολοκλήρωμα:

\[
E_{1} = 2e_{0}c n_{1} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dxdy \left| A_{1}(x, y, t) \right|^{2}
\]

και προκύπτει τελικά ότι είναι

\[
E_{1} = \left(\frac{\pi}{2} \right)^{1/2} e_{0}c n_{1} \pi w^{2} \tau A_{10}^{2}
\]

Υπό τις συνήθεις συνθήκες συνθήκες του πειράματος, που περιγράφηκαν στήν παράγραφο 5.1 (δηλαδή \(E_{1} = 4 - 7 \) μJ, \(\tau = 120 \) fsec και \(w = 60 \) μm), η ποσότητα \(\gamma < 1 \) λαμβάνει την παρακάτω τελική τιμή:

\[
\gamma = A_{10}^{2} \sigma^{(5)} / \sigma^{(3)} \approx 1,
\]

(5.12)

όπου τα \(\sigma^{(3)} \) και \(\sigma^{(5)} \) συνδέονται με τα \(\chi^{(3)} \) και \(\chi^{(5)} \) μέσω των σχέσεων (5.3) και (5.4) αντίστοιχα. Από την (5.12) κατανοούμε ότι η επίδραση του τανυστή \(\chi^{(5)} \) στήν γέννηση της τρίτης αρμονικής είναι ιδιαίτερα σημαντική και αναγκαία.

Επομένως, στο μοντέλο της μίξης έξι κυμάτων η επίδραση του όρου 5\(^{η}\) τάξεως \(\chi^{(5)} \) οφείλει να συμπεριληφθεί, ώστε να συμφωνήσουν μεταξύ τους το πείραμα και η θεωρία. Η απόδοση \(n = \left(\frac{E_{3}}{E_{1}} \right) \) του τριπλασιασμού της συχνότητας λόγω του τανυστή \(\chi^{(3)} \) είναι αμελητέα υπό συνθήκες ισχυρής εστίασης. Αντιθέτως, στήν περίπτωση της μίξης έξι κυμάτων η συνεισφορά του τανυστή \(\chi^{(5)} \) είναι ιδιαίτερα σημαντική και αναγκαία (Σχήμα 5.6(b)).

Ακόμα και όταν δεν ικανοποιείται η συνθήκη της συμφωνίας φάσεως στήν μίξη έξι κυμάτων στήν περίπτωση των συγγραμμικά διαδιδόμενων πεδίων (collinear beams), Σχήμα 5.1(b), το διανυσματικό \(\Delta k \) μπορεί να ικανοποιείται επειδή η εστιασμένη δέσμη του laser εμφανίζει κάποια γωνιακή κατανομή.

Σημειώνουμε ότι η ενέργεια της τρίτης αρμονικής δίνεται από το ολοκλήρωμα:

\[
E_{3} = 2e_{0}c n_{3} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dxdy \left| A_{3}(x, y, t) \right|^{2}
\]

το οποίο γίνεται

\[
E_{3} = \frac{e_{0}c}{\pi} \left(k_{3}L_{d} \pi w^{2} A_{10}^{2} \sigma^{(3)} \right)^{2} \int_{0}^{\pi} \tau S(\theta) \, d\theta.
\]
Σχήμα 5.6 (a) Εξάρτηση της γωνίας 2θ του κώνου της τρίτης αρμονικής του Na καθώς και (b) η αποδοτικότητα n σε συνάρτηση με την ισχύ ($1/F$) του συγκλίνοντος φακού στην ατομική πυκνότητα $N = 3 \times 10^{15}$ cm$^{-3}$. Το μήκος κύματος ήταν (a) $\lambda_1 = 1980$ nm και (b) $\lambda_1 = 1900$ nm αντίστοιχα. Τα κόκκινα σημεία αναπαριστούν τα πειραματικά δεδομένα ενώ η μαύρη γραμμή την θεωρητική καμπύλη, αντίστοιχα. Στην περίπτωση (b) η γραμμή που σημειώνεται με $\chi^{(3)}$ & $\chi^{(5)}$ σχετίζεται με την ολική απόδοση της τρίτης αρμονικής ενώ εκείνη που σημειώνεται με $\chi^{(3)}$ σχετίζεται με την 3ης τάξεως μη-γραμμικότητα.

Επομένως η απόδοση n της τρίτης αρμονικής περιγράφεται από την σχέση:

$$n = \frac{E_3}{E_1} = \left(\frac{2}{\pi}\right)^{1/2} \left(k_3 L_d w A_{10}^* \sigma^{(3)}\right)^\infty \int_0^\infty f(0) d\theta.$$

(5.13)
Από την (5.13) παρατηρούμε ότι η απόδοση η αυξάνεται σημαντικά όταν η διάμετρος, \(w (= F \lambda / w_{0} \pi) \), της δέσμης του laser μειώνεται (δηλαδή η ισχύ της εστίασης αυξάνεται) κάτι που βρίσκεται σε συμφωνία με πειραματικά δεδομένα, όπως δείχνουμε χαρακτηριστικά στο Σχήμα 5.6. Η συνεισφορά του τανυστικού όρου \(\chi^{(3)} \) στήν συνολική τρίτη αρμονική (conversion efficiency) μειώνεται σε συνάρτηση με την αύξηση της ισχύος (1/4D) του συγκλίνοντα φακού (Σχήμα 5.6(b)), κάτι που δεν επαληθεύεται πειραματικά. Σημειώνουμε επίσης, ότι ορισμένες ανακολουθίες, σε πολύ ισχυρές συνθήκες εστίασης, μπορούν να εξηγηθούν από μεγαλύτερους τάξεων μη-γραμμικές επιδεικτικότητες οι οποίες προκύπτουν από την αυτο-εστίαση (self-focusing) των δεσμών laser [19] κάτι το οποίο δεν συμπεριλήφθηκε στο μοντέλο που αναπτύχθηκε, όπως υπογραμμίσαμε παραπάνω.

Στήν γέννηση της κοινικής τρίτης αρμονικής σε μέσα (υλικά) με κανονική διασπορά είναι πιθανό να συμμετέχουν μη-γραμμικότητες 7της τάξεως, δηλαδή \(\chi^{(7)} \), όπου \(z \) φωτόνια του laser καταστρέφονται για να δώσουν δύο φωτόνια της τρίτης αρμονικής (2\times3\(\omega \)), όπως έδειξαν χαρακτηριστικά οι K. D. Moll et al. [20]. Η διαδικασία εκείνη όμως, ήταν αμιγώς παραμετρική [21] και επομένως είχε μικρότερη απόδοση σε σχέση με την μίξη \(z \) κυμάτων που παρουσιάζουμε στο παρόν κεφάλαιο. Όπως έδειξαν οι S. Meyer et al. [21] η αρμονική γέννηση ακτινοβολίας με μίξη οκτώ κυμάτων ικανοποιούσε τη σχέση συμφωνίας φάσεως \(4 \times 2\omega = \omega + 7 \times \omega \), η οποία ήταν ασθενέστερη σε σύγκριση με την περίπτωση που διαπραγματεύοντας.

Για να αποδείξουμε ποιοτικά ότι η παραμετρική διαδικασία είναι απίθανη, σκεπτόμαστε ως εξής: στήν μίξη \(z \) κυμάτων το πλάτος του πεδίου της τρίτης αρμονικής δίνεται από την σχέση \(A_{3}^{(mix)} \approx \chi^{(5)}A_{1}A_{1}^{*} \), ενώ στήν περίπτωση της παραμετρικής μίξης οκτώ κυμάτων από την σχέση \(A_{3}^{(param)} \approx \chi^{(7)}A_{1}A_{1}^{*} \). Εάν υποθέσουμε ότι ισχύει η σχέση \(\chi^{(5)}A_{1}^{2} = \chi^{(7)}A_{1}^{4} \), (η οποία μεταφράζεται στο ότι δύο φωτόνια 5της τάξεως αντιστοιχούν σε τέσσερα φωτόνια 7της τάξεως) επειδή η δεύτερη διαδικασία είναι ενεργειακά ασθενέστερη σε σχέση με την πρώτη, τότε σχηματίζουμε το πηλίκο:

\[
\frac{A_{3}^{(param)}}{A_{3}^{(mix)}} = \frac{\chi^{(7)}A_{1}A_{1}^{*}}{\chi^{(5)}A_{1}A_{1}^{*}} = \frac{\chi^{(5)}A_{1}^{5}A_{1}^{4}}{\chi^{(5)}A_{1}A_{1}^{*}} = \frac{A_{1}^{5}}{A_{1}^{*}}.
\]

Συμπεραίνουμε επομένως ότι η σχέση μεταξύ των πλατών ικανοποιεί την παρακάτω ανισότητα:

151
το οποίο αποτέλεσμα συμφωνεί με τα πειραματικά δεδομένα μας όπως βλέπουμε στο Σχήμα 5.6(b) [15].

Σημειώνουμε ότι στήν περίπτωση των εντάσεων του fsed laser η 5ης τάξεως πόλωση P(5) μπορεί να γίνει συγκρίσιμη ή και μεγαλύτερη από την 3ης τάξεως P(3) αντίστοιχα. Στήν περίπτωση του ηλίου (He) το πηλίκο των επιδεκτικοτήτων 5ης και 3ης τάξεως είναι περίπου 10^{-10} cm^3/erg με την P(5) να γίνεται συγκρίσιμη με την P(3) για εντάσεις αντλήσης ενδεκατικής τιμής I_\text{max} = 5 \text{ TW} / \text{ cm}^2, οι οποίες δρούν σε πολλά πειράματα σε ατομικούς ατμούς. Επίσης, ακόμα πιο μικρό είναι το παραπάνω πηλίκο στήν περίπτωση του ατμοσφαιρικού αέρα και των ευγενών αερίων [22]. Επομένως, για την περίπτωση του laser αντλήσης Ti:sapphire laser η μοντελοποίηση της τρίτης αρμονικής μέσω της μίξης έξι κυμάτων ανταποκρίνεται στήν πειραματική πραγματικότητα και οφείλει να ληφθεί υπόψη, ως πηγή του τριπλασιασμού της συχνότητας του laser, δηλαδή την γέννηση της THG, ή τουλάχιστον ως πηγή για την διαδικασία των τεσσάρων κυμάτων όπου παράγεται κονική και/ή πολύ αποκλίνουσα τρίτη αρμονική.

Στο Σχήμα 5.7 δείχνουμε την εξάρτηση του κώνου της τρίτης αρμονικής από την ατομική πυκνότητα N, αυτή τη φορά, στο ίδιο μήκος κύματος λ_1 = 1980 nm,
(70.5 nm κάτω από την \(3P\) κατάσταση), με τις προηγούμενες περιπτώσεις, με την
ισχύ του συγκλίνοντα φακού να είναι 1 / F = 4 D. Παρατηρούμε, ότι η αύξηση της
πυκνότητας και συγκεκριμένα ο διπλασιασμός της, οδηγεί σε αύξηση της γωνίας του
κώνου καθώς και της έντασης της (μεγαλύτερη φωτεινότητα).

Σχήμα 5.8 Εικόνες μακρινού πεδίου της τρίτης αρμονικής του Na για μήκος κόματος του laser \(λ_1 = 1880\)
πικόλιτα και ισχύς του συγκλίνοντα φακού 1 / F = 4 D, σε τρεις ατομικές πυκνότητες: (a) \(N_a = 7 \times 10^{14} \text{ cm}^{-3}\), (b) \(N_b = 3 \times 10^{15} \text{ cm}^{-3}\) και (c) \(N_c = 6 \times 10^{15} \text{ cm}^{-3}\) αντίστοιχα. Παρατηρούμε
αύξηση της γωνίας της κωνικής εκπομπής και σε αυτή τη περίπτωση, έστω και εάν είναι μικρότερη
στην μεγαλύτερη ατομική πυκνότητα.

Στην περίπτωση που η συχνότητα της άντλησης μεγαλώσει, (\(λ_1 = 1880\) nm, 37.2 nm κάτω από την \(3P\) κατάσταση), παίρνουμε τις εικόνες μακρινού πεδίου του
Σχήματος 5.8.

Σχήμα 5.9 Εικόνες μακρινού πεδίου της τρίτης αρμονικής του ατόμου του Na για μήκος κόματος του
laser \(λ_1 = 1800\) nm για τις ατομικές πυκνότητες του σχήματος 5.8. Παρατηρούμε ότι η παραγόμενη
ακτινοβολία δεν παρουσιάζει δακτυλοειδή μορφή σε καμμιά πυκνότητα.

Σε αυτές τις εικόνες παρατηρούμε ότι η χαρακτηριστική δακτυλοειδή δομή της
τρίτης αρμονικής εμφανίζεται σε μεγαλύτερες ατομικές πυκνότητες (ακολουθούμενη
από μικρή αύξηση της γωνίας εκπομπής) ενώ ένας ημίσιος δακτύλιος (half cone)
εμφανίζεται στις μικρότερες. Αντίθετα, για μεγαλύτερη συχνότητα άντλησης,
154

\[\lambda_1 = 1800 \text{ nm, (10.5 nm κάτω από την } |3P\rangle \text{ κατάσταση), η δομή αυτή είναι δυσδιάκριτη ή ορθότερα καταστρέφεται τελείως όπως δείχνουμε χαρακτηριστικά στο Σχήμα 5.9.}

Τέλος, στο Σχήμα 5.10 παρουσιάζουμε ένα πειραματικό γράφημα της ενέργειας \(E_3 \) της τρίτης αρμονικής σε συνάρτηση με το μήκος κύματος \(\lambda_1 \) του laser αντλήσης στήν ατομική πυκνότητα \(N = 3 \times 10^{15} \text{ cm}^{-3} \). Στο γράφημα αυτό βλέπουμε την εκθετική πτώση της ενέργειας \(E_3 \) από την τιμή \(\lambda_1 = 1850 \text{ nm, (αντιστοιχεί σε 27.2 nm κάτω από την } |3P\rangle \text{ κατάσταση)} \) με εστίαση \(1/F = 4D \), για μεγαλύτερα μήκη κύματος. Παρατηρούμε ένα μέγιστο κοντά στα \(\lambda_1 = 1770 \text{ nm, (αντιστοιχεί σε 0.5 nm κάτω από την } |3P\rangle \text{ κατάσταση)} \), καθώς και ένα δεύτερο μέγιστο κοντά στα \(\lambda_1 = 1840 \text{ nm, (23.8 nm κάτω από την } |3P\rangle \text{ κατάσταση)} \). Στα μικρότερα μήκη κύματος δεν παρατηρήθηκε η χαρακτηριστική δακτυλοειδή κονική εκπομπή, αλλά μία πλήρη αξονική και κονική δομή.

Σχήμα 5.10 Πειραματικά μετρημένη ενέργεια \(E_3 \) της τρίτης αρμονικής του Na σε συνάρτηση με το μήκος κύματος \(\lambda_1 \) του πεδίου αντλήσης στήν πυκνότητα \(N = 3 \times 10^{15} \text{ cm}^{-3} \). Παρατηρούμε ότι σε μεγαλύτερα μήκη κύματος η ενέργεια μειώνεται εκθετικά. Η εστίαση ήταν \(1/F = 4D \).
Ενότητα II

Εισαγωγή ενότητας II

Σε αυτή την ενότητα περιοριζόμαστε στην απεικόνιση, καθώς και σε μία πρώτη απόπειρα φαινομενολογικής ερμηνείας, των πειραματικών αποτελεσμάτων τα οποία προέκυψαν κατά την μελέτη της τρίτης αρμονικής σε μεταλλικούς ατμούς K υπό fsec διέγερση. Επειδή το μέσο παρουσιάζει αρνητική διασπορά όπως αναφέραμε παραπάνω, όρα θετική συμφωνία φάσεως (Δk > 0), η θεωρητική μελέτη της κονικής εκπομπής επιβάλλει τον επαναπροσδιορισμό των υποθέσεων του μοντέλου μας σε ότι αφορά την επίδραση των τανυστικών όρων £3(3) και £5(5), και ενδεχομένως του όρου 7ης τάξεως, £7(7), αντίστοιχα στην σχηματιζόμενη αξονική και κονική κατανομή της. Η πειραματική διάταξη στην ενότητα II του παρόντος κεφαλαίου ήταν η ίδια με εκείνη του Na και η οποία απεικονίζεται στο Σχήμα 5.2.

5.4 Γέννεση της τρίτης αρμονικής σε μεταλλικούς ατμούς K

Στήν περίπτωση των ατμών του K η εμφάνιση της τρίτης αρμονικής προκύπτει από την διέγερση, με τρία φωτόνια, της μονοφωτονικής μετάβασης 4S1/2 → 5P3/2,1/2, η οποία χαρακτηρίζεται από μήκος κύματος κοντά στα 404.4 nm. Τα μήκη κύματος λμ του laser της αντλήσεως κυμαίνονται μεταξύ λm = 1200 nm, (το οποίο αντιστοιχεί σε 4.4 nm κάτω από την 5P3/2,1/2 κατάσταση), και λm = 2180 nm, (που αντιστοιχεί σε 322.3 nm κάτω από την 5P3/2,1/2 κατάσταση), όπως δείχνουμε παραστατικά στο Σχήμα 5.11. Όπως καταλαβαίνουμε, όλος υπολόγιζε το μήκος κύματος του laser αντλήσεως, κάτω περισσότερο προσεγγίζουμε την κατάσταση 4P3/2,1/2 όπου παρατηρήθηκε απόκλιση από την χαρακτηριστική δακτυλοειδή δομή του κώνου της τρίτης αρμονικής. Οι J. H. Tsai και M. H. Lu [23] μελέτησαν την γέννεση της δεύτερης αλλά και της τρίτης αρμονικής σε ατμούς K. Στήν περίπτωση του τριπλασιασμού της συχνότητας του laser απέδειχσαν ότι η διαδικασία εκείνη ήταν αποτέλεσμα παραμετρικής μείξης των τεσσάρων κυμάτων, (3ης τάξεως επιδεκτικότητα £3(3)), επειδή τα παραγόμενα πεδία εμφανίζονταν, ως επί το πλείστον, κατά την
διεύθυνση της διάδοσης του πεδίου του laser (forward direction). Αντιθέτως, η γέννηση της δεύτερης αρμονικής εμφάνισε συνιστώσα και ως πρός την αντίθετη διεύθυνση του πεδίου άντλησης (backward propagation). Στα πειράματα που πραγματοποιήσαμε παρατηρήσαμε μία παρόμοια συμπεριφορά ενώ δεν ανιχνεύτηκαν εκπεμπόμενα πεδία ως πρός την αντίθετη διεύθυνση διάδοσης του πεδίου της άντλησης.

Σχήμα 5.11 Σχηματική αναπαράσταση της γέννησης της τρίτης αρμονικής, με κυματάριθμο 3k1 (3k1'), σε άτομα καλίου μέσω της διέγερσης της κατάστασης |4S1/2⟩ ↔ |5P3/2,1⟩, με τρία φωτόνια, από δέσμη laser κομματανομάτων k1 (k1'), αντίστοιχα. Στο πείραμα κινούμαστε συνεχώς κάτω από τη κατάσταση |5P3/2,1⟩ (με μήκος κύματος λ1 ~ 404 nm), όπως δείχνουμε χαρακτηριστικά στήν περίπτωση (a). Κατόπιν προσεγγίζουμε την κατάσταση |4P3/2,1⟩, (με μήκος κύματος λ2 ~ 766 nm), όπως δείχνουμε στήν περίπτωση (b). Στήν τελευταία περίπτωση παρατηρήθηκε πλούσια πολυχρωματική εκπομπή του κόνου της τρίτης αρμονικής. Στήν σχηματική αναπαράσταση η χρήση τεσσάρων κομματανομάτων δεν οποδηλώνει υποχρεωτικά τον μηχανισμό της πεδίου των τεσσάρων κυμάτων.

5.4.1 Εικόνες μακρινού πεδίου της τρίτης αρμονικής του Κ

Στο Σχήμα 5.12 δείχνουμε τις εικόνες του μακρινού πεδίου κατά την δημιουργία της τρίτης αρμονικής για μήκος κύματος του πεδίου άντλησης λ1 = 1730 nm, (που αντιστοιχεί σε 172.3 nm κάτω από την |5P3/2,1⟩ κατάσταση), για τέσσερις διαφορετικές τιμές της ισχύος του συγκλίνοντα φακού στήν ατομική πυκνότητα N = 1.4×10^16 cm^−3. Παρατηρούμε ότι η χαρακτηριστική δακτυλοειδή δομή εμφανίζεται για τις μεγαλύτερες τιμές της ισχύος του φακού ενώ, για τις μικρότερες
τιμές η δομή αυτή δεν ξεχωρίζει σημαντικά, ένα συμπέρασμα παρόμοιο με αυτό του Σχήματος 5.5 για την περίπτωση του Na.

Σχήμα 5.12 Εικόνες μακρινού πεδίου της τρίτης αρμονικής του ατόμου του καλίου για μήκος κύματος του laser $\lambda_1 = 1730$ nm, (172.3 nm κάτω από την $|5P_{3/2,1/2}\rangle$ κατάσταση), και ατομική πυκνότητα $N = 1.4 \times 10^{16}$ cm$^{-3}$ για τις εξής τιμές της ισχύος του συγκλίνοντα φακού: (a) $1/F = 1$ D, (b) $1/F = 1.5$ D, (c) $1/F = 2.5$ D και (d) $1/F = 4.5$ D αντίστοιχα. Παρατηρούμε ότι όσο μεγαλώνει η ισχύ του φακού εμφανίζεται μια χαρακτηριστική δακτυλοειδή κωνική εκπομπή η οποία είναι ιδιαίτερα ασύμμετρη.

Στα Σχήματα 5.13 και 5.14 παρακολουθούμε την εξέλιξη της δομής του κώνου σε δύο διαφορετικές ατομικές πυκνότητες για δύο διαφορετικές μήκη κύματος του πεδίου laser $\lambda_2 = 1430$ nm, (που αντιστοιχεί σε 72.3 nm κάτω από την $|5P_{3/2,1/2}\rangle$ κατάσταση), και $\lambda_2 = 1550$ nm, (που αντιστοιχεί σε 112.3 nm κάτω από την $|5P_{3/2,1/2}\rangle$ κατάσταση). Ενώ στήν πυκνότητα $N_2 = 10^{16}$ cm$^{-3}$ η χαρακτηριστική δακτυλοειδή δομή είναι η ίδια και στα δύο μήκη κύματος στήν πυκνότητα $N_2 = 2.3 \times 10^{16}$ cm$^{-3}$ εκδηλώνεται μία μερική καταστροφή της δομής με αποτέλεσμα να εμφανίζεται μία κάποια «αποσύνθεση» πέριξ του δακτυλίου. Σε παλαιότερα πειράματα του N. Μερλέμη [24], υπό nsec διωγμονική διέγερση, η παραγόμενη ακτινοβολία στήν μετάβαση $|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{5/2}\rangle$ εμφανίσει μία αντίστοιχη δομή [24], ως πιθανό
αποτέλεσμα της παραμετρικής μίξης των τεσσάρων κυμάτων. Συγκεκριμένα συμμετείχαν οι καταστάσεις \(|4S_{1/2}\), \(|6S_{1/2}\) οι οποίες διεγείρονταν διωφοτονικά δίνοντας ένα ASE ή SHRS φωτόνιο στη μετάβαση \(|6S_{1/2}\) \(\leftrightarrow|5P_{3/2}\) ενώ στη συνέχεια η κατάσταση \(|5P_{3/2}\) αποδιεγειρόταν μέσω της μετάβασης \(|5P_{3/2}\) \(\leftrightarrow|4S_{1/2}\).

Σχήμα 5.13 Εικόνες μακρινού πεδίου της τρίτης αρμονικής του ατόμου του K για μήκος κύματος του laser \(\lambda_1 = 1430\) nm, (72.3 nm κάτω από την \(|5P_{3/2}\) κατάσταση), και ισχύος του συγκλίνοντα φακού \(1/F = 3.5\) D, σε δύο διαφορετικές ατομικές πυκνότητες: (a) \(N_2 = 10^{16}\) cm\(^{-3}\) και (b) \(N_3 = 2.3 \times 10^{16}\) cm\(^{-3}\) αντίστοιχα. Παρατηρούμε ότι ο παραγόμενος δακτυλοειδής κώνος εμφανίζει μια μερική καταστροφή στην μεγαλύτερη πυκνότητα (φωτογραφία (b)).

Σχήμα 5.14 Εικόνες μακρινού πεδίου της τρίτης αρμονικής του ατόμου του K για μήκος κύματος του laser \(\lambda_1 = 1550\) nm, (112.3 nm κάτω από την \(|5P_{3/2}\) κατάσταση), για τις παραμέτρους του σχήματος 5.13. Παρατηρούμε εξίσου την ίδια συμπεριφορά στην μεγαλύτερη πυκνότητα \(N_3 = 2.3 \times 10^{16}\) cm\(^{-3}\).

Από την ομοιότητα στήν δομή των κώνων, Σχήματα 5.12 και 5.13 και [24], μπορούμε να ισχυριστούμε, σε μία πρώτη προσέγγιση, ότι είναι πιθανό ο τανυστικός
όρος $\chi^{(3)}$ να κυριαρχεί στήν περίπτωση της THG του ατόμου του K, στις μεγάλες ατομικές πυκνότητες, μιάς και είναι δυνατή η παραμετρική μίξη τεσσάρων κυμάτων (PFWM). Από τις φωτογραφίες μακρινού πεδίου της THG είναι αδύνατον να διακρίνουμε ποιός όρος, υπέθυνος για την μίξη τεσσάρων ή €ξι κυμάτων ($\chi^{(3)}$ ή $\chi^{(5)}$), επικρατεί. Το κοινό γεγονός όμως της "αποσύνθεσης" πέριξ του κώνου στο άτομο του K υπό nsec και bsec διέγερση δεν μπορεί να είναι ένα συμπτωματικό γεγονός και οφείλει να μελετηθεί σε βάθος, όπως και η δυνατότητα εμφάνισης διμερών K-K ή νηματίων (filaments) K σε αυτές τις ατομικές πυκνότητες.

5.4.2 Ποιοτικά χαρακτηριστικά της τρίτης αρμονικής στους ατμούς του K

Στο Σχήμα 5.15 παρακολουθούμε την εξέλιξη της γωνίας 20 του κώνου σε συνάρτηση με το μήκος κύματος λ_1 του πεδίου άντλησης. Στήν περιοχή των μηκών κύματος μεταξύ $\lambda_1 = 1400$ nm (που αντιστοιχεί σε 62.3 nm κάτω από την $5P_{3/2,1/2}$ κατάσταση), και $\lambda_1 = 1650$ nm (που αντιστοιχεί σε 145.6 nm κάτω από την $5P_{3/2,1/2}$ κατάσταση), παρατηρούμε ότι η γωνία του κώνου είναι περίπου η ίδια για τις πυκνότητες $N_1 = 5 \times 10^{15}$ cm$^{-3}$ και $N_2 = 10^{16}$ cm$^{-3}$ (Σχήματα 5.13(a) και 5.14(a) αντίστοιχα). Στήν ατομική όμως, πυκνότητα $N_3 = 2.3 \times 10^{16}$ cm$^{-3}$ παρατηρείται μία αξιοσημείωτη αύξηση του μήκους της γωνίας εκπομπής. Σημαντικό ρόλο διαδραματίζει η απόκλιση από την χαρακτηριστική δακτυλοειδή δομή του κώνου, όπως παρατηρήσαμε στα Σχήματα 5.13 (b) και 5.14 (b), αντίστοιχα. Η απόκλιση αυτή τροποποιεί την γωνία του κώνου κάνοντας δύσκολη την εκτίμηση της ("αποσύνθεση" πέριξ του κώνου). Στο Σχήμα 5.16 δείχνουμε την ενέργεια παραγωγής της τρίτης αρμονικής σε διάφορα μήκη κύματος λ_1. Παρατηρούμε ότι η μεγιστοποίηση της παραγωγής έχει στήν περιοχή γύρω από το μήκος κύματος $\lambda_1 = 1460$ nm, (που αντιστοιχεί σε 82.3 nm κάτω από την $5P_{3/2,1/2}$ κατάσταση), (Σχήμα 5.13). Σε γειτονικά μήκη κύματος ο χαρακτηριστικός δακτύλιος είναι από την μία ορατός αλλά από την άλλη λιγότερο διακρίσιμος αντίστοιχα, Σχήμα 5.12.
Στο Σχήμα 5.17 παρουσιάζουμε το φάσμα εκπομπής της τρίτης αρμονικής. Το φάσμα καταγράφηκε εκτός του οπτικού άξονα συμμετρίας του κελιού, ώστε να προσδιοριστεί η μέγιστη κατανομή του ασύμμετρου κώνου (κόκκινη γραμμή στο Σχήμα 5.2) η οποία αναπαριστά την θέση του φασματογράφου κατά την καταγραφή του δεξιού λοβού, \(x > 0 \), του επιπέδου εκπομπής \((x, y)\) του κώνου. Παρατηρούμε ότι το φασμά είναι ιδιαίτερα ευρύ.

![Graph](image)

Σχήμα 5.15 Πειραματικά μετρούμενη γωνία 2θ της τρίτης αρμονικής του \(K \) σε συνάρτηση με το μήκος κύματος \(\lambda \), του πεδίου άντλησης σε τρεις διαφορετικές ατομικές πυκνότητες: (a) \(N_1 = 5 \times 10^{15} \text{ cm}^{-3} \), (b) \(N_2 = 10^{16} \text{ cm}^{-3} \) και (c) \(N_3 = 2.3 \times 10^{16} \text{ cm}^{-3} \) αντίστοιχα. Παρατηρούμε παρόμοια συμπεριφορά της γωνίας στην περιοχή μήκους κύματος μεταξύ 1400 nm, (62.3 nm κάτω από τη \(3/2,1/2\) κατάσταση), και 1650 nm, (145.6 nm κάτω από τη \(3/2,1/2\) κατάσταση), στις μικρότερες πυκνότητες. Στην μεγαλύτερη πυκνότητα η συμπεριφορά είναι διαφορετική (η εστίαση για όλες τις μετρήσεις έγινε με τη χρήση φακού ισχύος \(1 / F = 3.5 \text{D} \)).

Σημειώνουμε ότι στήν \(f_{sec} \) διωφωτική διέγερση της κατάστασης \(|4S_{1/2}\rangle \leftrightarrow |6S_{1/2}\rangle \) του \(K \), όπως επισημάναμε σχετικά στο κεφάλαιο 3 [25], το φάσμα της ακτινοβολίας στήν μετάβαση \(|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle \) δεν ήταν τόσο ευρύ. Επίσης, το φάσμα στήν μετάβαση \(|4P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle \) ήταν ευρύτερο από αυτό της \(|5P_{3/2,1/2}\rangle \leftrightarrow |4S_{1/2}\rangle \) αλλά λιγότερο ευρύ από το αντίστοιχο του Σχήματος 5.17. Βέβαια
τα πειράματα του κεφαλαίου 3 πραγματοποιήθηκαν για φακό ισχύος $1/F=1.5\ D$ και όχι για $1/F=3.5\ D$ όπως στο Σχήμα 5.17. Όπως παρουσιάσαμε στα προηγούμενα, η ισχυρή εστίαση στο κατάλληλο μήκος κύματος, και κατά συνέπεια στην κατάλληλη συνθήκη συμφωνίας φάσεως, είναι δυνατό να δώσει την χαρακτηριστική δακτυλοειδή δομή του κώνου της εκπεμπόμενης ακτινοβολίας στην μετάβαση που μας ενδιαφέρει.

Σχήμα 5.16 Πειραματικά μετρούμενη ενέργεια E_3 της τρίτης αρμονικής του K σε συνάρτηση με το μήκος κύματος λ_1 του laser, σε δύο διαφορετικές ατομικές πυκνότητες: (a) $N_1 = 5 \times 10^{15}\ cm^{-3}$ και (b) $N_2 = 10^{16}\ cm^{-3}$ αντίστοιχα. Η μεγιστοποίηση της πραγματοποιείται για μήκος κύματος $\lambda_1 = 1460\ nm$, (82.3 nm κάτω από τη $\{3P_{3/2,1/2}\}$ κατάσταση), που αντιστοιχεί σε μήκος κύματος $\text{THG } \lambda_1 = 486.7\ nm$ (η εστίαση έγινε με φακό ισχύος $1/F=3.5\ D$).

Τέλος, στο Σχήμα 5.18 δείχνουμε την εξέλιξη του κώνου καθώς προσεγγίζουμε την $\{4P_{3/2,1/2}\}$ κατάσταση. Συγκρίνοντας τα Σχήματα 5.13(a) και 5.14(a) με το Σχήμα 5.18, υπό τις ίδιες συνθήκες εστίασης, $1/F=3.5\ D$, στήν ατομική πυκνότητα $N_2 = 10^{16}\ cm^{-3}$ παρατηρούμε ότι όσο προσεγγίζεται η $\{4P_{3/2,1/2}\}$, η κωνική εκπομπή εκφυλίζεται σε σημαντικό βαθμό έτσι ώστε να επιβιώνει ένας πολύ λεπτός δακτύλιος, διαφορετικού χρώματος, με αρκετά «εξωτική» δομή ο οποίος στη συνέχεια χάνεται.
Εκτιμούμε ότι καθώς προσεγγίζεται η \(|4P_{3/2,1/2}| \) κατάσταση η εκπεμπόμενη ακτινοβολία θα τείνει πρός την αξονική μορφή, μιάς και θα βρίσκεται ακριβώς πάνω από την κατάσταση αυτή, όπου το αξονικό μέρος κυριαρχεί.

Σχήμα 5.17 Φάσμα του κώνου της τρίτης αρμονικής του \(K \) στην ατομική πυκνότητα (a) \(N_2 = 10^{16} \text{ cm}^{-3} \) και (b) \(N_3 = 2.3 \times 10^{16} \text{ cm}^{-3} \) αντίστοιχα. Παρατηρούμε και στις δύο περιπτώσεις το σχετικά μεγάλο εύρος του κώνου, συνέπεια του ευρύ \(f_{sec} \) παλμού διέγερσης (\(\tau_{FWHM} = 10 \text{ nm} \) ενώ η εστίαση έγινε με φακό ισχύος \(1 / F = 3.5 \text{ D} \)).

Η δομή του Σχήματος 5.18 μας καθοδηγεί πρός την κατεύθυνση της εμβριθέστατης μελέτης της κωνικής εκπομπής του \(K \), η οποία διαφοροποιείται σε πολύ σημαντικό βαθμό από εκείνη του \(Na \) (π.χ. νημάτια \(K \), πολυχρωματική εκπομπή).
Σχήμα 5.18 Εικόνες μακρινού πεδίου της τρίτης αρμονικής του K για τρία μήκη κύματος του laser: (a) $\lambda_1 = 2090$ nm, (292.3 nm κάτω από τη $\left|5P_{3/2,1/2}\right>$ κατάσταση), (b) $\lambda_1 = 2120$ nm, (302.3 nm κάτω από τη $\left|5P_{3/2,1/2}\right>$ κατάσταση), και (c) $\lambda_1 = 2180$ nm, (322.3 nm κάτω από τη $\left|5P_{3/2,1/2}\right>$ κατάσταση). Η ισχύς του συγκλίνοντα φακού ήταν $1/F=3.5\,\text{D}$, στην ατομική πυκνότητα $N_2 = 10^{16}$ cm$^{-3}$. Παρατηρούμε ότι η κονική εκπομπή εκφράζεται σε πιο «εξωτικές» δομές (πολυχρωματική εκπομπή) όσο προσεγγίζουμε την κατάσταση $\left|4P_{3/2,1/2}\right>$ όπου ένας ανεπαίσθητος λεπτός δακτύλιος εμφανίζεται ενώ στη συνέχεια χάνεται.

5.5 Φαινόμενα ιονισμού σε μεταλλικούς ατμούς

Στα αποτελέσματα που παρουσιάσαμε και τα οποία περιέγραψαν τις προσυποθέσεις που οδήγησαν στην γέννηση της τρίτης αρμονικής σε μεταλλικούς ατμούς, δεν αναφέρθηκαν πειράματα ελέγχου του ιονισμού κατά την διέγερση των ατόμων από ισχυρά πεδία laser. Σε τόσο ισχυρά πεδία η πιθανότητα πολυφωτονικού ιονισμού ($\text{multiphoton ionization-MPI}$) του ατομικού μέσου είναι υπαρκτή και οφείλεται να διερευνηθεί. Παρακάτω παρουσιάζουμε ορισμένες αναφορές, από την ανεξάντλητη βιβλιογραφία, σχετικά με το εν λόγω φαινόμενο.

5.5.1 Περίπτωση ιονισμού με την χρήση διφωτονικού παλμού διέγερσης

Στην διδακτορική διατριβή του Ν. Μερλέμ [26], τόσο η ενέργεια ιονισμού του ατόμου του καλίου, όσο και ο ρυθμός αυτο-ιονισμού (autoionization) ήταν μικρότεροι από την nsec διφωτονική διέγερση της μετάβασης $\left|4S_{1/2}\right> \leftrightarrow \left|6S_{1/2}\right>$. Πολλές φορές μάλιστα χρησιμοποιήθηκε το ασθενές σήμα ιονισμού ώστε να προσδιοριστεί η ακριβής κατάσταση του διφωτονικού συντονισμού, $\left(\Delta \mu_{s_p}+\kappa_{s_p}\right)=0$, κατά την μελέτη της παραμετρικής μίξης των τεσσάρων κυμάτων (PFWM) επειδή στο φάσμα διέγερσης της ακτινοβολίας στη μετάβαση
ιονισμού δεν [28], Freeman αερίου παλμούς πυρήνα (παρατηρείται τελική ηλεκτρονίων irradiation \(\frac{3}{2}, \frac{1}{2} \) \(\frac{1}{2} \) \(P \) \(4S \)), επομένως οι \(\frac{3}{2}, \frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(P \) \(4S \) μετάβαση \(\text{παρατηρήθηκε} \) \(\text{ακτινοβολία} \) \(\text{μεγάλο} \) \(190 \) \(\text{cm}^{-1} \) \(\text{ιονισμού} \) \(6S_{1/2} \) για διωφοτονικό αποσυντονισμό \(\text{ιονισμό} \) \(\pm 190 \) \(\text{cm}^{-1} \) \(\text{αντίστοιχο} \) \(\text{αυτή} \).

Σημειώνουμε εν συντομία ότι σε αντίθεση με τον ιονισμό, όπου παρατηρείται τελική μετάβαση ηλεκτρονίων στο συνεχές, στην περίπτωση του αυτο-ιονισμού παρατηρείται τελική μετάβαση από μία ουδέτερη κατάσταση \(|k\rangle \), σε μία ιονισμένη κατάσταση \(|\ell\rangle \) του ατόμου (δηλαδή σύμφωνα με το σχήμα \(|k\rangle \rightarrow |\ell\rangle \), όπου η ιονισμένη κατάσταση \(|\ell\rangle \) είναι η μικρότερη ενέργεια). Ορισμένα από τα πιο γνωστά φαινόμενα αυτο-ιονισμού τα οποία εμφανίζονται στην αλληλεπίδραση της ακτινοβολίας με την ύλη είναι το φαινόμενο Auger καθώς και τα άτομα Rydberg.

5.5.2 Περίπτωση ιονισμού με την χρήση υψηλού παλμού διέγερσης

Οι T. B. Lucatorto και T. J. McIlrath [27] έδιδαν ότι η ακτινοβόληση (irradiation) της γραμμής \(D \), πυκνής στήλης Na με \(\text{sub-μsec} \) (sub-microsecond) παλμούς laser χρωστικής οδήγησε σε πλήρη ιονισμό (complete ionization) του αερίου. Παρόλα αυτά η διαδικασία του MPI σε ατομικές ατόμων με την χρήση στενότερων \(fsec \) παλμών ήταν αρκετά πολύπλοκη. Οι M. P. de Boer και H. G. Muller [28], επισήμαναν ότι, κατά τη διέγερση ενός μεγάλου ποσοστού ατόμων, στο αέριο ξένο (Xe), από μεγάλης έντασης ακτινοβολία \(I_{\text{max}} = 10^{13} \) \(\text{W/cm}^2 \), διάρκειας 100 \(fsec \), δεν παρατηρήθηκε πολυφωτονικός ιονισμός MPI. Το γεγονός ότι μεγάλος αριθμός ηλεκτρονίων παγιδεύτηκε σε συντονισμό θεωρήθηκε αρχικά απρόσμενο και ασύμβατο με την θεωρία. Η θεωρητική όμως μελέτη των K. C. Kulander et al. [29] συμπέρανε ότι η αύξηση της έντασης, στο άτομο του υδρογόνου (H), μεγάλωσε την χωρική έκταση της κυματοσυνάρτησης (spatial wavefunction extension) κοντά στον υδρογόνο. Επίσης, οι G. N. Gibson και R. R. Freeman [30], σημείωσαν ότι οι κορυφές του φωτοηλεκτρικού φάσματος
(photoelectron spectrum) των ατόμων του αργού (Ar) τα οποία διεγέρθηκαν από στενούς παλμούς, δεν οφείλονταν σε πραγματική μεταφορά πλήθους, και στόν επακόλουθο μονοφωτικό ιονισμό, αλλά στήν συντονιστική ενίσχυση (resonant enhancement) του MPI στήν κορυφή του παλμού. Συγκεκριμένα οι παρατηρούμενες κορυφές του φωτοελεκτρικού φάσματος προήρθαν από την συντονιστική ενίσχυση του MPI η οποία έλαβε χώρα μεταξύ της θεμελιώδους κατάστασης και των ενδιάμεσων (intermediate) ενεργειακών καταστάσεων αντίστοιχα. Κατέληξαν επομένως, ότι ο ιονισμός που οφείλόταν στις πλευρές (wings) του χρονικού παλμού του πεδίου ήταν μικρότερος σε σχέση με την κορυφή (peak) του, ενώ πραγματική μεταφορά πλήθους συνέβη, όταν εμφανίστηκε συντονιστική ενίσχυση, αν και η συνεισφορά του ιονισμού από τις διεγερμένες καταστάσεις ήταν εξίσου μικρή [30].

Σε μία μεταγενέστερη εργασία τους οι G. N. Gibson et al. [31] μελέτησαν τον ιονισμό σε ένα σύστημα δύο επιπέδων συμπεριλαμβανομένης και της μετάβασης στο συνεχές (two-level-plus-continuum). Η ισχυρή ένταση του laser μετατόπισε (shifts) τις ενδιάμεσες καταστάσεις προς τον συντονισμό, όταν αυτές μετατοπίζονταν σε σχέση με το συνεχές (continuum). Κατέληξαν στο συμπέρασμα, ότι οι παρατηρούμενες κορυφές των ηλεκτρονίων (short-pulse, electron-energy peaks) κυριαρχήθηκαν από τον ιονισμό για συντονισμένη διέγερση (resonance intensity) ανεξάρτητα από τον ιονισμό των μεγαλύτερων ενεργειακών επιπέδων (upper-state ionization cross section).

Αντιθέτως ο R. R. Jones [32] απέδειξε ότι η πιθανότητα MPI σε άτομα Na, τα οποία διεγέρθηκαν από fsec παλμούς, ήταν σχετικά μικρή εφόσον η μέγιστη τιμή του παλμού διέγερσης δεν υπέρβαλε τις δεκάδες του TW / cm², (χαρακτηριστικό Σχήμα 4 (FIG.4) στήν αναφορά [32], όπου ο παλμός είχε διάρκεια 175 fsec). Επίσης, η εκτίμησή του βαθμού ιονισμού (ionization degree) του Na, από την διεγερμένη κατάσταση [3P], για μία τυπική τιμή της διψωτικής photoionized ενέργου διατομής ίσης με 10⁻⁴⁸ cm² sec [33], ήταν όμως ακόμα και με την περίπτωση εκείνη που υποτέθηκε ολοκληρωτικός κορεσμός της κατάστασης [3P]. Οι V. Vaicaitis και E. Gaizauskas [7], στα πειράματα τους με ανεστίαστο fsec παλμό laser (GW / cm²), εκτίμησαν ότι, ο βαθμός ιονισμού του Na μπορούσε να μεταβληθεί έτσι ώστε σε κάποιες περιπτώσεις, να φτάσει ακόμα και το 10%.

Στα πειράματα που πραγματοποιήσαμε, με την χρήση εστίασμένης fsec δέσμης laser, αναφορικά με την γέννηση της κωνικής τρίτης αρμονικής (conical third
στα άτομα των αλκαλίων, βρίσκομασταν κάθε φορά αρκετά κάτω από την κατάσταση του τριφωτονικού συντονισμού. Δηλαδή \((\lambda_3 - \lambda_{on-resonance})_{\text{min}} > 70 \text{ nm} \), κάτω από την κατάσταση \(|3P\rangle \) στο Na, και \((\lambda_3 - \lambda_{on-resonance})_{\text{min}} > 70 \text{ nm} \), κάτω από την \(|5P_{3/2,1/2}\rangle \) στο K, αντίστοιχα. Εκτιμούμε επομένως ότι, υπό αυτές τις συνθήκες, ο συντονιστικός ιονισμός (resonant ionization) ήταν αμελητέος και γι' αυτό τον λόγο δεν καταμετρήθηκε συστηματικά. Η ποιοτική μέτρηση του επιπέδου του ιονισμού σε fsec παλμούς διέγερσης είναι μία σχετικά δύσκολη διαδικασία η οποία απαιτεί την κατασκευή ενός ειδικού κελιού για την καταγραφή του σήματος αυτού.

Μπορούμε επιπρόσθετα να εκτιμήσουμε ποιοτικά την ενέργεια των τριών φωτονίων στην περίπτωση της THG του Na και του K αντίστοιχα, και να την συγκρίνουμε με την ενέργεια ιονισμού του κάθε ατόμου, σύμφωνα με την σχέση

\[
E[\text{eV}] = \frac{12000}{\lambda[A]}
\]

i) Για μήκος κύματος ενός φωτονίου μεταξύ 1770 nm < \(\lambda_i < 2200 \text{ nm} \), του Na βρίσκουμε ότι η αντίστοιχη ενέργεια του είναι: \(0.68 > E_i[\text{eV}] > 0.54 \), επομένως η ενέργεια των τριών φωτονίων γίνεται: \(2.04 > 3 \times E_i[\text{eV}] > 1.62 \), η οποία είναι μικρότερη από την ενέργεια ιονισμού του Na (5.1 eV).

ii) Για μήκος κύματος ενός φωτονίου μεταξύ 1200 nm < \(\lambda_i < 2180 \text{ nm} \) του K, βρίσκουμε ότι η αντίστοιχη ενέργεια του είναι: \(1.0 > E_i[\text{eV}] > 0.55 \), όρα η ενέργεια των τριών φωτονίων είναι: \(3.0 > 3 \times E_i[\text{eV}] > 1.65 \), η οποία προκύπτει και αυτή ότι είναι μικρότερη από την ενέργεια ιονισμού του ατόμου του K (4.3 eV).

Σημειώνουμε τέλος, ότι υπό συνθήκες ισχυρής εστίασης η Gaussian δέσμη, η οποία διασχίζει ένα ατομικό μέσο, υφίσταται μία μετατόπιση φάσης η οποία είναι γνωστή ως μετατόπιση Gouy (Gouy phase shift) [34, 35]. Η φάση αυτή είναι διαφορετική από εκείνη ενός επιπέδου κύματος, (δηλαδή ανεστίαστης Gaussian δέσμης), της ίδιας συχνότητας. Η φάση Gouy δίνεται από την σχέση:

\[
\phi_0(z) = -\arctan \frac{z}{z_R}, \quad \text{όπου } z_R (\equiv L_d) \text{ το μήκος Rayleigh. Σε συνθήκες επομένως ισχυρής εστίασης σε συνδυασμό με την φάση Gouy η εξάρτηση της τρίτης αρμονικής από τον τανυστικό όρο } \chi^{(3)} \text{ σχεδόν εξαφανίζεται. Το τελευταίο είναι μία ακόμα}
επιχειρηματολογία υπέρ της μίξης εξι κυμάτων στήν γέννεση της τρίτης αρμονικής σε μεταλλικούς ατμούς Na.

Συμπεράσματα

Ενότητα I

♦ Η γέννηση της κωνικής THG στους μεταλλικούς ατμούς Na ερμηνεύθηκε, κυρίως, ως αποτέλεσμα της μίξης εξι κυμάτων, (επικράτηση του τανυστικού όρου Χ\(^{(5)}\) σε σχέση με τον όρο Χ\(^{(3)}\) όπως δείχνει θεωρητικά), το οποίο περιγράφηκε μέσω της κανονικοποιημένης ποσότητας \(\int_{-\infty}^{\infty} |M_3(\theta,t)|^2 \, dt \). Η εξάρτηση αυτή εμφανίστηκε κατόπιν ισχυρής εστίασης στην χωματική περιοχή όπου το Na παρουσίαζε κανονική διασπορά (λ > 589.5 nm).

♦ Επίσης, η αποδοτικότητα της διαδικασίας αυξήθηκε με την ισχύ του φακού, κάτι το οποίο επιβεβαίωθηκε θεωρητικά με την επιπλέον προσθήκη του τανυστικού όρου Χ\(^{(5)}\).

♦ Το θεωρητικό μοντέλο προσέγγισε ικανοποιητικά, για ορισμένα μήκη κύματος λ₁ και ορισμένες συνθήκες ισχύος του φακού 1/F, τα πειραματικά αποτελέσματα. Περιπτώσεις αυτο-εστίασης της δέσμης καθώς και εμφάνισης νηματίων, θεωρήθηκαν απίθανες και δεν ελήφθησαν υπόψη.

Ενότητα II

♦ Η γέννηση της κωνικής THG των μεταλλικών ατμών του K, υπό συνθήκες ισχυούς εστίασης, παρατηρήθηκε μόνο πειραματικά παρέχοντας μας παρόμοια αποτελέσματα με εκείνα της αντίστοιχης περίπτωσης του Na.

♦ Σε μεγαλύτερες ατομικές πυκνότητες παρατηρήθηκε μία μερική «αποσύνθεση» του κώνου πέριξ του δακτυλίου. Σε προηγούμενα πειράματα η κωνική εκπομπή στήν χωματική περιοχή με λ₁ ≈ 404.4 nm, (μέσο με αρνητική διασπορά), προέκυψε ως αποτέλεσμα της παραμετρικής μίξης των τεσσάρων κυμάτων (PFWM). Το γεγονός αυτό ήταν μία ένδειξη της
επικράτησης του τανυστικού όρου $\chi^{(3)}$ σε σχέση με τον όρο $\chi^{(5)}$, το οποίο
μένει να αποδειχτεί μέσω της επερχόμενης θεωρητικής μοντελοποίησης. Επίσης, ήταν πιθανή και η εμφάνιση νηματίων K.

♦ Στην τρίτη αρμονική του K προέκυψαν κάποιες «εξωτικές» μορφές του κόνου της εκπεμπόμενης ακτινοβολίας καθώς πλησιάσαμε πρός την $|4P_{3/2,1/2}\rangle$ κατάσταση, κάτι το οποίο δεν καταγράφηκε στην περίπτωση του Na και οφείλει να διερευνηθεί εξίσου. Σημειώνουμε ότι το φαινόμενο αυτό οφείλόταν στο ότι το K, στα μήκη κύματος όπου μελετήθηκε η τρίτη αρμονική, εμφάνισε αρνητική διαστορά.

Вибіліографія

συμβολής σε άτομα Καλίου”, PhD Thesis, Τμήμα Φυσικής Πανεπιστημίου
Κρήτης, pp.81, 2002.

parametric emissions from potassium atoms under two-photon fs excitation”,

[26] N. Merlemis, “Μελέτη της εκπομπής σύμφωνης ακτινοβολίας και της κβαντικής
συμβολής σε άτομα Καλίου”, PhD Thesis, Τμήμα Φυσικής Πανεπιστημίου

[27] T. B. Lucatorto and T. J. McIlrath, “Efficient Laser Production of a Na+
Ground-State Plasma Column: Absorption Spectroscopy and Photoionization

hydrogen in an intense, high frequency, pulsed laser field”, Phys. Rev. Lett. 66,

role of resonant enhancement in short-pulse multiphoton ionization”, Phys. Rev.

[31] G. N. Gibson, R. R. Freeman, T. J. McIlrath and H. G. Muller, “Excitation and
ionization dynamics in short-pulse multiphoton ionization”, Phys. Rev. A. 49,

photronics.com/gouy_phase_shift.html), 2009.
ATLAS is a Marie Curie Early Stage Training project funded through the European Commission's Framework Programme 6 (FP6). Its main objective is to provide advanced research training to young scientists, on laser-based science and technology to be used on cutting edge multidisciplinary research in physics, chemistry, biology and nanoscience. The training is offered by four leading European laser research and training centres (IESL-FORTH, Heraklion, Greece; LENS, Florence, Italy; LCVU, Amsterdam, The Netherlands; VULRC, Vilnius, Lithuania) complementary in their expertise with a long standing history in collaborative research training projects, training of facility users, and coordination of large scale synergies.
ΜΕΛΛΟΝΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Στο παρόν εδάφιο παρουσιάζουμε τις προοπτικές που εμφανίζονται από την ενδελεχή μελέτη της μη-γραμμικής αλληλεπίδρασης της σύμφωνης ακτινοβολίας laser με τα άτομα αλκαλίων.

I) Στο κεφάλαιο 2 της διδακτορικής διατριβής το θεωρητικό μοντέλο που παρουσιάζαμε, επικεντρώθηκε στην αξονική διάδοση των παραγόμενων ακτινοβολιών κατά μήκος του θετικού οπτικού άξονα ζ. Ο χαρακτηρισμός των φυσικών μηχανισμών κατά την παραγωγή των ακτινοβολιών της διαδρομής-1 έγινε έμμεσα με βάση την εξάρτηση αυτών από τις παραμέτρους όπως π.χ. ο διφωτονικός αποσυντονισμός \(\Delta|s_{\pm}| = |s_{\pm}| \).

Όμως, γνωρίζουμε ότι τόσο η ASE όσο και η SHRS ακτινοβολία εμφανίζουν πεδία διάδοσης και ως προς τον αρνητικό οπτικό άξονα ζ, κάτι που έχει επιβεβαιωθεί πειραματικά, ενώ αμφότερες περιγράφονται από διαφορετικούς μηχανισμούς. Είναι επομένως απαραίτητο να επεκτείνουμε το θεωρητικό μοντέλο της αλληλεπίδρασης της ακτινοβολίας με την ύλη συμπεριλαμβάνοντας και τις δύο διευθύνσεις διάδοσης των παραγόμενων πεδίων (+ζ και −ζ αντίστοιχα).

II) Στο κεφάλαιο 2 επίσης, αναφέραμε εν συντομία το φαινόμενο του κορεσμού της διαδρομής-1 εξαιτίας της αύξησης της έντασης του πεδίου διέγερσης \(I_{\text{max}} \), στις μικρές ατομικές πυκνότητες. Παρατηρήσαμε, ότι το φαινόμενο αυτό συνδέθηκε με την καταστρεπτική κβαντική συμβολή και την μεταφορά πληθυσμού μεταξύ των καταστάσεων \(|1\rangle \) και \(|4\rangle \) στο σύστημα των τεσσάρων επιπέδων, με επακόλουθο την ενεργοποίηση της διαδρομής-2. Η περαιτέρω μελέτη, σε μεγαλύτερες ατομικές πυκνότητες, θα μας δώσει μία πληρέστερη εικόνα για το πέρασμα της ενέργειας (switch over) από την μία διαδρομή στην άλλη. Επίσης, η διερεύνηση της συμπεριφοράς της διαδρομής-2, κατά το πρότυπο της διαδρομής-1, και της εξάρτησης της από τις παραμέτρους (π.χ. διφωτονικός αποσυντονισμός και ατομική πυκνότητα) αποτελεί ένα ακόμα υποσχόμενο πεδίο μελέτης. Στο ίδιο πλαίσιο εντάσσεται και η προσπάθεια μας να ελέγξουμε με
ένα σύμφωνο τρόπο (coherent control), την συμπεριφορά των παραγόμενων πεδίων της διαδρομής-2, στήν συνθήκη κορεσμού (saturation condition), επιδρόμως κατά τα δοκούν στήν εξέλιξη των πεδίων αυτών, χρησιμοποιώντας ένα μόνο εξωτερικό πεδίο laser (πεδίο διέγερσης) χωρίς την κλασική μέθοδο pump-probe που συναντάμε στήν βιβλιογραφία.

III) Στο κεφάλαιο 3 είδαμε, ότι με την χρήση στενότερων παλμών (short pulses) και συγκεκριμένα της τάξεως των fsec τροποποιήθηκαν οι φυσικοί μηχανισμοί κατά την παραγωγή των ακτινοβολιών σε σχέση με την nsec διέγερση. Είναι εξίσου ενδιαφέρον να μελετηθεί θεωρητικά το παραπάνω πειραματικό γεγονός.

Η μελέτη αυτή σχετίζεται με την σπουδή στενότερων fsec παλμών χωρίς να λαμβάνεται υπόψη η προσέγγιση του περιστρεφόμενου κύματος (RWA), ενώ σε αυτή τη περίπτωση οφείλουμε να συνυπολογίσουμε και τη διάδοση του παλμού διέγερσης στο σύστημα.

IV) Στο κεφάλαιο 4 παρουσιάσαμε, την αυξανόμενη πολυπλοκότητα που προέκυπε με την προσθήκη περισσότερων ενεργειακών καταστάσεων στο άτομο του καλίου κατόπιν της διφωτονικής διέγερσης της μετάβασης \(|4S_{1/2}\rangle \leftrightarrow |7S_{1/2}\rangle \).

Η ενίσχυση χωρίς αντιστροφή πληθυσμού (AWT) δύναται να εμφανιστεί στο σύστημα των ατμών του καλίου, όπου με ένα εξωτερικό πεδίο (πεδίο διέγερσης), δημιουργείται ένα σχηματικό, αξονικό, πεδίο πρός την θετική διεύθυνση του οπτικού άξονα \(\zeta \). Το τελευταίο αξίζει να διερευνηθεί τόσο για nsec όσο και για fsec παλμούς διέγερσης με ορίζοντα την δημιουργία αρμονικών υψηλότερης τάξης (high harmonic generation).

IV) Ιδιαίτερα ενδιαφέρον παρουσιάζει η θεωρητική μελέτη της κωνικής εκπομπής στήν γέννηση της τρίτης αρμονικής (THG) σε ατμούς καλίου καθώς μας επιτρέπει να μοντελοποιήσουμε την αλληλεπίδραση της ακτινοβολίας με την ιλή σε μία πλησίερτη μορφή, όπως είδαμε στο κεφάλαιο 5 κατά την γέννηση ómws της τρίτης αρμονικής σε ατμούς νατρίου.

Στο κεφάλαιο 5 παρατηρήσαμε ακόμα, ότι η κωνική τρίτη αρμονική του καλίου εμφάνισε μία διαφορετική δομή (exotic) από την αντίστοιχη του νατρίου. Είναι
πολύ εύλογο επομένως να διερευνήσουμε την συσχέτιση των όρων $\chi^{(3)}$ και $\chi^{(5)}$ μεταξύ τους.

ΠΙV) Τέλος, είναι δυνατό να διεξαχθούν μετρήσεις του σήματος ιονισμού, (ionization signal), στις περιπτώσεις: α) της παραμετρικής μίξης των τεσσάρων κυμάτων σε ατμούς Κ, (κεφάλαιο 3), και β) στη γέννεση της τρίτης αρμονικής σε ατμούς Κ και Na, (κεφάλαιο 5), υπό f_{sec} διέγερση. Το τελευταίο προϋποθέτει ένα ειδικό κελί έτσι ώστε να ελεγχθεί η επίδραση του φαινομένου στα πειραματικά αποτελέσματα.
ΚΑΤΑΛΟΓΟΣ ΔΗΜΟΣΙΕΥΣΕΩΝ

ΔΗΜΟΣΙΕΥΣΕΙΣ ΣΕ ΔΙΕΘΝΗ ΠΕΡΙΟΔΙΚΑ

ΥΠΟΒΛΗΘΕΙΣΑ ΔΗΜΟΣΙΕΥΣΗ

ΥΠΟΒΛΗΘΗΣΕΣ ΔΗΜΟΣΙΕΥΣΕΙΣ ΣΕ ΠΡΑΚΤΙΚΑ ΔΙΕΘΝΩΝ ΣΥΝΕΔΡΙΩΝ

ΔΗΜΟΣΙΕΥΣΗ ΣΕ ΕΘΝΙΚΟ ΣΥΝΕΔΡΙΟ

WORKSHOPS

ΔΗΜΟΣΙΕΥΣΗ ΠΡΟΣ ΕΤΟΙΜΑΣΙΑ

ΑΡΙΘΜΟΣ ΒΙΒΛΙΟΓΡΑΦΙΚΩΝ ΑΝΑΦΟΡΩΝ

[105]

ΕΥΡΕΤΗΡΙΟ ΣΗΜΑΝΤΙΚΩΝ ΕΠΙΣΤΗΜΟΝΙΚΩΝ ΟΡΩΝ

Ελληνικών

Αμφίδρομη διάδοση (ς) 119, 120, 123, 125, 127, 129, 130, 132

Αντιστροφή πληθυσμού 18, 21, 23, 62, 63, 70, 88, 129, 130, 174

Γραμμική περιοχή 55, 56, 57, 58, 59, 60, 64, 67, 68, 70, 71, 73, 94, 96

Διάδοση (ς) 9, 10, 23, 31, 32, 38, 40, 41, 42, 54, 55, 56, 71, 72, 84, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 141, 142, 146, 156, 167, 173, 174

Διασπορά (ς) 10, 135, 136, 138, 139, 142, 143, 146, 147, 151, 155, 167, 168

Διαφάνεια (ς) 31, 32, 73, 84, 85, 136

Ενίσχυση 19, 21, 129, 165, 174

Ιονισμός 94, 103, 104, 123, 164, 165, 166

Κβαντικός θόρυβος 43

Κβαντική συμβολή 19, 51, 52

...δημιουργική (ς) 52, 54

...καταστρεπτική 9, 19, 23, 51, 52, 54, 56, 61, 66, 73, 83, 87, 94, 132, 173

Μονόδρομη διάδοση 123, 125, 127, 128, 129, 130, 131

Μη-γραμμική περιοχή 57, 70, 71, 94

Μίξη (ς) κυμάτων 18, 20, 32, 111, 116, 119, 125

Παραμετρική (ς) 10, 19, 20, 21, 22, 23, 25, 51, 52, 54, 56, 61, 63, 68, 73, 87, 88, 89, 90, 91, 92, 97, 101, 104, 107, 109, 111, 112, 113, 114, 116, 119, 125, 126, 127, 128, 130, 131, 135, 139, 151, 155, 158, 159, 163, 167, 175
Πίνακας(ς) πυκνότητας 22, 32, 35, 36, 37, 44, 64

Πολυεπίπεδο ατομικό σύστημα 88, 107, 116, 117, 131

Πόλωση(ς) 17, 38, 40, 41, 44, 46, 47, 75, 121, 152

Συνθήκη καρεσμού 69, 73, 74, 84, 174

Συνθήκη συμφωνίας φάσεως 22, 135, 138, 139, 142, 161

(Σύστημα) τεσσάρων επιπέδων 32, 33, 40, 42, 64, 70, 73, 89, 173

Τρίτη αρμονική 25, 45, 137, 138, 139, 141, 144, 146, 151, 152, 168
...αξονική 146, 154, 155, 162
...κωνική 10, 25, 137, 145, 146, 148, 151, 152, 153, 154, 155, 157, 161, 162, 163, 165, 167, 174
Αγγλικών

Alkali 11

ASE (Amplified spontaneous emission) 19, 20, 23, 63, 70, 87, 88, 94, 97, 101, 102, 104, 107, 114, 115, 116, 119, 120, 125, 129, 130, 131, 132, 158, 173

Channel(s) 19, 54, 61, 88

Coherent 11, 17, 18, 20, 24, 31, 88, 118, 174

Decay 24, 38, 53, 75, 76, 84

Far field 10, 99, 136, 140

Filaments 137, 159

Gouy 166

Gaussian 103, 138, 143, 147, 166

Hamiltonian 33, 34, 35

Laplacian 40

OFIM (Optical free induction memory) 11, 23, 76, 82

Partially coherent 11, 20, 88

Path 11, 12, 19, 31, 52, 53, 54, 88, 121

PFWM (Parametric four-wave mixing) 19, 63, 88, 97, 101, 104, 119, 135, 159, 163, 167

Rayleigh 142, 166
RWA (Rotating wave approximation) 37, 174
SHRS (Stimulated hyper Paman scattering) 19, 20, 70, 84, 88, 97, 113, 115, 116, 119, 120, 125, 126, 127, 131, 158, 173
SVEA (Slowing varying envelope approximation) 40, 141
THG (Third harmonic generation) 10, 12, 19, 135, 138, 139, 152, 159, 161, 166, 167, 174
Von Neumann (equation) 32, 37, 44