ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ
ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
«ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΒΑΣΙΚΕΣ ΙΑΤΡΙΚΕΣ ΕΠΙΣΤΗΜΕΣ»
ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
«ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΒΑΣΙΚΕΣ ΙΑΤΡΙΚΕΣ ΕΠΙΣΤΗΜΕΣ»
ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

«ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΡΟΛΟΥ ΤΗΣ GEMININ ΣΤΗΝ ΑΝΑΠΤΥΞΗ
ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΑΡΧΕΓΟΝΩΝ/ΠΡΟΓΟΝΙΚΩΝ
ΚΥΤΤΑΡΩΝ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ
ΓΕΝΕΤΙΚΑ ΤΡΟΠΟΠΟΙΗΜΕΝΟΥΣ ΜΥΕΣ»

ΚΑΡΑΜΗΤΡΟΣ ΔΗΜΗΤΡΙΟΣ
ΜΟΡΙΑΚΟΣ ΒΙΟΛΟΓΟΣ
ΠΑΤΡΑ 2012
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
«ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΒΑΣΙΚΕΣ ΙΑΤΡΙΚΕΣ ΕΠΙΣΤΗΜΕΣ»

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

«ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΡΟΛΟΥ ΤΗΣ GEMININ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΑΡΧΕΓΟΝΩΝ/ΠΡΟΓΟΝΙΚΩΝ ΚΥΤΤΑΡΩΝ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ ΓΕΝΕΤΙΚΑ ΤΡΟΠΟΠΟΙΗΜΕΝΟΥΣ ΜΥΕΣ»

ΚΑΡΑΜΗΤΡΟΣ ΛΗΜΗΤΡΙΟΣ
ΜΟΡΙΑΚΟΣ ΒΙΟΛΟΓΟΣ

Επιβλέπων Καθηγητής:
Σταύρος Ταραβήρας
Επίκουρος Καθηγητής
Πανεπιστήμιο Πατρών
Τμήμα Ιατρικής

ΠΑΤΡΑ 2012
Τριμελής συμβουλευτική επιτροπή

Ταραβήρας Σταύρος
Επίκουρος Καθηγητής
Πανεπιστήμιο Πατρών
Τμήμα Ιατρικής

Λυγερού Ζωή
Αναπληρωτής Καθηγήτρια
Πανεπιστήμιο Πατρών
Τμήμα Ιατρικής

Σπυριδωνίδης Αλέξανδρος
Αναπληρωτής Καθηγητής
Πανεπιστήμιο Πατρών
Τμήμα Ιατρικής

Επταμελής εξεταστική επιτροπή

Ταραβήρας Σταύρος
Επίκουρος Καθηγητής
Πανεπιστήμιο Πατρών
Τμήμα Ιατρικής

Λυγερού Ζωή
Αναπληρωτής Καθηγήτρια
Πανεπιστήμιο Πατρών
Τμήμα Ιατρικής

Σπυριδωνίδης Αλέξανδρος
Αναπληρωτής Καθηγητής
Πανεπιστήμιο Πατρών
Τμήμα Ιατρικής

Παληγιάνη Φωτεινή
Καθηγήτρια
Πανεπιστήμιο Πατρών
Τμήμα Ιατρικής

Λιόσης Σταμάτιος Νικόλαος
Επίκουρος Καθηγητής
Πανεπιστήμιο Πατρών
Τμήμα Ιατρικής

Σταθόπουλος Γεώργιος
Επίκουρος Καθηγητής
Πανεπιστήμιο Πατρών
Τμήμα Ιατρικής

Μπράβου Βασιλική
Επίκουρος Καθηγήτρια
Πανεπιστήμιο Πατρών
Τμήμα Ιατρική
The pure and simple truth is rarely pure and never simple

Oscar Wilde (1854-1900)
Περιεχόμενα

ΠΕΡΙΕΧΟΜΕΝΑ ..5
ΠΕΡΙΛΗΨΗ ..10
ABSTRACT ..12
ΕΙΣΑΓΩΓΗ ...13
ΚΕΦΑΛΑΙΟ 1: ΑΝΑΙΤΙΖΕ ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ..14
1.1. Η ΑΝΑΙΤΙΖΗ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΤΑ ΤΗΝ ΕΜΒΡΥΟΓΕΝΗΣΗ ΤΟΥ ΥΜΟΥ15
1.2. ΤΑ ΚΥΤΤΑΡΙΚΑ ΜΟΝΤΕΛΑ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΤΩΝ ΕΜΒΡΥΩΝ ΚΑΙ ΕΝΗΛΙΚΩΝ ΒΛΑΣΤΙΚΩΝ ΚΥΤΤΑΡΩΝ ΤΟΥ
ΑΙΜΟΠΟΙΗΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ..18
1.3. Η ΡΥΘΜΙΣΗ ΤΗΣ ΑΥΤΟ-ΑΝΑΝΕΩΣΗΣ ΤΩΝ ΕΜΒΡΥΩΝ ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΤΩΝ ΒΛΑΣΤΙΚΩΝ
ΣΤΟΥΣ ΑΙΜΟΠΟΙΗΤΙΚΟΥΣ ΕΣΤΟΥΣ ...21
1.4. ΟΙ ΜΕΤΑΓΡΑΦΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΡΥΘΜΙΖΟΥΝ ΤΗΝ ΑΥΤΟ-ΑΝΑΝΕΩΣΗ ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΤΩΝ ΒΛΑΣΤΙΚΩΝ
ΚΑΙ ΠΡΟΓΟΝΙΚΩΝ ΚΥΤΤΑΡΩΝ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ ..24
1.4.1. Ο ρόλος του SCL/TAL1 ...25
1.4.2. Ο ρόλος του RunX1/AML1 ...25
1.4.3. Ο ρόλος του CEBP ..26
1.4.4. Ο ρόλος του GATA2 ...27
1.4.5. Ο ρόλος του CEBPa ...27
1.4.6. Ο ρόλος του TEL/ETV6 ..28
1.4.7. Η ισοαξιότητα των μεταγραφικών παραγόντων Hox και ο ρόλος τους στην αιμοποίηση28
1.5. ΕΠΙΓΕΝΕΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΚΑΙ ΣΥΜΠΙΑΚΑ ΑΝΑΔΙΑΤΑΞΕΙΣ ΤΗΣ ΧΡΩΜΑΤΙΝΗΣ ΠΟΥ ΣΥΜΜΕΤΟΧΕΥΕΤΑΙ ΣΤΗΝ
ΡΥΘΜΙΣΗ ΤΗΣ ΑΥΤΟ-ΑΝΑΝΕΩΣΗΣ ΚΑΙ ΤΗΣ ΚΥΤΤΑΡΙΚΗΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΤΩΝ ΒΛΑΣΤΙΚΩΝ ΑΙΜΟΠΟΙΗΤΙΚΩΝ
ΚΥΤΤΑΡΩΝ ..29
1.5.1. Ο ρόλος των polycomb, HATs (histone acetyltransferases), HDACs (histone deacetylases) και SWI/SNF στην
ρύθμιση της δομής της χρωματινής και της μεταγραφής ...29
1.5.2. Ο ρόλος των Polycomb, HATs (histone acetyltransferases), HDACs (histone deacetylases) και SWI/SNF κατά
την αιμοποίηση ..34
ΚΕΦΑΛΑΙΟ 2: ΑΝΑΙΤΙΖΗ ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΤΩΝ Τ ΛΕΜΦΟΚΥΤΤΑΡΩΝ ..38
2.1. Η ΑΝΑΙΤΙΖΗ ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΤΩΝ Τ ΛΕΜΦΟΚΥΤΤΑΡΩΝ ΣΤΟ ΘΥΜΟ ..39
2.2. Η ΡΥΘΜΙΣΗ ΤΩΝ ΚΥΤΤΑΡΙΚΩΝ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΤΩΝ ΠΡΟΓΟΝΙΚΩΝ Τ ΚΥΤΤΑΡΩΝ ΣΤΟ ΘΥΜΟ40
2.3. Η ΡΥΘΜΙΣΗ ΤΗΣ ΚΥΤΤΑΡΙΚΗΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΤΩΝ ΠΡΟΓΟΝΙΚΩΝ Τ ΚΥΤΤΑΡΩΝ ΣΤΟ ΘΥΜΟ42
2.4. ΕΠΙΓΕΝΕΤΙΚΟΙ ΚΑΙ ΜΕΤΑΓΡΑΦΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΚΑΘΟΡΙΖΟΝ ΤΗΝ ΚΥΤΤΑΡΙΚΗ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΣΤΟ ΘΥΜΟ43
2.5. ΡΥΘΜΙΣΗ ΤΟΥ ΚΥΤΤΑΡΙΚΟΥ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΚΑΙ ΚΥΤΤΑΡΙΚΗΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΤΩΝ ΠΕΡΙΦΕΡΕΙΩΝ Τ
ΚΥΤΤΑΡΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ...45
2.5.1. Αθώα Τ κύτταρα (Naive T cells) ..45
2.5.2. Αμυντικά δραστικά T κύτταρα (Effector T cells) ...46
2.5.3. Ροθημικά Τ κύτταρα και Τ κύτταρα μνήμης (Memory and Regulatory T cells)47
ΚΕΦΑΛΑΙΟ 3: Η ΠΡΩΤΕΙΝΗ GEMININ ΕΜΠΙΕΛΕΚΤΑΙ ΣΤΗΝ ΡΥΘΜΙΣΗ ΤΟΥ ΚΥΤΤΑΡΙΚΟΥ
ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΚΑΙ ΤΗΣ ΚΥΤΤΑΡΙΚΗΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ..49
3.1. Η ΠΡΩΤΕΙΝΗ ΔΟΜΗ ΤΗΣ GEMININ ..50
3.2. Ο ρόλος της GEMININ στην ανάπτυξη της ολοκληρωμένης της αντιγραφής και στην διατήρηση της
γενετικής σταθερότητας ...51
3.3. Ο ρόλος της GEMININ στις αποφάσεις κυτταρικής διαφοροποίησης ...54
3.3.1. Η GEMININ επηρεάζει κυτταρικές αποφάσεις μέσω ολοκληρωμένης μεταγραφικής παράγινης ..54
3.3.2. Η GEMININ αλληλεπίδραση με το βασικό μηχανισμό μεταγραφής ...56
3.3.3. Η GEMININ καταστέλλει νευρικά γονίδια σε μη νευρικά κύτταρα ...56
3.3.4. Η GEMININ επηρεάζει κυτταρικές αποφάσεις μέσω της αλληλεπίδρασης της με μοριακές παράγινες που ρυθμίζουν την
δομή της χρωματινής ...56
ΣΚΟΠΟΣ ΤΗΣ ΔΙΑΛΟΓΙΚΗΣ ΔΙΑΤΡΙΒΗΣ ..58
1. Απομονώσεις και καθαρίσμος γενεμικού DNA με διαλυμα φαινολης-Χαρδρόφωρμου-ισογωνικής
αλκοολης (PC1) .. 60
2. ΣτΡΑΤΗΓΙΚΗ ΓΕΝΟΤΥΠΙΣΗ ΤΩΝ ΓΕΝΗΤΙΚΑ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΥΩΝ ΣΤΟΥΣ ΟΠΙΟΥΣ ΕΠΙΤΕΛΕΙΑΙ ΕΣΩΤΕΙΑΙΚΗ
ΑΔΡΑΝΟΠΟΙΗΣΗ ΤΟΥ ΓΟΝΙΑΔΟΥ ΤΗΣ ΓΕΜΙΝΙΝ .. 61
 2.1. Αντίδραση PCR με τη χρήση των εκκινητών zoz250-zoz251 ... 62
 2.2. Αντίδραση PCR με τη χρήση των εκκινητών 2003-2004 .. 63
 2.3. Αντίδραση PCR για την ανίχνευση των διαγωνίων CD2Cre/NavCre 65
3. ΠΕΡΙΣ ΓΕΝΕΜΙΚΩΝ DNA ΜΕ ΠΕΡΙΟΡΙΣΤΙΚΕΣ ΕΝΣΕΓΝΟΥΚΛΕΑΣΕΣ .. 67
4. ΕΛΕΚΤΡΟΦΟΡΕΣΗ ΣΕ ΠΙΚΤΗΣΜΑ ΑΓΡΟΣΗ .. 67
4. ΣΤΥΠΙΣΜΑ ΚΑΤΑ SOUTHERN (SOUTHERN BLOTTING) ... 68
6. ΥΒΡΙΔΙΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΤΩΝ ΜΕΜΒΡΑΝΩΝ ΜΕΤΑ ΑΠΟ ΣΤΥΠΙΣΜΑ ΚΑΤΑ SOUTHERN 69
7. ΡΑΔΙΕΝΕΡΓΟΣ ΣΗΜΑΝΕΝ DNA ... 71
8. ΠΑΡΑΣΚΕΥΗ ΟΛΙΚΟΥ ΠΡΩΤΕΙΝΙΚΟΥ ΕΚΧΥΛΙΣΜΩΣ ΑΠΟ ΚΤΙΤΑΙΚΕΣ ΣΕΙΡΕΣ 72
9. SDS-PAGE ΕΛΕΚΤΡΟΦΟΡΕΣΗ (SODIUM DODECYL SULFATE - POLYACRYLAMIDE GEL ELECTROPHORESIS) 73
10. ΕΛΕΚΤΡΟΜΕΤΑΘΕΡΙΑ ΤΩΝ ΠΡΩΤΕΙΝΩΝ ΣΕ ΜΕΜΒΡΑΝΗ PVDF ΚΑΙ ΑΝΩΣΟΝΙΔΝΕΥΣΗ ΣΥΓΚΕΡΙΜΕΝΩΝ
ΠΡΩΤΕΙΝΩΝ (WESTERN BLOTTING) ... 75
11. ΑΠΟΜΟΝΩΣΗ ΚΥΤΤΑΡΩΝ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ/ΛΕΜΟΝΟΥ ΤΩΝ ΑΝΤΙΟΥΣ ΚΑΙ ΧΡΗΣΗ ΤΩΝ ΑΝΤΙΟΥΣ
ΕΠΙΔΙΑΘΕΣΕΩΝ ΣΤΟΥΣ ΤΗΝ ΕΚΤΑΣΗ ΚΑΙ ΚΥΤΤΑΡΟΜΕΤΡΙΑ ΡΟΗΣ .. 78
12. ΑΠΟΜΟΝΩΣΗ ΟΛΙΚΟΥ RNA .. 80
13. ΣΥΝΘΕΣΗ cDNA ΑΠΟ ΟΛΙΚΟ RNA .. 82
14. ΑΝΤΙΔΡΑΣΗ PCR ΠΡΑΓΜΑΤΙΚΟΥ ΧΡΟΝΟΥ (REAL TIME PCR) .. 84
15. ΑΠΟΜΟΝΩΣΗ ΚΥΤΤΑΡΩΝ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΜΑΓΝΗΤΙΚΩΝ ΣΕΛΙΔΩΝ 86
16. ΟΝΙΣ ΚΑΙ ΕΔΕΡΓΕΙ ΛΕΜΟΝΟΥ ΚΑΙ ΝΕΡΟΝΟΠΟΙΗΣΗ ΒΗ Τ. ΛΕΜΟΝΟΥ ΤΩΝ ΚΥΤΤΑΡΩΝ 88
17. ΧΡΗΣΗ CFSE ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ ΤΩΝ ΚΤΙΤΑΙΚΩΝ ΙΧΝΗΘΕΣΕΩΝ ΤΩΝ ΚΤΙΤΑΙΚΩΝ 89
18. ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΤΩΝ ΚΥΤΤΑΡΩΝ ΤΟΥ ΛΕΜΟΝΟΥ ΚΑΙ ΚΥΤΤΑΡΩΝ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ-
ΧΡΗΣΗ ΜΕ PROPIDIO IODIDE Η 7AAD ... 90
19. ΑΝΑΛΥΣΗ ΤΩΝ ΑΝΟΣΗΣΤΙΚΩΝ ΤΩΝ ΛΕΜΟΝΟΥ ΚΑΙ ΧΡΗΣΗ RH/ANNEXIN V 91
20. ΑΝΑΛΥΣΗ ΜΕΣΑ ΚΥΤΤΑΡΟΜΕΤΡΙΑΣ ΡΟΗΣ ΚΥΤΤΑΡΩΝ ΣΤΟΥΣ ΤΗΝ ΚΥΤΤΑΡΟΜΕΤΡΙΑ P2RD1 94
21. ΟΝΙΣ ΚΑΙ ΕΔΕΡΓΕΙ ΛΕΜΟΝΟΥ ΜΕ ΤΙΣΟΝΙΚΟΥ ΚΤΙΤΑΡΑ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ 93
22. ΑΠΟΜΟΝΩΣΗ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΑΙΜΟΣΗΣ ΑΠΟ ΠΟΙΟΤΙΚΟΥ ΚΑΙ ΑΝΑΛΥΣΗ ΜΕ ΚΥΤΤΑΡΟΜΕΤΡΙΑ ΡΟΗΣ 95
23. ΠΡΩΤΟΚΟΛΛΟ ΑΚΤΙΝΟΒΟΛΗΣΗΣ ΜΥΩΝ ΜΕ ΙΟΝΙΖΟΥЧΑ ΑΚΤΙΝΟΒΟΛΙΑ 95

ΑΠΟΤΕΛΕΣΜΑΤΑ ... 98
5.9. Τα ενεργοποιημένα Τ κύτταρα απο τα οποία αποστέλλονται τη Γεμίνιν παρουσιαστεί ανεξαρτήτως επιπέδη έκφρασης του CtI και συσσωρευόμενοι στην G2 φάση του κυτταρικού κύκλου .. 117
5.10. Φυσικολογική αναπτύξη των B κυττάρων στο σφαίρινα αποστολή της Γεμίνιν .. 118
5.11. Μικρές μείωση απο τους κυττάρους στη σφαιρινή αποστολή της Γεμίνιν .. 119
5.12. Ομαλός κυτταρικός πολλαπλασιασμός των B κυττάρων αποστολή της Γεμίνιν .. 122
6. ΚΕΦΑΛΑΙΟ 6: ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΡΟΛΟΥ ΤΗΣ ΓΕΜΙΝΙΝ ΣΤΗΝ ΑΥΤΟ-ΑΝΑΝΕΩΣΗ ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΤΩΝ ΒΛΑΣΤΙΚΩΝ ΚΑΙ ΠΡΟΓΟΝΙΚΩΝ ΚΥΤΤΑΡΩΝ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ 124
6.1. Απαναποφθέγματος του Geminin στα βλαστικά κύτταρα του αιμοποιητικού .. 125
6.2. Η διαμορφωτική της Γεμίνιν στα βλαστικά κύτταρα του αιμοποιητικού επιφέρει προφορικό εμβρύο θανάτο .. 126
6.3. Η άποιξη της Γεμίνιν οδηγεί σε αναπλασία αναπτύξη του αιμοποιητικού συστήματος του εμβρύου θανάτο 127
6.4. Αναφορά του αριθμού των βλαστικών κυττάρων του αιμοποιητικού στο ήπαρ των εμβρύων απο τα οποία αποστέλλει τη Γεμίνιν .. 129
6.5. Συμπλήρωση εμικτώς απο τους αριθμούς των βλαστικών κυττάρων του αιμοποιητικού στο εμβρύο ήπαρ αποστολή της Γεμίνιν .. 131
6.6. Τα βλαστικά κύτταρα του αιμοποιητικού απο τα οποία αποστέλλει τη Γεμίνιν μπορούν να συναντώνουν τα βλαστικά αιμοποιητικά κύτταρα αγριού τύπου στην αναστάθηση του αιμοποιητικού συστήματος σε μύες που εξουδετερώνονται ακτίνοβοληση .. 136

ΣΥΝΗΜΕΡΙΣΜΟΣ .. 140
7.1. Η εκφάρση της Γεμίνιν στα βαλαστικά κύτταρα του αιμοποιητικού και στα λεμφοκυττάρα 141
7.2. Αναπτύξη των προγονικών T λεμφοκυττάρων στο θυμού αποστολή της Γεμίνιν 141
7.2.1. Η δράση της Geminin στην ρύθμιση του CtI μπορεί να αναληφθεί από άλλα μοριακά μονοπάτια.................. 142
7.2.2. Η Geminin είναι απαραίτητη για την αυστηρή ρύθμιση του κυτταρικού πολλαπλασιασμού σε συγκεκριμένους κυτταρικούς τύπους .. 143
7.2.3. Η Geminin δεν διαμοιράζεται την δράση κεντρικών μονοπάτιων-ρυθμιστών της διαμορφοποίησης των θυμοκυττάρων 144
7.3. Η ΓΕΜΙΝΙΝ ΡΥΘΜΙΖΕΙ ΤΗΝ ΔΗΜΟΥΡΓΙΑ ΤΩΝ ΠΕΡΙΒΡΕΧΙΩΝ T ΚΥΤΤΑΡΩΝ 144
7.3.1. Η απευθείαστη της Γεμίνιν έχει ως αποτέλεσμα την σημαντική μείωση του αριθμού των αθόνων T κυττάρων και T κυττάρων μηδέν ής .. 144
7.3.2. Η Geminin πιθανά επηρεάζει προγράμματα διαμορφοποίησης των ρυθμιστικών και T κυττάρων μηδέν ής 145
7.4. Τα περιβρεχία T λεμφοκυττάρα παρουσιάζουν σωβαρές διαταραχές στα κυτταρικά Διαρροών και στην προοπτική του κυτταρικού κύκλου αποστολή της Γεμίνιν 147
7.4.1. Η ενόπλη κυτταρική σημαντικότητα των περιβρεχιών T κυττάρων αποκάλυψη της Γεμίνιν 147
7.4.2. Αναπτύξη της προοπτικής του κυτταρικού κύκλου στην G2 φάση και διαταραχές εκφράσης των ρυθμιστικών του κυτταρικού κύκλου 147
7.5. Η απευθείαστη της Γεμίνιν στο αιμοποιητικό σύστημα προκαλεί προφορικό εμβρύο θανάτο 150
7.6. Αποστολή της Γεμίνιν παρατηρείται διαταραχές στην εργασία της μελανίνης και λεμφοποίηση 150
7.7. Η ρύθμιση της αυτοαναλήφει της βλαστικών και προγονικών κυττάρων του αιμοποιητικού από την Γεμίνιν 152
7.8. Αναπληρωμογεμίνιν εμπνευσμένων των βλαστικών κυττάρων του αιμοποιητικού αποστολή της Γεμίνιν 154
7.9. Τα βλαστικά κύτταρα του αιμοποιητικού από τα οποία αποστέλλεται τη Γεμίνιν είναι υγιές για μακρά διάρκεια αναπληρωση του αιμοποιητικού ακτίνοβολησής ουσίας 155

ΒΙΒΛΙΟΓΡΑΦΙΑ .. 158
Πρόλογος

Η παρούσα διδακτορική διατριβή συνοψίζει την ερευνητική εργασία τεσσάρων χρόνων η οποία εκπονήθηκε στα εργαστήρια του Δρ. Σταύρου Ταραβήρα, Επίκουρου Καθηγητή στην Ιατρικής Σχολής Πατρών και του Δρ. Δημητρίου Κιούση του Εθνικού Ινστιτούτου Ιατρικών Ερευνών (National Institute for Medical Research, MRC) του Λονδίνου. Η άριστη συνεργασία με τους δύο καθηγητές καθώς και με όλα τα μέλη των ερευνητικών τους ομάδων υπήρξε καθοριστική για την επιτυχή ολοκλήρωσή αυτής της ερευνητικής προσπάθειας.

Αρχικά θα ήθελα να ευχαριστήσω ευλυκρινά τον Επιβλέποντα Καθηγητή κ. Σταύρο Ταραβήρα για το σύνολο της συμβολής του στην συγκεκριμένη εργασία τόσο σε επίπεδο ηθικό και πρακτικό, για την διαρκή και ακούραστη παρακολούθηση της προσόντων της εργασίας καθώς και για την επιμονή του για την παραγωγή καινοτόμου και υψηλής ποιότητας έρευνας. Πέρα από το ερευνητικό κομμάτι τον ευχαριστώ για τις συμβουλές του και την καθοδήγησή του σε προσωπικό επίπεδο.

Επιπλέον θα ήθελα να ευχαριστήσω τον Δρ. Δημήτρη Κιούση για την επιβλέπω του κατά την παραμονή μου στο εργαστήριο του, στον τομέα της Μοριακής Ανοσολογίας στο Λονδίνο, μια εμπειρία που ήταν καθοριστική για την διαμόρφωση της επιστημονικής μου κατάρτισης και σκέψης. Τον ευχαριστώ για το διαρκές ενδιαφέρον και την υποστήριξη του κατά την διάρκεια της παραμονής μου εκεί και μετέπειτα.

Ιδιαίτερες ευχαριστίες στην Δρ. Ζοή Λυγερού Αναπληρωτή Καθηγήτρια για την ουσιαστική της συμβολή στο επιστημονικό κομμάτι της εργασίας αλλά και για την εμπιστοσύνη της. Επιπλέον θα ήθελα να ευχαριστήσω τον Δρ. Αλέξανδρο Σπυριδονίδη Αναπληρωτή Καθηγήτρια για την συμμετοχή του στην Επιστημονική Επιτροπή αλλά και όλα τα μέλη της επαμελείς Εξεταστικής Επιτροπής για την αξιολόγηση της παρούσας διατριβής.

Ημεν εξαιρετικά τυχόρο για την συνεργασία μου με όλα τα μέλη των εργαστηρίων Φυσιολογίας και Γενικής Βιολογίας της Ιατρικής Σχολής, Δάφνη Περάνη, Καραντζέλη Νικόλα, Κοσταντάκη Πανορά, Σπέλλα Μάγδα, Σταθοπούλου Νάνσυ, Κυρώς Χριστίνα, Ρούκο Βασίλη, Δημάκη Μαρία, Ηλιόπ Μαρία, Κοσταντή Παναγιώτη και Συμεωνίδου Ελεάνα που δημιούργησαν ένα ιδιαίτερα ευχάριστο και παραγωγικό εργασιακό περιβάλλον. Εξίσου σημαντική θεωρώ ότι ήταν και η συνεργασία μου με τα μέλη του τομέα Μοριακής Ανοσοβιολογίας του NMR, Henrique Veiga-Fernandes, Anna Garefalaki, Eleni Ktistaki, Demetrius Vassilakos, Katie Foster, Kathleen Roderick, Ursula Menzel, Nicky Harker, Mauro Tolaini, Adam Williams, Valentino Paravicin, Amisha Patel, Trisha Norton, Michelle Burke, Alexander Potocnik, Nikolai Belyaev, Judit Biro και Ana Isabel.
Θα ήθελα τέλος να ευχαριστήσω την οικογένεια μου που με στήριξε καθ’ όλη την διάρκεια αυτής της προσπάθειας.

Δημήτρης Καραμήτρος,
Πάτρα, Ιανουάριος 2012
Περίληψη

Κατά την ανάπτυξη ενός οργανισμού η απόκτηση εξειδικευμένων κυτταρικών λειτουργιών είναι μια προοδευτική διαδικασία η οποία περιλαμβάνει την ασύμμετρη διαίρεση των βλαστικών κυττάρων για την παραγωγή προγονικών κυττάρων τα οποία σταδιακά εξέρχονται από τον κυτταρικό κύκλο και διαφοροποιούνται μέσω της εγκαθίδρυσης του κατάλληλου μεταγραφικού προγράμματος. Η δημιουργία διαφοροποιημένων κυττάρων από πληθυσμούς βλαστικών κυττάρων απαιτεί τον συντονισμό των μηχανισμών ελέγχου των κυτταρικών διαρρεύσεων με τους επιγενετικούς και μεταγραφικούς ρυθμιστικούς μηχανισμούς. Προκειμένου να κατανοήσουμε τη ρύθμιση αυτών των γεγονότων μελετήσαμε την Geminin, ένα κεντρικό ρύθμιστη του κυτταρικού κύκλου, ο οποίος έχει δειχθεί να συμμετέχει στον έλεγχο των κυτταρικών αποφάσεων για διαφοροποίηση. Προς αυτή την κατεύθυνση επισκέφτηκαμε στο αιμοποιητικό και ανοσοποιητικό σύστημα ως μοντέλο για τη διερεύνηση του ρόλου της Geminin στην αυτό-ανανέωση και διαφοροποίηση των βλαστικών και προγονικών κυττάρων.

Αρχικά δημιουργήσαμε ζωικά μοντέλα στα οποία απενεργοποιήσαμε το γονίδιο της Geminin στα λεμφοκύτταρα. Τα αποτελέσματα μας έδειξαν ότι η απενεργοποίηση της Geminin στα λεμφοκύτταρα δεν επηρεάζει σημαντικά τη διαφοροποίηση των προγονικών Τ κυττάρων στο θύμο. Αποστίσαμε την Geminin τα προγονικά θυμοκύτταρα δεσμεύοντας προς διαφοροποίηση την Τ κυτταρική σειρά και παράγουν διαφοροποιημένα θυμοκύτταρα. Παρατηρήθηκαν μικρές μειώσεις στον αριθμό των DN1, DN4 και DP κυττάρων. Σε αντίθεση τα αθώα (naïve), ρυθμιστικά (regulatory) και Τ κύτταρα μνήμης (memory Τ cells), παρουσίασαν σημαντικές μειώσεις απουσία της Geminin. Επιπλέον βρήκαμε ότι ο πολλαπλασιασμός των περιφερικών Τ κυττάρων ύστερα από την ενεργοποίησή τους μέσω του TCR υποδοχέας επανεισέρχεται σημαντικές ανομαλίες ενώ παρατηρήθηκαν και σημαντικές διαταραχές της προοόδου του κυτταρικού κύκλου απουσία της Geminin. Οι μεταβολές που παρατηρήθηκαν στην έκφραση του Cdt1 και σε κυκλίνες τους ενεργοποιημένους περιφερικών Τ κυττάρων μπορεί να εμπλέκονται στο μηχανισμό που εξηγεί τις διαταραχές των περιφερικών Τ κυττάρων απουσία της Geminin. Επίσης Τ κύτταρα από τα οποία είχε απενεργοποιηθεί η Geminin δεν είναι ικανά να αποκηρύξουν τα λεμφοειδή όργανα μιαν τα λεμφοκύτταρα, αποτέλεσμα να αυτό δείχνει διαταραχές του ομοιοστατικού πολλαπλασιασμού αυτών των κυττάρων. Συμπερασματικά η Geminin είναι απαραίτητη για την αυστηρή ρύθμιση των επαναλαμβανόμενων κυτταρικών διαρρεύσεων των περιφερικών Τ κυττάρων αλλά δεν επηρεάζει σημαντικά τη διαφοροποίηση των προγονικών Τ κυττάρων. Επιπλέον τα αποτελέσματα αυτά προτείνουν ότι υπάρχουν ευγενείς διαφορές στην ρύθμιση του κυτταρικού κύκλου μεταξύ θυμοκύτταρων και περιφερικών Τ κυττάρων.

Επίσης διερευνήσαμε τη τροποποίηση της αυτό-ανανέωσης και διαφοροποίησης των βλαστικών κυττάρων του αιμοποιητικού και για αυτό το λόγο αναπτύξαμε και ζωικά μοντέλα μικρών στα οποία η Geminin απενεργοποιείται στο εμβρυοκίνητο αιμοποιητικό σύστημα. Η απενεργοποίηση της Geminin στα βλαστικά κύτταρα του αιμοποιητικού είχε ως αποτέλεσμα την δημιουργία αναμικτών εμβρύων με
σημαντικά μειωμένο μέγεθος εμβρυικού ήπατος. Επιπλέον τα έμβρυα στα οποία απενεργοποιήθηκε η Geminin παρουσιάζουν σημαντικές ανομαλίες στην παραγωγή όριμων ερυθροκυττάρων, μυελοκυττάρων και λεμφοκυττάρων καθώς και σημαντική μείωση των αντίστοιχων προγονικών κυττάρων. Απουσία της Geminin επίσης παρατηρήθηκε συσσώρευση των βλαστικών κυττάρων του αιμοποιητικού συστήματος. Τα προγονικά κύτταρα του αιμοποιητικού από τα οποία απουσίαζε η Geminin παρουσιάζαν επίσης μειωμένο πολλαπλασιασμό και ικανότητα διαφοροποίησης in vitro. Συνεπώς τα αποτελέσματα μας προτείνουν ότι η Geminin είναι απαραίτητη για την in vivo δημιουργία και διαφοροποίηση των προγονικών κυττάρων του αιμοποιητικού πιθανά μέσω του ελέγχου μηχανισμών που ρυθμίζουν την αυτοανάπτωση και τη δέσμευση των βλαστικών κυττάρων προς διαφοροποίηση.
Abstract

During development, acquisition of specialized function is a progressive, gradual process that involves the asymmetric divisions of stem cells to generate progeny that will exit the cell cycle and terminally differentiate through the establishment of an appropriate transcriptional program. The generation of differentiated cells from stem cells requires the coordination of cell divisions with epigenetic and transcriptional programs. In order to understand this process we studied Geminin, a key cell cycle regulator, that has been shown to affect cellular decisions of differentiation. Towards this direction we focused on the hematopoietic and immune system and investigated the role of Geminin in self-renewal and differentiation of stem and progenitor cells.

In order to gain insight into the in vivo role of Geminin in progenitor cell division and differentiation, we have deleted Geminin in cells of the lymphoid lineage. The inactivation of Geminin in the lymphoid lineage does not alter progenitor T cell differentiation in the thymus. In the absence of Geminin progenitor T cells commit, differentiate and generate differentiated thymocytes. Minor reduction in the number of DN1, DN4 and DP progenitor T cells were observed. In contrast naïve, regulatory and memory peripheral T cells show a significant reduction in the absence of Geminin. Moreover, proliferation of Geminin deficient peripheral T cells upon TCR activation is severely compromised, accompanied by cell cycle progression defects. The deregulated protein levels of Cdt1 and cyclins in activated peripheral T cells lacking Geminin, may be involved in the mechanism responsible for the observed phenotype of Geminin deficient peripheral T cells. More importantly Geminin deficient T cells fail to repopulate lymphopenic hosts suggesting defects in homeostatic proliferation. In conclusion Geminin is essential to regulate the repeated divisions of peripheral T cells but does not significantly affect progenitor T cell differentiation. In addition our results suggest that there are intrinsic differences in cell cycle regulation of thymocytes and peripheral T cells.

To gain insight into Geminin’s role in regulation of HSCs (hematopoietic stem cells) self-renewal and commitment we generated mice that lack Geminin expression in the haemopoietic lineage. Inactivation of Geminin in HSCs results in anaemic embryos, exhibiting reduced foetal liver cellularity. Moreover, mice that lack Geminin expression show a severe defect in generation of erythroid, myeloid and lymphoid blood cell in addition to a significant reduction of the hematopoietic progenitor cells (HPCs) . In the absence of Geminin we observed accumulation of HSCs. Geminin deficient HPCs present a severe defect in self-renewal and impaired ability to differentiate in vitro. Therefore our results suggest that Geminin controls the in vivo generation and differentiation of hematopoietic progenitor cells by regulation of self-renewal and differentiation of HSCs.
ΕΙΣΑΓΩΓΗ
ΚΕΦΑΛΑΙΟ 1: ΑΝΑΠΤΥΞΗ ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΤΟΥ ΑΙΜΟΠΟΙΗΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ
1.1. Η ανάπτυξη του αιμοποιητικού συστήματος κατά την εμβρυογένεση του μυών

Χρησιμοποιώντας τον μω σαν ζωικό μοντέλο για την μελέτη της ανάπτυξης του αιμοποιητικού συστήματος των ηθλαστικών, δείχθηκε ότι όλα τα διαφοροποιημένα κύτταρα του αιμοποιητικού συστήματος προέρχονται από πολυδύναμα βιλαστικά κύτταρα του αιμοποιητικού (pluripotent HSCs). Τα πρώτα πειράματα μεταμόσχευσης κυττάρων σε μίας στους οποίους είχαν καταστραφεί τα κύτταρα του αιμοποιητικού τους συστήματος έδειξαν ότι πολυδύναμα HSCs βρίσκονται στον μυελό των οστών του ενήλικου μυώ και στο εμβρυικό ήταρ (ΑπόAbramson et al., 1977; Harrison and Russell, 1972; Jordan et al., 1990). Στα προγενέστερα στάδια ο αμυνικός σάκος παράγει τα πρώτα κύτταρα (ερυθροκύτταρα) του αιμοποιητικού συστήματος και για πολλά χρόνια ήταν διαδεδομένη η αντίληψη ότι τα προγονικά αιμοποιητικά κύτταρα του αμυνικού σάκου εγκαθιδρύοντο το ενήλικο αιμοποιητικό σύστημα (Moore and Metcalf, 1970). Ωστόσο πιο πρόσφατα δείχθηκε ότι νωρίς κατά την ανάπτυξη τα ανώριμα προγονικά κύτταρα του αιμοποιητικού βρίσκονται σε μια διαφορετική ανατομική περιοχή με μεσοδερμική πρόελευση μέσα στο έμβρυο του μυώ, την AGM (Aorta, Gonad, Mesonefros) περιοχή (Medvinsky et al., 1993; Muller et al., 1994). Σε αυτή την περιοχή παρουσιάζονται κατά την 8-10η ημέρα της εμβρυοκηντρικής ανάπτυξης τα πρώτα HSCs τα οποία θα παράγουν τα κύτταρα του μόνιμου αιμοποιητικού συστήματος (Dzierzak and Speck, 2008). Μετά την 10η ημέρα τα HSCs από την AGM περιοχή, διαμέσου της κυκλοφορίας, μεταναστεύουν στο ενδοθήλιο του εμβρυοκυττάρου ήπατος (Εικόνα 1.1). Από την 11η εμβρυοκηντρική ημέρα τα HSCs πολλαπλασιάζονται με συνέπεια να αυξάνονται σε αριθμό με εκθετικού ρυθμό, ευνοούμενα από το υποστηρικτικό μικροπεριβάλλον που δημιουργούν τα ηπατικά κύτταρα (Ema and Nakachi, 2000). Από τα μισά της εμβρυοκηντρικής ανάπτυξης μέχρι λόγο πριν τη γέννηση το εμβρυικό ήταρ παραμένει το κυρίως αιμοποιητικό όργανο ενώ από την 16η εμβρυοκηντρική ημέρα τα βιλαστικά και προγονικά αιμοποιητικά κύτταρα αποκινούν τον μυελό των οστών και τον σπλήνα (Εικόνα 1.2). Είναι γενικά αποδεκτό ότι ο αριθμός των HSCs του εμβρυοκυττάρου ήπατος αυξάνεται όχι μόνο λόγω της μετανάστευσης τους από άλλους ιστούς αλλά και λόγω του in situ πολλαπλασιασμού τους (Godin and Cunamo, 2005; Medvinsky and Dzierzak, 1998).

Η πρώτη φάση μετανάστευσης αιμοποιητικών κυττάρων προς το εμβρυικό ήταρ διαρκεί από την 9η έως την 10η εμβρυοκηντρική ημέρα, όταν το ενδοθήλιο του ήπατος αποκινείται από μυελοερυθροειδείς προγόνους οι οποίοι παράγουν ώριμα ερυθροκύτταρα (McGrath and Palis, 2005). Το πρώτο κύμα κυτταρικής μετανάστευσης προς το ήταρ είναι πιο πιθανό ότι ξεκινά από τον αμυνικό σάκο, ο οποίος έχει ήδη παράγει μεγάλο αριθμό προγονικών κυττάρων του αιμοποιητικού και έχει εγκαθιδρύσει τις πρώτες συνδέσεις με το εμβρυικό ήταρ μέσω αγγείων. Τα πρώτα HSCs κύτταρα παρουσιάζονται στο εμβρυικό ήταρ την 11η εμβρυοκηντρική ημέρα προέρχονται από την AGM περιοχή και τον πλακούντα και διέρχονται μέσω των αγγείων (Dzierzak and Speck, 2008). Μετά την 12η εμβρυοκηντρική ημέρα το ήταρ γίνεται ο κεντρικός εμβρυικός ιστός στον οποίο παρατηρείται αυτό-ανανέωση και διαφοροποίηση των HSCs. Ο αριθμός των HSCs φθάνει το μέγιστο των περίπου 1000 κυττάρων κατά την 15η με 16η εμβρυοκηντρική ημέρα.
κύτταρα και προερυθροβλάστες, υποδεικνύοντας ενεργή ερυθροποιήση, ενώ τα μυελοειδή και λεμφοειδή κύτταρα παράγονται σε μετέπειτα αναπτυξιακά στάδια. Υπάρχει περιορισμένη γνώση για το μικροπεριβάλλον του εμβρυικού ήπατος το οποίο υποστηρίζει τον πολλαπλασιασμό και διαφοροποίηση

Εικόνα 1.1: Η ανάπτυξη του αιμοποιητικού συστήματος. Στον ενήλικο μη, άλλοι κυτταρικοί τύποι του αίματος παράγονται από βλαστικά κύτταρα του αιμοποιητικού (HSCs) που βρίσκονται στον μυελό των οστών. Η διεξαγωγή του HSC διατηρείται σε συγκεκριμένα διαμερίσματα (ενδοοστεϊκό και περιηγεγεικό) στα οποία βρίσκονται σε στενή επαφή με το μικροπεριβάλλον του ιστού. Τα ενήλικα HSC παράγονται κατά την εμβρυική ανάπτυξη. Τα HSC ανηγερνόνται για πρώτη φορά στην περιοχή AGM και αργότερα μεταναστεύουν σε ιστούς όπως ο αμυντικός σάκος, ο πλακούντας και το εμβρυικό ήπαρ. Κατά την 15η εμβρυική ημέρα οι HSC πολλαπλασιάζονται στο ήπαρ, το οποίο παραμένει ο κύριος αιμοποιητικός ιστός όπου την μετανάστευση των κυττάρων στον μυελό των οστών έχει σημαντική. Άνευ αρκετού από τους εξής οι ενηλίκοις κυττάρων αναγνωρίζονται στην περιοχή AGM, οι HSC παράγονται στην περιοχή έως την εμβρυική γέννηση, όπου αναπτύσσονται σε κύτταρα εμβρυών (Ema and Nakauchi, 2000; Robin and Durand).

υστερα από την οποία φθάνει σε ένα πλατό και αρχίζει να ελαττώνεται (Ema and Nakauchi, 2000; Morrison et al., 1995). Καθόλου αυτή τη χρονική περίοδο το εμβρυικό ήπαρ έχει μεγάλη περιεκτικότητα σε προγονικά κύτταρα του αιμοποιητικού όλων των κυτταρικών σειρών (ερυθροειδή, μυελοειδή, λεμφοειδή) γεγονός που επιβεβαιώνει τον σημαντικό του ρόλο ως οργανικός παραγωγής διαφοροποιημένων αιμοποιητικών κυττάρων. Με την πρόοδο της κύησης η διαδικασία της διαφοροποίησης αλλάζει κατεύθυνση προς διαφορετικές κυτταρικές σειρές. Αρχικά το πρώτο εμβρυικό ήπαρ είναι εμπλουτισμένο σε CFU-E (colony formation unit erythroid).

Embryo Fetus Adult

<table>
<thead>
<tr>
<th>Embryo</th>
<th>Fetus</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placenta</td>
<td>Aorta Gonad Mesonephros</td>
<td>Liver</td>
</tr>
<tr>
<td>Umbilical Artery</td>
<td>Endosteal niche</td>
<td>Osteoblasts</td>
</tr>
<tr>
<td>Vitelline Artery</td>
<td>Bone marrow</td>
<td>Blood vessels</td>
</tr>
<tr>
<td>Yolk Sac</td>
<td>Stroma</td>
<td>Vascular niche</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Embryo</th>
<th>Fetus</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placenta</td>
<td>Aorta Gonad Mesonephros</td>
<td>Liver</td>
</tr>
<tr>
<td>Umbilical Artery</td>
<td>Endosteal niche</td>
<td>Osteoblasts</td>
</tr>
<tr>
<td>Vitelline Artery</td>
<td>Bone marrow</td>
<td>Blood vessels</td>
</tr>
<tr>
<td>Yolk Sac</td>
<td>Stroma</td>
<td>Vascular niche</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Embryo</th>
<th>Fetus</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placenta</td>
<td>Aorta Gonad Mesonephros</td>
<td>Liver</td>
</tr>
<tr>
<td>Umbilical Artery</td>
<td>Endosteal niche</td>
<td>Osteoblasts</td>
</tr>
<tr>
<td>Vitelline Artery</td>
<td>Bone marrow</td>
<td>Blood vessels</td>
</tr>
<tr>
<td>Yolk Sac</td>
<td>Stroma</td>
<td>Vascular niche</td>
</tr>
</tbody>
</table>
Εισαγωγή: Ανάπτυξη και διαφοροποίηση του αιμοποιητικού συστήματος

tων HSCs. Είναι ενδιαφέρον το γεγονός ότι στο εμβρυοκό ήπαρ τα HSCs βρίσκονται εντός του κυτταρικού κύκλου, ενώ αντιθέτα στο μυελό των οστών τα HSCs είναι ηρεμούντα (quiescent). Είναι χαρακτηριστικό, ότι τα εμβρυοκά HSCs παρουσιάζουν μεγαλύτερη ικανότητα ανασύστασης του αιμοποιητικού συστήματος σε σχέση με τα ενήλικα HSCs όταν μεταφερθούν σε μίας οι οποίοι έχουν υποστεί ακτινοβολήση, υποδεικνύοντας ενεργές διαφορές μεταξύ εμβρυοκανίων και ενήλικων HSCs (Harrison et al., 1997; Morrison et al., 1995).

Εικόνα 1.2: Η χρονική σειρά των κύριων γεγονότων κατά την αιμοποίηση στο έμβρυο του μυός.
Τα πάνω βέλη απεικονίζουν την ημέρα κατά την οποία παράγονται αιμοποιητικά κύτταρα από τους συγκεκριμένους ιστούς. Τα κάτω βέλη απεικονίζουν την εκκίνηση της μετανάστευσης των αιμοποιητικών κυττάρων προς τους δευτερεύοντες αιμοποιητικούς ιστούς (Από Dzierzak and Speck, 2008).

Παρά τις διαφορές τους, τα HSCs της AGM, του εμβρυοκού ήπατος και του μυελού των οστών χαρακτηρίζονται από τις εξής κοινές ιδιότητες: 1) έχουν την δυνατότητα να παράγουν όλα τα διαφοροποιημένα κύτταρα του αιμοποιητικού συστήματος, 2) έχουν την ικανότητα αυτό-ανανέωσης 3) παρουσιάζουν μεγάλη ικανότητα κυτταρικού πολλαπλασιασμού και κλωνικής ανάπτυξης 4) είναι ενεργά για μεγάλη χρονική περίοδο, θεωρητικά και για ολόκληρη την διάρκεια ζωής του οργανισμού. Το φαινοτυπικό προφίλ των HSCs προτείνει την κοινή καταγωγή των αρχέγονων αιμοποιητικών κύτταρων της AGM, του εμβρυοκού ήπατος και του μυελού των οστών αφού όλα βρέθηκαν να είναι αρνητικά για μάρτυρες διαφοροποίησης (CD3, CD19, B220, Gr1, Mac-1, Ter-119) και θετικά για μάρτυρες των βλαστικών κυττάρων του αιμοποιητικού όπως οι Sca-1, c-kit και CD34 (Sanchez et al., 1996). Ωστόσο όσον αφορά την έκφραση του CD41, ενός μάρτυρα της πρώιμης αιμοποίησης, δείχνει ότι εκφράζεται από τα HSCs της AGM περιοχής, ενώ αντιθέτα απουσιάζει από τα HSC του πλακούνα και του εμβρυοκού ήπατος (Robin et al., 2011). Επίσης διαφορετικές έρευνες έχουν προτείνει ότι τα εμβρυοκά HSCs εκφράζουν CD34, VE-cadherin και AA4.1+ σε αντίθεση με τα ενήλικα HSCs που
είναι αρνητικά για τους προηγούμενους μάρτυρες αλλά εκφράζουν endomycin (Mikkola and Orkin, 2006). Πιο πρόσφατες μελέτες πρότειναν ότι τόσο τα HSCs του εμβρυικού ήπατος όσο και τα ενήλικα HSCs του μυελού των οστών μπορούν να διαχωριστούν με βάση την έκφραση υποδοχέων της οικογένειας SLAM. Πιο συγκεκριμένα τα CD150+CD48-CD220- κύτταρα αποτελούν πολυδύναμα βλαστικά κύτταρα του αιμοποιητικού όπου δείχνει από την ικανότητα τους για μακριάς διάρκειας ανασύσταση του αιμοποιητικού συστήματος ακτινοβολημένων μυών (Kiel et al., 2005; Kim et al., 2006a).

1.2. Τα κύρια μοντέλα διαφοροποίησης των εμβρυικών και ενηλίκων βλαστικών κυττάρων του αιμοποιητικού συστήματος

Το επικρατέστερο μοντέλο για τη διαφοροποίηση των βλαστικών κυττάρων του αιμοποιητικού στον ενήλικο μου προβλέπει ότι το πρώτο βήμα δέσμευσης προς διαφοροποίηση των βλαστικών κυττάρων του αιμοποιητικού ή των πολυδύναμων προγονικών κυττάρων του αιμοποιητικού (MPP multipotent progenitors) περιλαμβάνει την ανάπτυξη διαχωρισμίου κυττάρων κυττάρων, κυττάρων των μεγακαρυοκύτταρων συστήματος και κυττάρων των συστήματος λεμφοειδούς (Orkin and Zon, 2008; Reya et al., 2001).

Αυτό το μοντέλο υποστηρίζεται από τα πειράματα που οδήγησαν στην απομόνωση του κοινού προγόνων της μελεοειδούς σειράς (CMP, common myeloid progenitor) και του κοινού προγόνων της λεμφοειδούς σειράς (CLP, common lymphoid progenitor) αντίστοιχα, όπως και των παραγόνων του CMP, των κοινών προγόνων των μεγακαρυοκύτταρων/ερυθροκύτταρων (MEP Megakaryocyte/Erythroid progenitor) και κοκκινοκύτταρων/μονοκύτταρων (GMP granulocyte/macocyte progenitor) (Akashi et al., 2000; Kondo et al., 1997). Σύμφωνα με το προηγούμενο μοντέλο το CMP και οι άμεσοι απόγονοι του οι GMP και MEP, θα παράγουν τελικώς διαφοροποιημένα, μεγακαρυοκύτταρα, μονοκύτταρα, κοκκινοκύτταρα και ερυθροκύτταρα ενώ από τον CLP θα παραγωθούν τα άρματα B και T κύτταρα (Εικόνα 1.3). Ωστόσο είναι δυνατόν να υπάρχουν και διαφορετικά μονοπάτια διαφοροποίησης και απομένει να δείχνει εάν ο κοινός πρόγονος της μελεοειδούς σειράς και ο κοινός πρόγονος της λεμφοειδούς σειράς είναι τα μόνα ενδιάμεση κυτταρικά προϊόντα κατά την διαφοροποίηση των βλαστικών κυττάρων του αιμοποιητικού συστήματος. Για παράδειγμα πιο πρόσφατα δεδομένα προτείνουν μια εναλλακτική πορεία κατά την διαφοροποίηση του ενήλικου αιμοποιητικού συστήματος αφού βρέθηκε ότι τα ενήλικα πολυδύναμα προγονικά κύτταρα του αιμοποιητικού μπορούν να παράγουν διαφοροποιημένους απογόνους οι οποίοι παρουσιάζουν ταυτόχρονα δυναμικό διαφοροποίησης προς B και T κύτταρα αλλά
Εισαγωγή: Ανάπτυξη και διαφοροποίηση του αιμοποιητικού συστήματος

Εικόνα 1.3: Το μοντέλο του διαχωρισμού μεταξύ μυελοειδούς και λεμφοειδούς κυτταρικής μοίρας. Σύμφωνα με το μοντέλο αυτό το πρώτο βήμα περιλαμβάνει το διαχωρισμό μεταξύ της μυελοειδούς και λεμφοειδούς κυτταρικής σειράς όπως υποστήριχθηκε από την απομόνωση του κοινού προγόνου της λεμφοειδούς σειράς (CLP) και του κοινού προγόνου της μυελοειδούς σειράς (CMP). Τα LT-HSCs (long term-haemopoietic stem cells) είναι αιμοποιητικά βλαστικά κύτταρα τα οποία μπορούν να δώσουν μακράς διάρκειας ανασύσταση του αιμοποιητικού συστήματος ενώ αντίθετα τα ST-HSCs (short-term haemopoietic stem cells) είναι βλαστικά κύτταρα του αιμοποιητικού με πιο περιορισμένο δυναμικό αυτό-ανανέωσης. Η διαφοροποίηση του κοινού προγόνου της λεμφοειδούς σειράς μπορεί σύμφωνα με το παρόν μοντέλο να δώσει pro-B, pro-T και pro-NK κυτταρικούς προγόνους, ενώ ο κοινός πρόγονος της μυελοειδούς σειράς διαφοροποιείται στους κοινό πρόγονο των κοκκιοκυττάρων, μονοκυττάρων (GMP) και κοινό πρόγονο των μεγακαρυοκυττάρων, ερυθροκυττάρων (MEP) (Από Luc et al., 2008).

και προς μονοκύτταρα και κοκκιοκύτταρα, χωρίς να μπορούν να παράγουν μεγακαρυοκύτταρα (Adolfsson et al., 2005; Ye and Graf, 2007). Αυτά τα κύτταρα τα οποία εκφράζουν ισχυρά τον υποδοχέα κυτταρικής επιφανείας CD135 (Flt3, Fms-like tyrosine kinase 3) και παρουσιάζουν μεταγραφική έκφραση διαφόρων λέμφο-ειδικών γονιδίων ονομάστηκαν LMPP (lymphoid-primed multipotent progenitors) (Yang et al., 2005). Η μελέτη για την διερεύνηση των ενδιάμεσων προγονικών κυτταρικών προϊόντων του αιμοποιητικού συστήματος συνεχίζεται, με την τροποποίηση των υπαρχόντων μοντέλων, η οποία έγινε μάλιστα προκύπτον. (Luc et al., 2008).

Για την ταυτοποίηση των ενδιάμεσων κυτταρικών τύπων κατά τη διαφοροποίηση των βλαστικών κυττάρων του αιμοποιητικού συστήματος στο εμβρυώδη ήπαρ, οι Katsura et al. χρησιμοποίησαν ένα
εισαγωγή: Ανάπτυξη και διαφοροποίηση των αιμοποιητικών συστήματος

τροποποιημένο in vitro σύστημα καλλιέργειας προγονικών κυττάρων του αιμοποιητικού το οποίο αντιγράφει την ικανότητα διαφοροποίησης προς ερυθροκύτταρα (E), μακροφάγο (M), B και T κύτταρα ταυτόχρονα. Τα ευρήματα τους πρότειναν την ύπαρξη απογόνων με δυναμικό διαφοροποίησης προς M/E/T/B, M/E, M/T/B, M/T, και M/B καθώς και προγονικά κύτταρα του αιμοποιητικού με δυναμικό διαφοροποίησης μόνο προς ένα συγκεκριμένο κυτταρικό τύπο (Kawamoto et al., 2000; Lu et al., 2002). Ωστόσο δεν βρέθηκαν προγονικά κύτταρα με δυναμικό διαφοροποίησης αποκλειστικά προς T/B κύτταρα αμφισβητώντας έτσι την ύπαρξη των CLP κυττάρων στο εμβρυικό ήταρ (Εικόνα 1.4). Τα προηγούμενα πειράματα αμφισβήτησαν επίσης την ιδέα ότι υπάρχει νορίς κατά την εμβρυική διαφοροποίηση του αιμοποιητικού διαχωρισμός του μυελοειδούς και λεμφοειδούς μονοπατιού. Ωστόσο επειδή οι ερευνητές

δεν μπόρεσαν να καθορίσουν τον φαινότυπο των συγκεκριμένων ενδιάμεσων κυτταρικών τύπων, αυτά τα κύτταρα δεν μπόρεσαν να απομονωθούν και να δοκιμαστούν ως προς το δυναμικό διαφοροποίησής τους με εναλλακτικές μεθοδολογίες. Οι Akashi et al. αποτελούσαν επίσης να προσδιορίσουν τους ενδιάμεσους προγονικούς κυτταρικούς τύπους στο εμβρυικό ήταρ και πρότειναν την ύπαρξη κυττάρων με παρόμοιο προφίλ δεικτών κυτταρικής επιφανείας όπως οι CLPs και CMPs του μυελού των οστών. Οι προηγούμενοι κυτταρικοί τύποι όταν απομονώθηκαν και μεταμορφώθηκαν σε μύς παρήγαγαν τα αναμενόμενα κυτταρικά προϊόντα, με την εξαίρεση ότι 1 από 14 CLP κύτταρα διαφοροποιήθηκε σε μακροφάγα. Επίσης οι CMP του εμβρυικού ήπατος έδωσαν B κύτταρα, αλλά όχι Τ κύτταρα με συχνότητα 1 τα 160 κύτταρα. Επομένως δεν είναι ακόμη ξεκάθαρο εάν στο εμβρυικό ήπαρ υπάρχουν
1.3. Η ρύθμιση της αυτό-ανανέωσης των εμβρυικών και ενώλικων βιολογικών κυττάρων στους αμυλοποιητικούς ιστούς

Η ισορροπία μεταξύ αυτό-ανανέωσης και διαφοροποίησης των βιολογικών κυττάρων του αμυλοποιητικού είναι σημαντική ώστε να μην εξαντληθεί ο περιορισμένος αριθμός των HSCs αλλά και για να παρατηρηθεί κανόνας αριθμούς όρισμον κυττάρων του αιματος για να καλυφθούν οι φυσιολογικές ανάγκες του οργανισμού. Στον ενώλικο μια, τα HSCs βρίσκονται κυρίως στην G0 φάση και παρασκεύασουν πολύ χαμηλό ρυθμό εισόδου στον κυτταρικό κύκλο (Cheshier et al., 1999). Τα ενώλικα HSCs εντοπίζονται στον μυελό των οστών σε στενή επαφή με κύτταρα του στρώματος, τα οποία προσφέρουν ένα υποστροφικό μικροπεριβάλλον για τα HSCs μέσω απευθείας κυτταρικών επαφών ή μέσω της παραγωγής διαλυτών ρυθμιστικών μορίων (Εικόνα 1.1). Έχουν περιγραφεί τουλάχιστον δύο εξειδικευμένα ιστικά διαμερίσματα στα οποία βρίσκονται HSCs, το πρώτο στην ενδοστική επιφάνεια του οστού και αποτελείται από οστεοβλάστες και το δεύτερο κοντά στα αγγεία του οστού (Calvi et al., 2003; Kiel et al., 2005). Τα ενώλικα HSCs βρίσκονται πιθανά σε στενή επαφή με διάφορους κυτταρικούς τύπους σε αυτά τα ιστικά διαμερίσματα, οι οποίοι δεν έχουν καμιά ευελιξία. Μερικοί από τους εξωγενείς ρυθμιστές οι οποίοι έχουν δειχθεί να πατίζουν σημαντικό ρόλο στην απόφαση για αυτό-ανανέωση ή διαφοροποίηση είναι τα TPO, Flt3/Flik2 Ligand, SCF, IL-11 και IL-3. Επιπλέον οι αποφάσεις των HSCs για πολλαπλασιασμό ή διαφοροποίηση βρίσκονται υπό τον έλεγχο διαφόρων σημαντικών μονοπατιών τα οποία περιλαμβάνουν κυτταροκίνες του αμυλοποιητικού και σημαντικούς μονοπατία όπως το BMP-4 και το μονοπάτι της Tie2/Angiopoietin-1 (Εικόνα 1.5, Arai et al., 2004).

Εκτός από τις κυτταρικές επαφές και τα εξωκυττάρια σήματα, η αυτό-ανανέωση των HSCs ελέγχεται από πολιώτηρους εγγενείς ρυθμιστές (Εικόνα 1.5). Μα πολλά μελετημένα ομάδα ρυθμιστικών μορίων που ελέγχουν τον πολλαπλασιασμό των HSCs, είναι οι αναστολείς του κυτταρικού κύκλου P21 και P27. Ο P21 είναι ένας από τους καλύτερα χαρακτηρισμένους αναστολείς του κυτταρικού κύκλου των θηλαστικών το οποίος έχει σημαντικό ρόλο στην ρύθμιση του κυτταρικού κύκλου των βιολογικών κυττάρων του αμυλοποιητικού. Σε p21/- μύες παρατηρήθηκε αυξημένης πολλαπλασιασμός των HSCs του μυελού των οστών καθώς και αύξηση του αριθμού τους υπό φυσιολογικές ομοιοστατικές συνθήκες. Επιπλέον η επαναλαμβανόμενη μεταμόσχευση ενώλικων HSCs από p21/- μύες στον μυελό των οστών ακτινοβολημένων μικρών οδήγησε στο θάνατο των μυών αυτών λόγω αδυναμίας αναστολής του αμυλοποιητικού συστήματος από τα p21/- HSCs (Cheng et al., 2000b). Οσον αφορά τον αναστολέα p27,
έχει δειχθεί ότι εκφράζεται σε υψηλή επίπεδα στα προγονικά κύτταρα του αιμοποιητικού (Taniguchi et al., 1999). Οι p27/- μύες αναπτύσσουν μεγαλύτερο σώμα και μεγαλύτερο μέγεθος οργάνων συμπεριλαμβανομένων των αιμοποιητικών. Σε αντίθεση με το τι παρατήρηθηκε στους p21/- μύες, ο αριθμός, η διάρκεια του κυτταρικού κύκλου και η αυτό-ανανέωση των HSCs του μυελού των οστών ήταν φυσιολογική στους p27/- μύες, ενώ οι αριθμοί των προγονικών κυττάρων του αιμοποιητικού αυξήθηκαν στους ίδιους μύες. Επιπλέον τα προγονικά κύτταρα του αιμοποιητικού από ενήλικες p27/- μύες δειχθήκε ότι πολλαπλασιάζονται με πιο έντονο ρυθμό από τα αντίστοιχα κύτταρα ενηλίκων μύων αγριού τύπου. (Cheng et al., 2000a; Fero et al., 1996).

Ανάμεσα στους εγγενείς ρυθμιστές της αυτό-ανανέωσης των HSCs άνθρωποι οι μεταγραφικοί παράγοντες c-Myb, GATA-2 και μέλη της αικογένειας HOX. Ο c-Myb προωθεί τον πολλαπλασιασμό των HSCs πιθανόν μέσω την επαγωγή του c-Myb και της επακόλουθης αύξησης στην έκφραση των c-kit και Flt3 (κυτταρικού υποδεχόμενο του ενυδρού του κυτταρικού πολλαπλασιασμού). Οι μύες στους οποίους έχει απενεργοποιηθεί το γονίδιο του c-myb παθαίνουν την 15η εμβρύονα ημέρα λόγω ανοαμαλίας της μόνης αιμοποίησης (Mucenski et al., 1991). Παρατηρούσαν οι GATA2/- μύες παθαίνουν κατά την 11η εμβρύονα ημέρα λόγω παρατηρούμενης ανυπερβολικής αναπάτυξης και διατήρησης των εμβρυικών HSCs (Tsai et al., 1994). Οπότε ο ακριβής ρόλος του GATA-2 στην ρύθμιση της αυτό-ανανέωσης των HSCs δεν έχει αποσαφηνιστεί. Δύο εξειρρητικές ερευνητικές ομάδες ανέφεραν ότι ο GATA-2 ρυθμίζει αρνητικά τον πολλαπλασιασμό των HSCs του μυελού των οστών, ενώ οι Kitajima et al. έδειξαν ότι ο GATA-2 προωθεί τον πολλαπλασιασμό των ενηλίκων HSCs (Eroe et al., 2002; Heyworth et al., 1999; Kitajima et al., 2002). Ωστόσο αφορά τους Hox μεταγραφικούς παράγοντες η υπερέκφραση του HoxB4 και HoxB7 έχει δειχθεί ότι επάγει έντονο κυτταρικό πολλαπλασιασμό των ενηλίκων HSCs in vitro (Care et al., 1999; Sauvageau et al., 1995). Ωστόσο η δημιουργία μυών στους οποίους έχουν απενεργοποιηθεί συγκεκριμένα Hox γονίδια δεν έχουν επιβεβαιώσει συχνά Hox γονίδια. Σε αναλώνες τους μύες οι κυττάροι βεβαιωθηκαν μικρές μείωσης στον αριθμό των βλαστικών και προγονικών κυττάρων του αιμοποιητικού, καθώς και μικρή μειώση των HoxB4/- για ανασύσταση του αιμοποιητικού ατυχοβολημένων μυών (Brun et al., 2004). Η ταυτόχρονη γονιδιακή στόχευση και αδρανοποίηση των HoxB3/B4 είχε ως αποτέλεσμα την παραγωγή ποιοτικά παρόμοιων αλλά πιο σωβαρών φαινοτύπων (Björnsson et al., 2003). Στο σύνολο τους αυτές οι έρευνες επιβεβαιώνουν ότι οι HoxB3 και HoxB4 παράγοντες διαδραματίζουν σημαντικό ρόλο αλλά δεν είναι απολύτως απαραίτητοι για την φυσιολογική αυτό-ανανέωση των ενηλίκων HSCs αφού η ενεργότητά τους μπορεί να αναπληρωθεί από άλλα Hox γονίδια. Επιπλέον πειράματα ανταγωνιστικής μεταμόσχευσης βλαστικών κυττάρων του αιμοποιητικού προέκυψαν ότι τα HSCs του μυελού των οστών από τα οποία έχει απενεργοποιηθεί το HoxA9 γονίδιο παρουσιάζουν σημαντικές ανωμαλίες στην ανασύσταση του αιμοποιητικού συστήματος ατυχοβολημένων μυών στα οποία μεταμοσχεύθηκαν (Lawrence et al., 2005). Μια εξήγηση για τον ισχυρό φαινοτύπο που
παρατηρείται ύστερα από την γενετική στάχτωση του HoxA9 σε σχέση με τα HoxB3/B4 είναι τα υψηλά επίπεδα έκφρασης του HoxA9 στα HSCs. Αυτό το πρότυπο έκφρασης υποδεικνύει ότι το HoxA9 είναι ο

Εικόνα 1.5: Το δίκτυο ρύθμισης της αυτό-ανανέωσης των HSCs. Η αυτό-ανανέωση των HSCs ρυθμίζεται από πολυάριθμους εξωτερικούς και εσωτερικούς ρυθμιστικούς μηχανισμούς. Οι εξωτερικοί ρυθμιστές της αυτό-ανανέωσης των HSCs περιλαμβάνουν διαλυτά μόρια, κυτταρικές και εμβρυακικές υποδοχές. Οι εσωτερικοί ρυθμιστές της αυτό-ανανέωσης αποτελούνται από σημαντικούς εξωτερικούς ρυθμιστικούς και συμπληρώματα αναδιάταξης της χρωματίνης. Τόσο οι εξωτερικοί όσο και οι εσωτερικοί ρυθμιστείς της αυτό-ανανέωσης των HSCs μπορούν να ασκήσουν θετική ή αρνητική δράση (Τροποποιημένο από Li, 2011; Mansson et al., 2007).

πιο σημαντικός ρυθμιστής της αυτό-ανανέωσης των HSCs μεταξύ των Hox γονιδίων.

Σε αντίθεση με τα ενήλικα HSCs, τα εμβρυακικά εντοπίζονται σε διαφορετικά ανατομικά διαμερίσματα και μεταναστεύουν διαρκώς κατά τη διάρκεια της ανάπτυξης. Επομένως η ρύθμιση της αυτό-ανανέωσης των HSCs εξαρτάται από μεγάλο βαθμό από τα σήματα που λαμβάνουν στο μικροπεριβάλλον του ιστού που έχουν μεταπεριγραφεί πιθανότατα κατά την ανάπτυξη. Όπως αναφέρθηκε η πρώτη περιοχή που αυτόνομα παράγει άριστα HSCs, η AGM. Με τη χρήση ενός συστήματος καλλιέργειας οργάνων εξω από το έμβρυο και με την μεταφόρτωση γονιδίων στο ακτινοβολημένον μικροπεριβάλλον μικροσκοπικών HSCs, η AGM επιτύχησε να διατηρήσει την αυτό-ανανέωση των HSCs και να αναπτύξει ένα ανεξάρτητο ιστού. Οι κυτταρικοί τύποι και τα διαλυτά μόρια που μεταφέρονται σε ακτινοβολημένον μικροπεριβάλλον μικροσκοπικών HSCs και λειτουργούν ως δεξαμενές αποθήκευσης των HSCs στην μέση της κύησης (Ema and Nakachi, 2007).
24 από βλαστικών των ανανέωση λοιπόν διαφόρων εκκρίνουν αναπτύσσονται παράγουν τον οποίους προηγούµενων κυτταρικών σειρών, αναγνώρισαν έναν μεγάλο αριθµό γονιδίων τα οποία πιθανόν παιζον σημαντικό ρόλο στην υποστήριξη των HSCs του εµβρυικού ήπατος (Hackney et al., 2002). Η λειτουργία των προηγούµενων γονιδίων αναµένεται να µελετηθεί. Μια διαφορετική έρευνα εδείχε όταν τα CD3+Ter119- κύτταρα του ήπατος µπορούν να υποστηρίξουν την ανάπτυξη των HSCs όταν οι δύο κυτταρικοί τύποι καλλυρισταντα µατόχρονα (Zhang and Lodish, 2004). Ωστόσο η κυτταρική σύσταση των ιστών στους οποίους εντοπίζονται και διαφοροποιούνται τα εµβρυικά HSCs παρατάσσεται σε µεγάλο βαθµό άγνωστη. Είναι ενδιαφέρον όταν τα εµβρυικά HSCs εντοπίζονται στους οποίους οι οποίοι φέρουν µεγάλο αριθµό αγγείων. Ένας µεγάλος αριθµός µελετών έχει εντοπίσει τα εµβρυικά HSCs στο ενδοθήλιο και το µεσέχοι τα κυτταρικών αγγείων του εµβρύου όπως την ασφή. In vitro και in vivo παράµετρα στον µι, την όρη και τον άνθρωπο υποστηρίζουν την ύµατση εξειδικευµένων ενδοθηλιακών κυττάρων, τα οποία είναι νοµικά να παράγουν HSCs (Fraser et al., 2003; Nishikawa et al., 1998). Κατά την εµβρυική ανάπτυξη, τα HSCs αναπτύσσονται και πολλαπλασιάζονται στους οποίους οι οποίοι φέρουν μεγάλο αριθµό αγγείων ενώ έχει παρατηρηθεί ότι συσσωµατώµατα αµιοποιητικών κυττάρων βρίσκονται σε αρτηρίες. Τα συσσωµατώµατα αυτά βρίσκονται σε στενή επαφή µε την αµιατική ροή και µε την πληθώρα των παραγόντων που παράγονται από τα κυκλοφορώντα κύτταρα του αίµατος. Εκτίθενται επίσης στους παράγοντες που εκκρίνουν όλοι οι προσκείµενοι ιστοί όπως το ασφή και τα µεσέχοι των ιστών. Τα εµβρυικά HSCs, λόγω της διαρκούς µετανάστευσης τους, ρυθµίζονται εξογκώνος και από παράγοντες διαφόρων προλείψεων οι οποίοι δεν έχουν πλήρος χαρακτηριστικά (Robin and Durand, 2010). Γίνεται λοιπόν αντιληπτό ότι για την καλύτερη κατανόηση των µηχανισµών των προµηθειών την αυτό-ανανέωση και πολλαπλασιασµό των εµβρυικών HSCs απαιτείται η µελέτη και ο σαφής χαρακτηρισµός των εµβρυικού µικροπεριβάλλοντος που παρέχει όλα τα απαραίτητα σήµατα για την ανάπτυξη των εµβρυικών HSCs.

1.4. Οι µεταγραφικοί παράγοντες που ρυθµίζουν την αυτό-ανανέωση και διαφοροποίηση των βλαστικών και προγονικών κυττάρων του αµιοποιητικού.

Διάφοροι µοριακοί µηχανισµοί µε χρονοκαθορισµένη δράση εµπλέκονται στην συνδυασµένη ρύθµιση του πολλαπλασιασµού και της διαφοροποίησης των HSCs εξασφαλίζοντας την οµαλή µετάβαση από το στάδιο της εµβρυικής στο στάδιο της ενήλικης αµιοποιήσης. Κατά την µετάβαση αυτή
παρατηρείται διαφορική ρύθμιση περνώντας από την εμβρυνική αιμοποίηση, κατά την οποία τα HSCs πολλαπλασιάζονται με έντονο ρυθμό κάνοντας συμμετρικές και ασύμμετρες διαρρέες ώστε να αυξηθούν σε αριθμό αλλά και να παράγουν διαφοροποιημένους απογόνους. Στην ενήλικη αιμοποίηση όπου ο ρυθμός του πολλαπλασιασμού είναι λιγότερο έντονος και γίνεται σύζευξη των ασύμμετρων διαρρέες των HSCs με την έξοδο τους από τον κυτταρικό κύκλο. Οι πιο πολλές μελέτες για τους ρυθμιστές της αυτό-ανανέωσης και της διαφοροποίησης των HSCs έχουν γίνει με την ανάλυση μυών στους οποίους είχαν απενεργοποιηθεί συγκεκριμένα γονίδια στα βλαστικά κύτταρα του αιμοποιητικού. Σαν αποτέλεσμα η δράση των γονίδιων αυτών είχε ερμηνευθεί στο πλαίσιο της ανάπτυξης του αιμοποιητικού συστήματος του μυών.

1.4.1. Ο ρόλος του SCL/TAL1

Ο SCL/TAL1 (T Acute Lymphoblastic) είναι ένας κεντρικός μεταγραφικός παράγοντας που εμπλέκεται στην ρύθμιση της διαφοροποίησης των HSCs (Εικόνα 1.6). Ο ρόλος του στον έλεγχο της αιμοποίησης δείχθηκε για πρώτη φορά σε μία στοιχεία τους οποίους είχε πλήρως απενεργοποιηθεί το γονίδιο του SCL, οι οποίοι δεν επιβίωσαν πέραν της 10θ εμβρυνικής ημέρας λόγω σοβαρής αναιμίας. Ο φαινότυπος αυτός ενέπλεξε τον SCL στην ρύθμιση της ερυθροποίησης στον αμυνακό σάκο (Robb et al., 1995). Επίσης τα SCL/- εμβρυνικά βλαστικά κύτταρα (ESC, Embryonic Stem Cells) δεν παρήγαγαν καθόλου κύτταρα της μυελοειδούς ή λεμφοειδούς κυτταρικής σειράς σε χίμαιρας μυών, ένας φαινότυπος ο οποίος αναστράφηκε ύστερα από την έκφραση του SCL (Porcher et al., 1996). Ως τόσο η έκφραση του SCL δείχθηκε ότι δεν είναι απαραίτητη για την διατήρηση και λειτουργικότητα των ενηλίκων HSCs (Mikkola et al., 2003). Στο σύνολο τους τα προηγούμενα πειράματα πρότειναν ότι ο SCL είναι απαραίτητος για την εμβρυνική αιμοποίηση και δεν παραγωγή των πρώιμων HSCs αλλά δεν απαιτείται για την διατήρηση των ενηλίκων HSCs του μυελού των οστών.

1.4.2. Ο ρόλος του RunX1/AML1

Παρόμοια με τον SCL, ο μεταγραφικός παράγοντας RUNX1/AML1 (Εικόνα 1.6) είχε δειχθεί ότι είναι απαραίτητος για την ρύθμιση της πρώιμης αιμοποίησης στο έμβρυο αλλά όχι στον μυελό των οστών (de Bruijn and Speck, 2004). Οι μίας αναφορές στο γονίδιο του RUNX1/AML1 είχε απενεργοποιηθεί πλήρως πεθαίνουν κατά την 13θ εμβρυνική ημέρα ως αποτέλεσμα της αμυοργίας στον εγκέφαλο (Okuda et al., 1996). Επίσης στα Runx1/- έμβρια δεν παρατηρήθηκαν καθόλου αιμοποιητικά κύτταρα στο εμβρυικό ήπαρ λόγω της πλήρους αποσπάσεως αιμοποίησης στην αορτή, τις ομφαλικές
Εισαγωγή: Ανάπτυξη και διαφοροποίηση του αιμοποιητικού συστήματος

αρτηρίες και στα σγέια του αμνιακού σάκου (North et al., 2002). Κατά την 13η εμβρυική ημέρα τα βλαστικά και προγονικά κύτταρα δεν αναπτύσσονται φυσιολογικά απουσία του RunX1, χωρίς ωστόσο να επηρεάζεται η πρώιμη ερυθροποίηση. Η ανάλυση των μυών στους οποίους ο RunX1 απενεργοποιείται στα κύτταρα του μυελού των οστών έδειξε ότι ο RunX1 δεν είναι απαραίτητος για την διατήρηση των HSCs του μυελού των οστών αλλά απαιτείται για την φυσιολογική ορίμανση των μεγακαρυοκυττάρων και των B και Τ λεμφοκυττάρων (de Bruijn and Speck, 2004). Συνολικά τα παραπάνω δεδομένα προτείνουν τον απαραίτητο ρόλο του RunX1 κατά την εμβρυική αιμοποίηση.

1.4.3. Ο ρόλος του CFBβ

Πειραματικά δεδομένα από διάφορες έρευνες προτείνουν ότι και ο CFBβ (core binding factor b), ο οποίος διμερίζεται με τον AML1, παίζει καίριο ρόλο στην ρύθμιση της εμβρυικής αιμοποίησης. Παρομοίως με τα Runx1/- ζώα, τα CBFβ-/- έμβρια πεθαίνουν στην μήτρα κατά την 13η εμβρυική ημέρα λόγω εκτεταμένης ενδοκρανιακής αιμοραγίας και απουσίας αιμοποίησης στο εμβρυκό ήταρ (Niki et al., 1997). Επειδή δεν έχει γίνει λεπτομερής ανάλυση της εμβρυικής αιμοποίησης απουσία του CBFβ δεν
1.4.4. Ο ρόλος του GATA2

Ένας ακόμη μεταγραφικός παράγοντας ο οποίος είναι απαραίτητος για την ρύθμιση της αιμοποίησης είναι ο GATA2 ο οποίος έχει ενεργό ρόλο στην ρύθμιση της διαφοροποίησης των HSCs προς την μυελοειδή σειρά (Walsh et al., 2002). Οι GATA2/- μύες πεθαίνουν κατά την 10^9-11 ^ 9 εμβρυική ημέρα με σοβαρή αναμια και μεγέθυνση του περικαρδίου. Στους μύες αυτούς παρατηρήθηκε πλήρης αναστολή της παραγωγής των ενθορεοδιόν προγόνων κυττάρων του αμησιακού σάκκου και σε μικρότερο βαθμό επηρεάστηκε η παραγωγή μακροφάγων στον ιδίο ιστό. Επιπλέον στις χιμερίδες που δημιουργήθηκαν με τη συμβολή GATA2/- εμβρυικών βιαστικών κυττάρων (embryonic stem cells, ESCs), δεν παρατηρήθηκε συμβολή των GATA-2/- κυττάρων στα μυελοειδή ή λεμεθοειδή κυττάρα του εμβρυικού ήπατος ή στο ενήλικο ζώο (Tsai et al., 1994). Ο χαρακτηρισμός των μονών που έφεραν ένα λειτουργικό αλληλόμορφο του GATA2 εδείξει μικρότερο αριθμό προγονικών μονικυττάρων και κοκκινοκυττάρων καθώς και μικρότερο αριθμό HSCs στον ενήλικο μυελό των οστών. Επιπλέον η ανάλυση των ετερόδιων GATA2 μυών αποκάλυψε μείωση των HSCs στην AGM περιοχή και λειτουργικές ανοιχμαλίες των HSCs ύστερα από μεταμόσχευση τους (Rodrigues et al., 2005). Τα τελευταία παράμετρα προβλέπουν ότι εκτός από την ρύθμιση της διαφοροποίησης των HSCs προς την μυελοειδή σειρά, ο GATA2 εμπλέκεται και στην ρύθμιση του πολλαπλασιασμού τους.

1.4.5. Ο ρόλος του CEBPa

Ένας μεταγραφικός παράγοντας που έχει δειχθεί να ρυθμίζει την διαφοροποίηση προς την μυελοειδή σειρά είναι ο CEBPa ο οποίος ενεργεί στο στάδιο της μετάβασης από τον CMP προς τον GMP (Εικόνα 1.6). Η δράση αυτού του παράγοντα είναι ανταγωνιστική του PU.1 ο οποίος καθορίζει την ισορροπία μεταξύ των ουδετερόφιλων και μονοκυττάρων καθοδικών των GMP κυττάρων (Zhang et al., 2004). O CEBPa αλληλεπιδρά με ρυθμιστές του κυτταρικού κόκκου και ρυθμίζει την διακοπή του κυτταρικού κόκκου η οποία σχετίζεται με τελική διαφοροποίηση. Οι μύες στους οποίους το γονίδιο του CEBPa απενεργοποιήθηκε πλήρως πεθαίνουν αμέσως μετά τη γέννηση. Το εμβρυικό ήπαρ των CEBPα/- μυών παρουσίασε ανοιχμαλίες στην διαφοροποίηση των κοκκινοκυττάρων χωρίς σημαντικές μεταβολές στα υπόλοιπα κύτταρα του αιμοποιητικού (Pabst et al., 2006). Τα HSCs του εμβρυικού ήπατος ή του μυελού των οστών από μύες στους οποίους ο CEBPa είχε απενεργοποιηθεί ειδικά στο αιμοποιητικό παρουσιάζαν επικράτηση σε πειράματα μεταμόσχευσης όπου ανταγωνίζονταν HSCs σε γκρίζο τόπο, υποδεικνύοντας ότι ο CEBPa είναι αρνητικός ρυθμιστής της αυτό-ανανέωσης των HSCs.
1.4.6. Ο ρόλος του TEL/ETV6

Ο TEL/ETV6 είναι ένας από τους μεταγραφικούς παράγοντες ο οποίος έχει μελετηθεί για το ρόλο του στην διατήρηση των HSCs. Ωστόσο, στους αριθμούς από τον κυτταρικός σάκο, χωρίς οστό στα τον άριθμος απενεργοποιήθηκε το TEL/-/- ESCs, αποκάλυψε ότι ο TEL απαιτείται για την παραγωγή διαφόρων κυττάρων του αιμοποιητικού συστήματος στον μυελό των οστών, ενώ δεν είναι απαραίτητος για την αιμοποίηση στο εμβρυοκάμπτα (Wang et al., 1997). Η ανάλυση χιμικών μοντέλων στα οποία ο TEL είχε απενεργοποιηθεί σε διάφορες κυτταρικές σειρές του αιμοποιητικού, έδειξε ότι ο TEL δεν είναι απαραίτητος για την ανάπτυξη των περισσότερων κυττάρων με εξαίρεση τα μεγακαρυοκύτταρα (Hock et al., 2004). Η γενετική απενεργοποίηση του TEL, στα HSCs του μυελού των οστών με ή χωρίς τον διαγνώσεις της Mx-Cre επάγαγε μια παραδοκική μείωση του αριθμού των κοκκιοκυττάρων και των αιμοπεταλίων του περιφερικού αίματος, χωρίς μεγάλες αλλαγές στους αριθμούς των λευκοκυττάρων. Ωστόσο, ακολούθως παρατηρήθηκε μια γρήγορη μείωση του αριθμού των HSCs του μυελού των οστών με συνέπεια και ακόλουθη μείωση του αριθμού των προγονικών κυττάρων του αιμοποιητικού (Hock et al., 2004). Επίσης, τα TEL/-/- HSCs από τον μυελό των οστών δεν συνεισέφεραν στην ανασυστασιακή της αιμοποιητικός συστήματος ακτινοβολημένων μυών, αποτελέσματα τα οποία είναι συμβατά με την απώλεια των HSCs αποστάτη του TEL. Η συνδυασμένη απώλεια των βλαστικών και προγονικών κυττάρων του αιμοποιητικού προτείνει ότι ο TEL είναι απαραίτητος για την επιβίωση των HSCs (Akala and Clarke, 2006).

1.4.7. Η οικογένεια των μεταγραφικών παραγόντων Hox και ο ρόλος τους στην αιμοποίηση

Μια άλλη οικογένεια μεταγραφικών παραγόντων με ημιαυτοκίνητος ρόλος στην ρύθμιση της διαφοροποίησης του αιμοποιητικού συστήματος είναι η Hox παράγοντες. Ο ρόλος των Hox γονιδίων στην φυσιολογική αιμοποίηση έχει εξερευνηθεί εκτενώς μέσω πειραμάτων υπερέκφρασης τους σε κύτταρα του αιμοποιητικού και την δημιουργία ζωικών μοντέλων. Πειράματα υπερέκφρασης των Hox γονιδίων στα HSCs του μυελού των οστών, του εμβρυοκοιταίου ή σε αιμοποιητικά κύτταρα από ανθρώπινο ομοφύλο λόρδο έχουν προσφέρει πληθώρα δεδομένων σχετικά με τον ρυθμιστικό ρόλο των Hox στον κυτταρικό πολλαπλασιασμό και διαφοροποίηση των αιμοποιητικών κυττάρων. Για παράδειγμα η υπερέκφραση των Hoxa10, Hoxb3 και Hoxb6 σε κύτταρα του μυελού των οστών από μύες είχε ως αποτέλεσμα την ανάπτυξη σοβαρών διατραγκτών, όπως αναστολή της διαφοροποίησης προς B και T κύτταρα, βλάβης στην ερυθροποίηση και επαγωγή άμετρου πολλαπλασιασμού των μυελοκυττάρων και λευχαιμίας (Buske et al., 2001; Fischbach et al., 2005; Sauvageau et al., 1997; Thorsteinsdottir et al.,
1997). Επίσης η υπερέκφραση του HoxA5 έχει δειχθεί να αναστέλλει την ερυθροποίηση (Fuller et al., 1999). Οι μύες στους οποίους έχει απενεργοποιηθεί το HoxA9 γονίδιο παρουσίασαν βλάβες στην διαφοροποίηση πολλών κυτταρικών σειρών του αιμοποιητικού όπως των μυελοκυττάρων και ευθροκυττάρων αποτελώντας το γονίδιο η απενεργοποίηση του οποίου επιφέρει την πιο σημαντική φαινότοπο στο αιμοποιητικό (Magnusson et al., 2007; Sauvageau et al., 1997). Μια πιθανή εξήγηση του φαινοτόπου αυτού είναι ότι το HoxA9, είναι το γονίδιο με την πιο ευρεία έκφραση στα κύτταρα του αιμοποιητικού σε σχέση με τα υπόλοιπα Hox γονίδια. Η συγχρονισμένη δράση των παραπάνω μεταγραφικών παραγόντων είναι απαραίτητη για την παραγωγή των διαφοροποιημένων και ώριμων κυτταρικών απογόνων των βλαστικών κυττάρων του αιμοποιητικού. Κάθε μεταγραφικός παράγοντας έχει συγκεκριμένη δράση κατά την διαφοροποίηση των HSCs κατευθύνοντας τα κύτταρα για δέσμευση σε συγκεκριμένες κυτταρικές σειρές και μεταβάλλοντας το μεταγραφικό τους προφίλ. Αν και η δράση αρκετών μεταγραφικών παραγόντων έχει διαλευκανθεί η διερεύνηση των γονίδιων που ρυθμίζουν την φυσιολογική αιμοποίηση κρίνεται απαραίτητη για την διαλεύκανση όλου του μεταγραφικού δικτύου που ρυθμίζει την διαφοροποίηση των HSCs.

1.5. Επιγενετικοί παράγοντες και σύμπλοκα αναδιάταξης της χρωματίνης που συμμετέχουν στην ρύθμιση της αυτό-ανανέωσης και της κυτταρικής διαφοροποίησης των βλαστικών αιμοποιητικών κυττάρων

Η διαφοροποίηση των HSCs ελέγχεται από την δράση συγκεκριμένων μεταγραφικών παραγόντων οι οποίοι επιδρούν για να μεταβάλουν το μεταγραφικό προφίλ του κυττάρου. Τα τελευταία χρόνια έχει δειχθεί ότι εξής σημαντικό ρόλο στην ρύθμιση του μεταγραφικού προφίλ ενός κυττάρου παίζουν και σύμπλοκα τα οποία είναι απογόνοι χημικές τροποποιήσεις επηρεάζοντας την οργάνωση της χρωματίνης, οδηγώντας την π.χ. σε ανοιχτή η κλειστή διαμόρφωση. Οι τροποποιήσεις αυτές οι οποίες μπορεί να είναι κληρονομικές, είναι γνωστές ως επιγενετικές τροποποιήσεις και εισάγονται από σύμπλοκα αναδιάταξης της χρωματίνης.

1.5.1. Ο ρόλος των polycomb, HATs (histone acetyltransferases), HDACs (histone deacetylases) και SWI/SNF στην ρύθμιση της δομής της χρωματίνης και της μεταγραφής

Από τους καλύτερα μελετημένους παράγοντες αναδιάταξης της χρωματίνης είναι τα σύμπλοκα Polycomb και Trithorax μαζί με τις ακετυλάσεις (HAT, histone acetyltransferase) και αποακετυλάσεις των ιστονόν (HDAC, histone de-acetylase). Ο ρόλος των Polycomb και οι Trithorax πρωτεϊνών στην ρύθμιση της μεταγραφής των Hox γονίδιων, μιας ομάδας μεταγραφικών παραγόντων που ρυθμίζουν την κυτταρική εξειδίκευση κατά μήκος του εμπροσθοπίσθηκον άξονα, περιγράφηκε για πρώτη φορά στην
Εισαγωγή: Ανάπτυξη και διαφοροποίηση του αιμοποιητικού συστήματος

Εικόνα 1.7: Η οικογένεια των γονίδιων Hox. Οι 4 ομάδες των Hox γονίδιων καθεμία από τις οποίες περιέχει 8-11 γονίδια τα οποία εντοπίζονται σε 4 διαφορετικά χρωμοσώματα. Μετακινούν-σημειώνεται ότι σε τεσσάρες διαφορετικές ομάδες μπορούν να κατανεμηθούν σε ομάδες παράλληλων γονίδιων με βάση την αλληλουχία της ομοιωτικής περιοχής (παριστάνεται με το ίδιο χρώμα). Τα κουτιά πάνω από συγκεκριμένα Hox γονίδια, συνοψίζουν τους σημαντικούς φαινοτύπους που παρουσιάστηκαν το παρενθέσεις κάτω από συγκεκριμένα Hox γονίδια, αναφέρονται σε μοντέλα µυών στους οποίους είχε απενεργοποιηθεί γενετικά το συγκεκριμένο γονίδιο και είχε µελετηθεί ο ρόλος του στην αιµοποίηση. BFU-E: µονάδα µέτρησης των αποικιών από ερυθροκύτταρα, CFU-GM: µονάδα µέτρησης των αποικιών από κοκκιοκύτταρα/µακροφάγα, EPs: προγονικά ερυθροκύτταρα, AML: οξεία µυελοειδής λευχαιμία, MEP: προγονικά κότταρα των µεγακαρυοκύτταρων/ερυθροκύτταρων, MKs: µεγακαρυοκύτταρα, MPs: προγονικά µυελοκύτταρα, MPD: διαταραχή του πολλαπλασιασµού των µυελοκύτταρων (Από Abramovich and Humphries, 2005).

Drosophila (Duncan, Lewis 1982). Ενώ το σύμπλοκο Polycomb καταστέλει την μεταγραφή των Hox γονίδιων στις περιοχές που δεν εκφράζονται, οι Trithorax προτείνουν ενεργοποιούν την μεταγραφή των Hox γονίδιων στις περιοχές που εκφράζονται. Ωστόσο νεότερα δεδομένα από έρευνες σε διάφορους...
οργανισμών μοντέλα έχουν προτείνει ότι οι παράγοντες του συμπλόκου Polycomb ρυθμίζουν πολύ περισσότερα γονίδια, εκτός των Hox, στα οποία περιλαμβάνονται κυρίως μεταγραφικοί παράγοντες που επηρεάζουν ποικίλες κυτταρικές λειτουργίες και αναπτυξιακά μονοπάτια (Bracken et al., 2006; Squazzo et al., 2006). Επιπλέον η μεταγραφική ρύθμιση των γονίδιων στόχων από τους Polycomb παράγοντες δεν είναι πάντα κατασταλτική (Beisel et al., 2007). Επιπρόσθετα έχει δειχθεί ότι οι Polycomb προτείνεις ρυθμίζουν διαφορικά γονίδια στόχων σε εμβρυοκλιτικά κύτταρα και κατά την διάρκεια της δέσμευσης τους προς διαφοροποίηση σε διάφορους κυτταρικούς τύπους. Τα προηγούμενα δεδομένα έχουν οδηγήσει στην αναθεώρηση της άποψης ότι το σύμπλοκο Polycomb αποτελεί αποκλειστικά έναν επιγενετικό κατασταλέο και έχουν προτείνει την εμπλοκή του στην δυναμική ρύθμιση διαφόρων βιολογικών διαδικασιών (Lee et al., 2006). Κατά την τελευταία δεκαετία αναφορές έχουν δείξει ότι προτείνεις που συμμετέχουν στο σύμπλοκο Polycomb, εμπλέκονται στην ρύθμιση του κυτταρικού κόκκου, της οργάνωσης του κυτταροσκελετού, της κυτταρικής γήρανσης και στην πλαστικότητα και διαφοροποίηση των βλαστικών κυττάρων (Schuettengruber and Cavalli, 2009).

Διάφορα γονίδια και προτείνεις που ανήλπευστούν με τις Polycomb προτείνεις γενετική ή βιοχημική συμπεριλαμβάνονται στην οικογένεια των Polycomb προτείνων ενώ μπορεί να έχουν και διαφορετικές λειτουργίες. Τα Polycomb γονίδια αποτελούν μια ετερογενή ομάδα η οποία περιέχει βασικά μέλη και σχετιζόμενες προτείνεις. Οι Polycomb προτείνεις συγκροτούν σύμπλοκα τα οποία διεξάγονται στο DNA και την σύνθεση αυτών είναι δυναμική και μεταβλητή. Στα θηλαστικά έχουν περιγραφεί και μελετηθεί 2 Polycomb σύμπλοκα τα PRC 1 & 2 (Polycomb repressive complex 1 & 2, (Margueron and Reinberg). Οι προτείνεις που συνιστούν τον πυρήνα του PRC2 περιλαμβάνουν τις Eenhancer of Zeste Homolog 2 (EZH2), suppressor of Zeste 12 Homolog (SUZ12), και Embryonic Ectoderm Development (EED). Η EZH2 παρουσιάζει ενεργότητα μεθυλοπεριποίησης και η τρι-μεθυλίωσή της αποτελεί έναν σημαντικό δείκτη διαδικασιών του βιολογικού χρόνου (Simon and Kingston, 2009). Η σύνθεση του συμπλοκού PRC1 είναι ακόμα πιο ετερογενής από το PRC2 αλλά οι προτείνεις που αποτελούν την πυρήνα του συμπλοκού περιλαμβάνουν τις RING finger protein 1 (RING1), RING finger protein 2 (RNF2) BMI1 (B lymphoma Moloney murine leukemia virus integration site 1), MEL18/ PCGF2 (melanoma nuclear protein 18/Polycomb group ring finger 2), polyhomeotic homolog 1 (PH), nervous system Polycomb 1 (NSPC1), MEL18 και BMI1-like ring-finger protein (MBLR), και chromobox homolog (CBX). Το PRC1 θεωρείται ότι αναγνωρίζει την μεθυλίωση του PRC2, H3K27me3, και προσελκύεται στις κατάλληλες γενομικές θέσεις της χρωματινής (Simon and Kingston, 2009). Η προτείνη του συμπλοκού PRC1, RING1B δέχεται ενεργότητα E3 λιγότητας της ουβικοινιτινής και καταλύει τη μόνο-ουβικοινιτινόλυση της ιστόνης H2A στην λωσηνή 119, μιας τροποποιήσεως που συνδέεται με την μεταγραφική αποστάση (Schuettengruber and Cavalli, 2009). Επιπρόσθετα των διώ κύριων συμπλοκών PRC1 και PRC2, έχουν αναγνωριστεί και διαφορετικά σύμπλοκα με εναλλακτικές ενζυμικές ενεργότητες τα οποία μπορεί να εξηγούν την ποικιλότητα των βιολογικών διαδικασιών που υποβλέπουν οι Polycomb παράγοντες. Η ενζυμική ετερογένεια επιτυγχάνεται μέσω αλληλεπιδράσεων με άλλες (εκτός των κλασικών) Polycomb προτείνεις,
την ενσωμάτωση στα δυο κύρια σύμπλοκα εναλλακτικών ή ισομορφών Polycomb πρωτεινών ή μέσω του σχηματισμού συμπλόκων που ομοιάζουν του Polycomb με τον συνδυασμό μελών του PRC1 και άλλων πρωτεινών αναδιάταξης της χρωματινής (Schuettengruber and Cavalli, 2009).

Η μεθυλοτραπεζικότητα Trithorax, που μεθυλοκειται την H3K4, έχει μελετηθεί ως αντισταθμιστής της δράσης των Polycomb πρωτεινών. Ωστόσο η μοριακή λειτουργία της δεν είναι καλά χαρακτηρισμένη και δεν είναι πλήρως κατανοητό το πώς ασκεί την δράση της in vivo. Έχει δειχθεί ότι το σύμπλοκο Trithorax είναι συνδεδεμένο σε περιοχές PRE (Polycomb responsive elements) και αυτός μπορεί να είναι ένας πιθανός μηχανισμός του δυναμικού ελέγχου και μετάβασης από την ανενεργή στην ενεργή κατάσταση των γονιδιακών στόχων του Polycomb. Έχουν χαρακτηριστεί 5 ισομορφές της Trithorax με μια σταθερή καρβοξυτελική περιοχή (Trx-C) και μια μεταβλητή άμινο-τελική περιοχή (Trx-N). Επιπλέον η Trithorax πρωτεΐνη προτεινώταν σε μια N-τελική και μια C-τελική πρωτεΐνη χωρίς να είναι γνωστή η λειτουργική σημασία αυτής της τροποποίησης. Νέουτερα δεδομένα από την ανάλυση μέσω Chip-sequencing των περιοχών δεσμεύσεως του N-τελικού και C-τελικού προϊόντος της Trithorax πρότειναν ότι το πρώτο δρά σαν ένας γενικός μεταγραφικός παράγοντας και το δεύτερο συνδέεται ισχυρά με μεταγραφικούς στόχους του Polycomb (Papp and Muller, 2006; Petruk et al., 2008).

Στον έλεγχο της οργάνωσης της χρωματινής και στην ρύθμιση της γονιδιακής έκφρασης εμπλέκονται και άλλα σύμπλοκα τα οποία έχει δειχθεί ότι μπορεί ανεξάρτητα ή μέσω αλληλεπιδράσεων με το Polycomb σύμπλοκο να συμβάλουν στον επιγενετικό έλεγχο. Ένα τέτοιο παράδειγμα παραγόντων είναι τα ένζυμα ακετυλοτραπεζικές HAT (histone acetyltransferase), τα οποία καταλύουν την μεταφορά ακέτυλ-ομάδων από το ακέτυλ-CoA σε κατάλοιπα λισήν των ιστονών και τα ένζυμα με την αντίθετη ενζυμική δράση αποακετυλίσεις HDAC (histone deacetylases) (Rice et al., 2007).

Η δράση αυτών των ενζυμών επηρεάζει αμέσως την μεταγραφική ενεργοποίηση αυτοφ κρυοκοκά η επερ-ακετυλίσεις των ιστοκοκά σχετίζεται με κοινές ανεξαρτήτως δράσης της χρωματινής και καθιστεί την μεταγραφή, ενώ η αποακετυλίσεις σχετίζεται με την ετερογενετική και την μεταγραφική αποστολή. Μερικά μέλη των HATs συμπεριλαμβάνουν τις p300/CBP, MOZ και HBO1. Αυτά τα ένζυμα μεταφέρουν στο DNA μέσω της ακετυλεπιδράσης τους με ωφοτεινίους μεταγραφικούς παράγοντες και πρωτεινών που δεσμεύονται στην χρωματινή ή δεσμεύονται απευθείας στο DNA. Οι HDACs διακρίνονται σε 4 κύριες ομάδες και συνήθως δρούν στη πλαίσια πολλαπλοειδικών συμπλόκων που περιλαμβάνουν μεταγραφικούς παράγοντες και ανακατασταλτικούς παράγοντες (Rice et al., 2007).

Επιπρόσθετα των ενζυμών όπως οι HATs και HDACs που εισάγουν χημικές τροποποιήσεις στις ιστόκοκα, η δομή της χρωματινής και η μεταγραφή ρυθμίζεται και από σύμπλοκα αναβιώσεως της χρωματινής τα οποία χρησιμοποιούν την ενέργεια από την διάσπαση του ATP για να διασπάσουν τις αλληλεπιδράσεις του DNA με τα νουκλεοσώματα, για να μετακινήσουν τα νουκλεοσώματα κατά μήκος του DNA ή για να τα απομακρύνουν από την χρωματινή. Κατανοητό το τρόπο καθιστού την χρωματινή προσβάσιμη σε πρωτεϊνές και σύμπλοκα που είναι απαραίτητο να δεσμεύσουν το DNA και τις ιστόκοκα κατά την διάρκεια συγκεκριμένων κυτταρικών λειτουργιών. Ο απαραίτητος ρόλος αυτών των ενζυμών
Εισαγωγή: Ανάπτυξη και διαφοροποίηση του αιμοποιητικού συστήματος

33

Εικόνα 1.8: Το πρωτεϊνόμενο μοντέλο από τους Park et al. για τον ρόλο του Bmi-1 παράγοντα του συμπλόκου Polycomb στην ρύθμιση της διατήρησης των HSCs. Α) Στους μύες αγρίου τύπου οι HSCs μπορούν να ολοκληρώσουν ασύμμετρες διαιρέσεις για την παραγωγή HSCs και MPP (πολυδύναμων προγονικών κυττάρων του αιμοποιητικού) διατηρώντας την δεξαμενή των HSCs. Β) Απουσία του Bmi-1 η αυξημένη έκφραση του p16INK4A μπορεί να σταματήσει την πρόοδο του κυτταρικού κύκλου ενώ η αυξημένη έκφραση του p19ARF να ενεργοποιήσει την p53 και να σηματοδοτήσει την απόπτωση του κυττάρου (Από Park et al., 2003).

Έχει δειχθεί από τις ανοιμαλίες συγκεκριμένων αναπτυξιακών διαδικασιών κατά την απουσία τους, συμπεριλαμβανομένων της διατήρησης του πολυδύναμου δυναμικού διαφοροποίησης των βλαστικών κυττάρων και της ρύθμισης της αυτό-ανανέωσης και διαφοροποίησης συγκεκριμένων κυτταρικών τύπων.

Το πρώτο σύμπλοκο που ταυτοποιήθηκε σε αυτή την κατηγορία συμπλόκων είναι το SWI/SNF (Switching Defect/Sucrose NonFermenting) της ζύμης το οποίο αργότερα δείχθηκε ότι είναι ένας ρυθμιστής της δομής της χρωματίνης (Hargreaves and Crabtree, 2011). Το αντίστοιχο σύμπλοκο του SWI/SNF της ζύμης στα θηλαστικά δείχθηκε ότι είναι το BAF (Brahma-associated factors). Το σύμπλοκο BAF αποτελείται από 5 ορθόλογα γονίδια του SWI/SNF (BRG1/hBRM, BAF155/170, BAF60, BAF53a/b, and BAF47) και διάφορες άλλες υπομονάδες που είναι μοναδικές για τα θηλαστικά (BAF250a/BAF250b, BAF200, BAF45a/b/c/d, Brd9, and Brd7)(Wang et al., 1996). Γενετικές μελέτες έχουν προτείνει ότι η σταδιακή αλλαγή των διαφορετικών υπομονάδων των BAF συμπλόκων είναι απαραίτητη στην μετάβαση από τα ολοδύναμα βλαστικά κύτταρα προς τους διαφοροποιημένους νευρώνες. Τα ESCs (embryonic stem cells) εκφράζουν το BAF155 αλλά όχι το BAF170, τον Brg1 αλλά
όχι τον Brm και τον BAF53α αλλά όχι τον BAF53β (Gao et al., 2008; Kaeser et al., 2008). Τα δεδομένα αυτά τα οποία προτείνουν την διαφορικό ρόλο του συμπλόκου BAF σε συγκεκριμένα αναπτυξιακά στάδια ανέλαβαν με την συγκρότηση των υπομονάδων του, επιβεβαιώθηκαν και από πειράματα τα οποία έδειξαν ότι η απαλοιφή του Brg1 έχει ως αποτέλεσμα τον πρόωρο εμβρυικό θάνατο στο στάδιο της εμφύτευσης του ζυγατού, ενώ οι Brm/- μύες δεν παρουσίαζαν σημαντικές αναπτυξιακές ανωμαλίες. Επιπλέον διαφορετικές μελέτες πράτειναν ότι ο Brg1 και το σύμπλοκο BAF έχουν την δυνατότητα άσκησης μεταγραφικής αποσιώπησης γονιδίων. Στα λεμφοκότταρα η απενεργοποίηση του Brg1 έχει ως αποτέλεσμα την ενεργοποίηση του CD4 γονιδίου σε κύτταρα στα οποία θα έπρεπε να είναι κατασταλμένο. Η δράση αυτή εκδηλώνεται μέσω του ελέγχου in situ ρυθμιστικών στοιχείων του CD4 γονιδίου (Chi et al., 2002).

Στο σύνολό τους τα παραπάνω αποτελέσματα προτείνουν ότι επιγενετικοί μηχανισμοί και σύμπλοκα που ρυθμίζουν την δομή της χρωματίνης είναι απαραίτητοι στην εγκαθίδρυση μεταγραφικών προγραμμάτων που επάγουν την κυτταρική διαφοροποίηση.

1.5.2. Ο ρόλος των Polycomb, HATs (histone acetyltransferases), HDACs (histone deacetylases) και SWI/SNF κατά την αμισοποίηση

Οι Polycomb προτείνουν παιδί χορό ρόλο στην ρύθμιση της ανάπτυξης και διαφοροποίησης του αμισοποιητικού συστήματος. Πρόσφατα δείχθηκε ότι τα επίπεδα των Bmi1 και Mel18 επηρεάζουν την αυτό-ανανέωση και διαφοροποίηση των HSCs, με τον Bmi1 να εμπλέκεται στην ρύθμιση της αυτό-ανανέωσης των βλαστικών κυττάρων του αμισοποιητικού και τον MEL18 να ρυθμίζει την διαφοροποίηση τους (Kajiume et al., 2004). Αυτά τα δεδομένα συμφωνούν και με μια προηγούμενη αναφορά που υποδεικνύει ότι ο Bmi1 εκφράζεται στα αδιαφοροποιητή ανθρώπων κύτταρα του μυελού των οστών, ενώ άλλα μέλη όπως τα MEL18, RAED28 και EZH2, εκφράζονται πιο ισχυρά σε διαφοροποιημένα κύτταρα του αμισοποιητικού (Lessaad et al., 1998). Επιπλέον οι Bmi1/- μύες παρουσίαζαν μεγάλες ανωμαλίες στην αυτό-ανανέωση των HSCs, ενώ προγονικά κύτταρα του μυελού των οστών στα οποία απενεργοποιείται το γονίδιο του Bmi1 παρουσιάζουν μειωμένο δυναμικό πολλαπλασιασμού (Lessaad and Sauvageau, 2003; van der Lugt et al., 1994). Αντίθετα η συνεχής έκφραση του Bmi1 στα βλαστικά κύτταρα του αμισοποιητικού οδηγεί σε ενίσχυση της αυτό-ανανέωσης των HSCs, αυξημένο πολλαπλασιασμό των λεμφοκότταρων και αυξημένη πιθανότητα συμμετοχής έναντι ασβεσμετρικών διαφρέσεων (Iwama et al., 2004). Ένας από τους μοριακούς μηχανισμούς δράσης του Bmi1 για την ρύθμιση του πολλαπλασιασμού των HSCs είναι η ρύθμιση της μεταγραφής του Ink4a/Arf γονιδιακού τόπου (Eikóna 1.8). Τα Bmi1/- HSCs παρουσιάζουν υψηλότερα επίπεδα έκφρασης του Ink4a και Arf (Park et al., 2003). Τα προϊόντα των γονίδιων αυτών προκαλούν αναστολή της προοδού του κυτταρικού κόκλου και μείωση του αριθμού των HSCs. Επειδή η απαλοιφή και τον δυο γονίδια επαναφέρει τον πολλαπλασιασμό των Bmi1/- HSCs σε φυσιολογικά επίπεδα, χρειάζεται ότι ο Bmi1 διατηρεί τον αριθμό
των HSCs ρυθμίζοντας τα Ink4a και Arf γονίδια, ενώ η δράση του και σε άλλα γονίδια δεν έχει αποκλειστεί. Επίσης εκτός του Bmi1, άλλα γονίδια του Polycomb φαίνεται ότι ελέγχουν την λειτουργία των κυττάρων του αιμοποιητικού. Η υπερέκφραση του Ezh2 αυξάνει την ικανότητα των HSCs για μακράς διάρκειας ανανέωσης του αιμοποιητικού συστήματος (Kamminga et al., 2006).

Εικόνα 1.9: Η δράση του συμπλόκου Polycomb παίζει καθοριστικό ρόλο στην ρύθμιση της αυτό-ανανέωσης ή διαφοροποίησης των HSCs. Στα βλαστικά κύτταρα του αιμοποιητικού τα σύμπλοκα PRC1 και PRC2 συντελούν στην καταστολή της έκφρασης των γονίδιων που εμπλέκονται στην ρύθμιση της διαφοροποίησης, επιτρέποντας την διατήρηση των HSCs σε μια διάφοροποιητική κατάσταση. Αντίθετα, η διαφοροποίηση των HSCs έχει ως συνέπεια την μετατόπιση των συμπλόκων Polycomb και την καταστολή της έκφρασης γονίδιων που συντελούν στην διατήρηση της αυτό-ανανέωσης των HSCs (Από Martin-Perez et al., 2010).

Η έκφραση ενός μόνο αλληλομόρφου του Eed έχει ως αποτέλεσμα την αύξηση του πολλαπλασιασμού των λεμφοκυττάρων, ανομαλίες στην ανάπτυξη των θυμοκυττάρων και μεγαλύτερο κίνδυνο για την ανάπτυξη αιματολογικών όγκων (Lessard et al., 1999). Αντιθέτως η γενετική απενεργοποίηση του Mel-18 προκάλεσε μεγάλη μείωση του αριθμού κυττάρων των λεμφοειδών οργάνων και αντικατάσταση των HSCs από λεπικόκταρα (Akasaka et al., 1997). Οι ορισμοί της έκφρασης του Mel18 στα HSCs του μυελού των οστών επαγεί την αυτό-ανανέωσή τους, ενώ η υπερέκφραση του μειώνει την ικανότητα αυτό-ανανέωσής τους (Kajiume et al., 2004). Επίσης η Mph1/Rae-28 είναι ένα από τα μέλη του Polycomb συμπλόκου το οποίο έχει δειχθεί ότι είναι απαραίτητο για την λειτουργία των HSCs. Τα Rae28/−/− εμβρύων πεθαίνουν πρόωρα επειδή τα βλαστικά κύτταρα του αιμοποιητικού τους δεν είναι ικανά να παράγουν ψυχολογικούς αριθμούς διαφοροποιητικών κυττάρων του αιμοποιητικού (Kim et al., 2004). Επίσης τα προγονικά κύτταρα του αιμοποιητικού των Rae28/−/− εμβρύων παρουσιάζουν ανομαλίες κατά την ανάπτυξή τους. Επιπλέον τα HSCs τα οποία δεν εκφράζουν Rae28 δεν είναι ικανά για ανανέωση του αιμοποιητικού συστήματος ακτινοβολημένων μυών (Kim et al., 2004). Στο σύνολό τους τα παραπάνω δεδομένα προτείνουν ότι η ρύθμιση του μεταγραφικού προφίλ των HSCs από τα σύμπλοκα Polycomb είναι απαραίτητη για την ψυχολογική ανάπτυξη του αιμοποιητικού αφού η
απορύθμιση μελών του Polycomb επηρεάζει την αυτό-ανανέωση των HSCs η επιδρά αναστέλλοντας την
dιαφοροποίησή τους (Eukóna 1.9).

Όσον αφορά το ρόλο του συμπλόκου Trithorax στην ανάπτυξη του αιμοποιητικού, έχει δειχθεί ότι οι
μύες στους οποίους έχει απενεργοποιηθεί το MLL γονίδιο πεδαίνουν κατά την 10η ημέρα της εμβρυνικής
ανάπτυξης (Yu et al., 1998). Στα MLL/- έμβρια αυτού του σταδίου τα προγονικά κύτταρα του
αιμοποιητικού του αμιανικού σάκου μειώνονται σημαντικά. Οι παρατηρήσεις αυτές έγιναν σε πειράματα
σχηματισμού αποικιών όπου δείχθηκε ότι τα προγονικά κύτταρα από τα οποία αποσπάζει ο MLL
eμφάνιζαν σημαντικά μειωμένες BFU-E (Burst forming unit erythroid), CFU-GEMM (Colony Forming
Unit Granulocyte, Erythroid, Monocyte, Megakaryocyte) και CFU-GM (Colony Forming Unit
Granulocyte Monocyte) αποικίες (Hess et al., 1997). Η μελέτη των χημαρίων οι οποίες δημιουργήθηκαν
με την συμβολή MLL/- ESC αποκάλυψε την απουσία λεμφομελεοειδών κυττάρων τα οποία να
προέρχονται από MLL/- ESC στο εμβρυονικό ήταν (Ernst et al., 2004). Στην AGM περιοχή απουσία του
MLL παράγεται μικρός αριθμός μακροφάγων και ύστερα από την μεταμόσχευση της σε
ακτινοβολημένους μύες δεν αντικατέστηκαν λειτουργικά HSCs. Σε συνδυασμό τα προηγούμενα
αποτελέσματα προτείνουν ότι ο MLL είναι πιθανότερο ότι απαιτείται για τον πολλαπλασιασμό και την
επιβίωση των HSCs και των προγονικών κυττάρων του αιμοποιητικού παρά για την διαφοροποίησή τους.
Η υπόθεση αυτή επιβεβαιώθηκε αργότερα από την δημιουργία μικρού τους οποίους το MLL γονίδιο
απενεργοποιήθηκε στο αιμοποιητικό σύστημα (McMahon et al., 2007). Παρατηρήθηκε ότι οι μύες στους
οποίους απενεργοποιήθηκε το MLL γονίδιο, έφεραν σημαντικά μειωμένο αριθμό HSCs, τα οποία
παρουσίαζαν διαταραχές του κυτταρικού κύκλου και δεν ήταν ικανά να συναγωνιστούν τα αγρίου τύπου
HSCs σε πειράματα ανανέωσης του αιμοποιητικού συστήματος.

Όπως έχει αναφαρθεί παραπάνω η αυστηρή ρύθμιση του μεταγραφικού προγράμματος και της
dιαφοροποίησης των βλαστικών και πρόδρομων κυττάρων του αιμοποιητικού επιτυγχάνεται μέσω της
δράσης μεταγραφικών παράγοντων και συμπλόκων που υπήρχαν την δομή της χρωματίνης. Έρευνες
σχετικά με το ρόλο ενζύμων τα οποία εισάγουν επιγενετικές τροποποιήσεις όπως οι HATs (Histone
Acetyltransferase) και HDACs (Histone De-acetylases) έχουν αναδείξει τον καιρό ρόλο αυτών των
παραγόντων στην ρύθμιση της διαφοροποίησης των βλαστικών και προγονικών κυττάρων του
αιμοποιητικού. Μια HAT προτείνει το ρόλο τους οποίους κατά την ανάπτυξη του αιμοποιητικού έχει
χαρακτηριστεί από διάφορες ομάδες είναι και η MOZ (monocytic leukaemia zinc finger protein) Η MOZ
dειχνόει χαρακτηριστικές σχετικά με τη μεταμόσχευση, ανοιχτά στην ερμηνεία και σημαντικά μειωμένο αριθμό
των βλαστικών και προγονικών κυττάρων στο εμβρυονικό ήταν. Από της σε MOZ/- μύες παρατηρήθηκε
αύξηση στο μελοκύτταρα (Katsumoto et al., 2006). Επιπλέον η MOZ ακτινοβολημένη δεν είναι για αναστέλλει την αιμοποιητική
συστήματος

36
ακτινοβολημένων μυών (Katsumoto et al., 2006). Οι ανομαλίες της αυτό-ανανέωσης των HSCs αποσπάσια
tου MOZ μπορούν να εξηγηθούν από την μειωμένη έκφραση γονιδίων όπως τα HoxA9, c-kit και c-Mpl,
ehν η ανομαλία διαφοροποίησης των προγονικών κυττάρων σχετίζεται πιθανά με την μειωμένη
ενεργότητα των μεταγραφικών παραγόντων AML1 και PU.1 (Kitabayashi et al., 2001). Όσον αφορά τον
ρόλο των HDACs κατά την αμιοποίηση έχει προταθεί ότι η HDAC 1&2 είναι απαραίτητες για την
φυσιολογική ρύθμιση της ερυθροποίησης και μεγακαρυοποίησης, εστόσο δεν έχει δειχθεί έως τώρα εάν
εμπλέκονται στην ρύθμιση του πολλαπλασιασμού και διαφοροποίησης των HSCs (Wilting et al., 2010).
Στο σύνολο τους οι προηγούμενες έρευνες προτείνουν ότι για την αυστηρή ρύθμιση της αυτό-ανανέωσης
και διαφοροποίησης των βλαστικών και προγονικών κυττάρων του αμιοποιητικού είναι απαραίτητη η
χοροχρονική ρύθμιση της όργανωσης της χρωματίνης.

Ένα ακόμη σύμπλοκο αναδιάταξης της χρωματίνης με ρόλο στην χρωνική και χωρική ρύθμιση της
gονιδιακής έκφρασης κατά την εμβρυονική ανάπτυξη είναι το SWI/SNF. Το σύμπλοκο αυτό στηρίζεται
στην διάδρομηη του ATP για την ενζυμική δραστικότητά του και μπορεί να φέρει μια από τις δύο
ΑΤΡασες ως καταλυτική υπομονάδα: τον παράγοντα Brahma (BRM) ή τον Brg1 (Brahma related gene
1). Η γενετική απενεργοποίηση του γονιδίου Brg1 στο αιμοποιητικό σύστημα μυών με τη χρήση του
dιαγονιδίου Tie2-Cre είχε ως αποτέλεσμα τον πρόορο εμβρυονικό θάνατο λόγω βλαβών της
erυθροποίησης και ανομαλιών της αγγείωσης του αμιακού σάκου (Griffin et al., 2008). Μια
dιαφορετική έρευνα πρότεινε ότι ο Brg1 εμπλέκεται στην ρύθμιση της διαφοροποίησης των
αμιοποιητικών κυττάρων μέσω της αλληλεπίδρασης του με την μεταγραφική παράγοντα RunX1 (Bakshi
dt al.).

Η διερεύνηση του ρόλου των επιγενετικών παραγόντων και συμπλόκων αναδιάταξης της χρωματίνης
έχει αποκαλύψει την καίρια ρυθμιστική δράση τους στις διαδικασίες της αυτό-ανανέωσης και
dιαφοροποίησης των βλαστικών και πρόδρομων κυττάρων του αμιοποιητικού. Οι μοριακοί μηχανισμοί
dράσης τους, περιλαμβάνουν την ρύθμιση της δομής της χρωματίνης και την αλληλεπίδραση τους με
μεταγραφικούς παράγοντες. Η ενσωμάτωση των αυτών δεδομένων που αφορούν το ρυθμιστικό τους ρόλο
κατά την αμιοποίηση, έχει προτείνει ότι αποτελούν αναπόσπαστο κομμάτι των εγγενών μοριακών
μηχανισμών του κυττάρου που ελέγχουν την εισαγωγή μεταξύ αυτό-ανανέωσης και διαφοροποίησης.
Εισαγωγή: Ανάπτυξη και διαφοροποίηση των Τ λεμφοκυττάρων

ΚΕΦΑΛΑΙΟ 2: ΑΝΑΠΤΥΞΗ ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΤΩΝ Τ ΛΕΜΦΟΚΥΤΤΑΡΩΝ
2.1. Η ανάπτυξη και διαφοροποίηση των T λεμφοκυττάρων στο θύμο

Η ανάπτυξη των T κυττάρων ξεκινά με την εμβρυοφόρηση των προγονικών λεμφοκυττάρων από το εμβρύο. Αυτά τα κύτταρα εξακολουθούν να διαφοροποιούνται στην θύμο κυτταρική σειρά ύστερα από ευαίσθητα σήματα που λαμβάνουν από τον ιατρικό πολικήνη (Harman et al., 2003; Sambandam et al., 2005). Καθώς τα προγονικά T κύτταρα διαφοροποιούνται, σταδιακά χάνουν την ικανότητα να παράγουν άλλους κυτταρικούς τύπους όπως

Ανάπτυξη και διαφοροποίηση των T λεμφοκυττάρων στο θύμο

Η ανάπτυξη των T κυττάρων στο θύμο διαρκεί εκτός εξαίρεσης σε 3 βασικά στάδια με βάση την έκφραση των αντιγόνων επιφάνειας CD4 και CD8. Το DN στάδιο όπου τα κύτταρα είναι διπλά αρνητικά για την έκφραση των CD4 και CD8, το DP στάδιο κατά το οποίο τα κύτταρα εκφράζουν συχνά CD4 και CD8 και το SP στάδιο όπου τα T κύτταρα καταστέλλουν την έκφραση ενός εκ των δύο αντιγόνων και διαφοροποιούνται σε μονά CD4 ή μονά CD8 κύτταρα. Τα DN1, DN2, DN3 και DN4 στάδια κατά την διαφοροποίηση των κυττάρων χαρακτηρίζονται από την έκφραση των CD4, c-Kit, και CD25 όπως απεικονίζεται. Τα χρονικά σημεία κατά τα οποία συμβαίνουν οι διαδικασίες της β-επιλογής της θυτικής επιλογής υποδεικνύονται με βέλη.

Εικόνα 2.1: Αναπαράσταση των βασικών στάδιων της ανάπτυξης των T κυττάρων στο θύμο. Η ανάπτυξη των T κυττάρων στο θύμο διαρκείει από την κυτταρική σειρά με βάση την έκφραση των αντιγόνων επιφάνειας CD4 και CD8: το DN στάδιο όπου τα κύτταρα είναι διπλά αρνητικά για την έκφραση των CD4 και CD8, το DP στάδιο κατά το οποίο τα κύτταρα εκφράζουν συχνά CD4 και CD8 και το SP στάδιο όπου τα T κύτταρα καταστέλλουν την έκφραση ενός εκ των δύο αντιγόνων και διαφοροποιούνται σε μονά CD4 ή μονά CD8 κύτταρα. Τα DN1, DN2, DN3 και DN4 στάδια κατά την διαφοροποίηση των κυττάρων χαρακτηρίζονται από την έκφραση των CD4, c-Kit, και CD25 όπως απεικονίζεται.

Β, δενδριτικά και NK (natural killers) κύτταρα. Τα ανώριμα διπλά αρνητικά (DN, double negative) προγονικά κύτταρα συνιστούν μόνο το 3-4% των κυττάρων του θύμου και μπορούν περαιτέρω να διαμορφούν το στάδιο από DN1 έως DN4 αναφερόμενο με την έκφραση των αντιγόνων επιφάνειας c-kit, CD44 και CD25 (Ellmeier et al., 1999; Penit et al., 1995). Η επιτυχής αναδιοργάνωση και έκφραση λειτουργικής β-αλυσίδας του T κυτταρικού υποδοχέα (TCR-β), διαδικασία η οποία εκκινείται από την σηματοδότηση μέσω του IL7Ra, προωθεί τον κυτταρικό πολλαπλασιασμό και αύξηση του αριθμού των DN3 προγονικών κυττάρων (Hoffman et al., 1996). Η αναδιοργάνωση και η έκφραση
της α-αλυσίδας του TCR μαζί με την έκφραση των CD4 και CD8 καθορίζει την μετάβαση από το DN στο DP (διπλά θετικά CD4⁺CD8⁺, double positive) στάδιο κατά την ανάπτυξη των T κυττάρων (Εικόνα 2.1). Η θετική και αρνητική επιλογή στην συνέχεια, εξασφαλίζει ότι μόνο τα κύτταρα τα οποία εκφράζουν αβTCRs υποδοχές οι οποίοι αναγνωρίζουν αυτό-MHC μόρια με χαμηλή συγγένεια πρόσδεσης θα επιβιώσουν, ρυθμίζοντας αρνητικά την έκφραση των CD4 και CD8 μορίων για να παράγουν τελικά μονά θετικά (SP single positive) θυμοκύτταρα (Ellmeier et al., 1999; Saito and Watanabe, 1998).

2.2. Η ρύθμιση του κυτταρικού πολλαπλασιασμού των προγονικών T κυττάρων του θύμου

Ένας μικρός αριθμός των DN προγονικών T κυττάρων του θύμου θα διέλθει από 10 διαφορές για να παράγει την μεγάλη δεξαμενή των DP T κυττάρων, η πλειονότητα των οποίων θα εξαλειφθούν μέσω της αρνητικής επιλογής (Penit et al., 1995; Saito and Watanabe, 1998). Τα DN1 κύτταρα βρίσκονται στην G1 φάση με ένα πολύ μικρό ποσοστό κυττάρων στις S/G2/M φάσες του κυτταρικού κύκλου. Το μεγαλύτερο ποσοστό των κυττάρων που βρίσκονται σε κυτταρικό πολλαπλασιασμό έχει δειγκεί ότι προέρχονται από τα DN2 και DN4 στάδια. Έχει προταθεί επίσης ότι τα κύτταρα στα οποία γίνεται ανασυνδυασμός της β αλυσίδας του TCR, είτε διαιρούνται πολύ αργά είτε έχουν αναστείλει τον κυτταρικό πολλαπλασιασμό. Έστερα από την επιτυχή αναδιάπαυση του TCR-β υποδοχέα τα προγονικά θυμοκύτταρα, αρχίζουν να πολλαπλασιάζονται, με ένα μεγάλο ποσοστό κυττάρων να εισέρχεται στην S φάση (Hoffman et al., 1996).

Κεντρικοί ρυθμιστές του κυτταρικού κύκλου συμπεριλαμβανομένων των κυκλινών, κυκλινεξαρτώμενων κινασών (CDKs cyclin dependent kinases) και αναστολέων των κυκλινεξαρτώμενων κινασών οι οποίες έχουν δειγκεί να ελέγχουν την πρόοδο του κυτταρικού κύκλου τους θηλαστικών, είναι εξίσου σημαντικές στην ρύθμιση των κυτταρικών διαιρέσεων των προγονικών T κυττάρων (Εικόνα 2.2). Η δημιουργία ζωικών μοντέλων μυών έχει συντελέσει στην διαλεύκανση του ρόλου των ρυθμιστών του κυτταρικού κύκλου στον έλεγχο του κυτταρικού πολλαπλασιασμού των προγονικών T κυττάρων. Αν και δεν έχει δειγκεί ότι οι κυκλίνες D1 και D2 είναι απαραίτητες για την φυσιολογική ανάπτυξη των T κυττάρων, οι μίμες στους οποίους είχε πλήρως απενεργοποιηθεί ο γονίδιο της κυκλίνης D3 παρουσιάσαν ανωμαλίες στην παραγωγή των DP κυττάρων (Sicinski et al., 1996; Sicinski et al., 1995). Απουσία της κυκλίνης D3, τα DN3/DN4 θυμοκύτταρα απέτυχαν να πολλαπλασιαστούν με τον απαραίτητο ρυθμό ώστε να παράγουν τον φυσιολογικό αριθμό των DP κυττάρων, γεγονός το οποίο υποδεικνύει ότι η κυκλίνη D3 δρα καθοδικά της σημαντικότητας από το προ-TCR υποδοχέα και είναι απαραίτητη για τον πολλαπλασιασμό των ανώρμων θυμοκυττάρων (Sicinska et al., 2003). Η υπερέκφραση της κυκλίνης Ε προδιαθέτει τα θυμοκύτταρα προς καρκινική εξάλληγη και άμετρο πολλαπλασιασμό (Karsunky et al., 1999). Ο ακριβής ρόλος των κυκλινών A2 και B1 στην
Εισαγωγή
Ανάπτυξη και διαφοροποίηση των Τ λεμφοκυττάρων

Εικόνα 2.2: Πληροφορίες για το ρόλο γονιδίων στη ρύθμιση του κυτταρικού πολλαπλασιασμού και της διαφοροποίησης των Τ κυττάρων από πειράματα σε γενετικά τροποποιημένους μίς. Μελέτες σε μοντέλα μιν (knock out ή διαγονιδιακά) έχουν αποκαλύψει τον καίριο ρόλο των μορίων-ρυθμιστών του κυτταρικού κύκλου, των Hox γονιδίων και των συμπλέκτων αναδιάταξης της χρωματινής στην ρύθμιση του πολλαπλασιασμού και της διαφοροποίησης των Τ κυττάρων. Τα τρίγωνα επισημαίνουν τα στάδια κατά την ανάπτυξη και διαφοροποίηση των Τ κυττάρων κατά τα οποία είναι απαραίτητοι οι μοριακοί ρυθμιστές CDK6, cyclinD3, p27, HoxA9, HoxB3, Bmi1, Eed, and Brg1 (Από Karamitros et al., 2011).

ανάπτυξη των Τ λεμφοκυττάρων δεν έχει επακριβώς προσδιοριστεί αφού η γενετική απενεργοποίησή τους στον μυέχε έχει ως αποτέλεσμα τον πρόωρο εμβρυοκό θάνατο. Ωστόσο η απαλοιφή των A2 και A1 κυκλινών στα βλαστικά κύτταρα του αιμοποιητικού (HSCs haemopoietic stem cells) έδειξε ότι είναι
αναγκαίες για την ψυχιατρική ρύθμιση του κυτταρικού πολλαπλασιασμού των HSCs (Kalaszczyńska et al., 2009). Είναι πιθανόν ότι οι κυκλίνες Α απαιτούνται για τον ψυχιατρικό κυτταρικό πολλαπλασιασμό των θυμοκυττάρων, καθότους η διασφάλιση της ακριβής λειτουργίας τους. Ο καριότατος ρόλος της κυκλίνης D3 στην ρύθμιση του κυτταρικού πολλαπλασιασμού των θυμοκυττάρων επιβεβαιώνεται και από τον ρυθμιστικό ρόλο που παίζει η κινάση Cdk6 ένα από τα μόρια με τα οποία η κυκλίνη D3 αλληλεπιδρά για την ρύθμιση της μετάβασης G1/S. Η απενεργοποίηση της κινάσης Cdk6 στους µέσς οδήγησε σε σοβαρή ατοφρία του θύμου. Τα αποτελέσματα της συγκεκριμένης μελέτης προέρχονται ότι η Cdk6 είναι απαραίτητη καθοδικά της σημαντικής στην συγκεκριμένη μελέτη του CDK6 στο TN3 στο διάστημα, καταλύοντας ότι η απενεργοποίηση των κυκλινεξαιρέτων κινασών CDK4 ή CDK2 δεν φάνηκε να επηρεάζει σημαντικά την ανάπτυξη των Τ κυττάρων (Berthet et al., 2003; Rane et al., 1999).

Οι p27kip1+-/ µέσα παρουσιάζουν αυξημένο µέγεθος σε πολλά όγκωνα συμπεριλαμβανομένου του θύμου (Kiyokawa et al., 1996). Η δημιουργία διαγονιδιακών µούν οι οποίοι υπερκεράζουν τους αναστολέα p27kip1 στη Τ κύτταρα είχε ως αποτέλεσμα την αναστολή της διαφοροποίησης των θυμοκυττάρων στον χρόνο άνωτερος οι οι p27kip1 αποτελεί έναν αρνητικό δέσμη του πολλαπλασιασμού των προγονικών θυμοκυττάρων (Tsukiyama et al., 2001). Παραμοίως η συνδυασμένη απολωφή των p16INK4A και p27kip1 γονιδίων oδήγησε σε σημαντική συζήτηση της θυσιασμότητας λόγω του υπέρμετρου Παραμοίως η συνδυασμένη απολωφή των p16INK4A και p27kip1 γονιδίων oδήγησε σε σημαντική συζήτηση της θυσιασμότητας λόγω του υπέρμετρου Παραμοίως η συνδυασμένη απολωφή των p16INK4A και p27kip1 γονιδίων oδήγησε σε σημαντική συζήτηση της θυσιασμότητας λόγω του υπέρμετρου πολλαπλασιασμού των προγονικών Τ κυττάρων και της εμφάνισης λεμφομάτων (Tsukiyama et al., 2001).

Συνεπώς οι ρυθμιστές του κυτταρικού κόκκου παίζουν κεντρικό ρόλο στην ρύθμιση της προόδου του κυτταρικού κόκκου και στην ψυχιατρική ανάπτυξη των Τ κυττάρων. Η απορύθμιση αυτών των μηχανισμών µπορεί να οδηγήσει σε άμετρο κυτταρικό πολλαπλασιασμό των Τ κυττάρων και στην ανάπτυξη λεμφομάτων.

2.3. Η ρύθμιση της κυτταρικής διαφοροποίησης των προγονικών Τ κυττάρων του θύμου

Η δέσμευση προς διαφοροποίηση στην Τ κυτταρική σειρά λαμβάνει χώρα στο Νόσο πλάτος, όπου και συμβαίνει η σταδιακή μείωση της έκφρασης των γονιδίων για εναλλακτικές κυτταρικές μοίρες και η αύξηση της έκφρασης γονιδίων που κατευθύνουν τη διαφοροποίηση προς τα Τ κύτταρα. Διάφοροι μεταγραφικοί παράγοντες και σύμπλοκα αναδιάρκειας της χροματικής δροσορικά και χρονικά καθορισμένο τρόπο για να εγκαθιδρύσουν την διαφοροποίηση προς τα Τ κύτταρα και ακολουθεί μέσω την προπολλαπλασιασμό της CD4 ή CD8 κυτταρική σειρά. Η σημαντική πολλαπλασιασμό του Notch είχε βρεθεί ότι λειτουργεί θετικά για τη διαφοροποίηση προς την Τ κυτταρική σειρά. Διάφορες µελέτες οι οποίες έχουν χρησιμοποιήσει µοντέλα διαγονιδιακών µούν έχουν προτείνει ότι η σημαντική µέσω Notch είναι αναγκαία και ικανή για δέσμευση στην Τ κυτταρική σειρά, ασκώντας
ρυθμιστική δράση μέσω μεταγραφικών παραγόντων όπως του Ηes-1 (Pui et al., 1999; Radtke et al., 1999; Tomita et al., 1999). Άλλοι μεταγραφικοί παράγοντες οι οποίοι εμπλέκονται στην ρύθμιση των πρόγονων σταδίων της ανάπτυξης των Τ κυττάρων περιλαμβάνουν τους PU.1 και GATA-3. Η γενετική απαλοιφή του PU.1 στο έμβρυο του μν οδηγεί στην διακοπή της διαφοροποίησης των προγονικών λεμφοκυττάρων, στο στάδιο πριν την δέσμευση τους για διαφοροποίηση σε Τ κύτταρα (Spain et al., 1999). Τα αποτελέσματα αυτά υποδεικνύουν ότι ο PU.1 παίζει σημαντικό ρόλο στην δέσμευση των προγονικών κυττάρων του αιμοποιητικού για διαφοροποίηση προς Τ κύτταρα (Anderson et al., 1999). Η έκφραση του PU.1 ρυθμίζεται αρνητικά σε επόμενα στάδια της Τ κυτταρικής ανάπτυξης. Επιπλέον τα εμβρυκαλβαστικά κύτταρα από τα οποία έχει απενεργοποιηθεί ο GATA3/- απέτυχαν να παράγουν θυμοκύτταρα ή άρμα Τ κύτταρα σε μέγες οι οποίοι προήλθαν από αυτά τα βλαστικά κύτταρα (Ting et al., 1996). Οι έρευνες σε ζευκά μοντέλα προτείνουν ότι μετά το στάδιο της δέσμευσης προς διαφοροποίηση στην Τ κυτταρική σειρά, οι μεταγραφικοί παράγοντες RunX και GATA3 κατευθύνουν την διαφοροποίηση προς CD4 ή CD8 κύτταρα (Collins et al., 2009). Ο RunX1 απαιτείται για την καταστολή του CD4 γονίδιου στα DN θυμοκύτταρα, ενώ ο RunX3 καταστέλλει την έκφραση του CD4 γονίδιου στα όρμα CD8 θυμοκύτταρα (Taniuchi et al., 2002). Οι μύες στους οποίους έχει απενεργοποιηθεί ο μεταγραφικός παράγοντας IkARos, δεν αναπτύσσουν εμβρυκαλβαστικά Τ κύτταρα, ενώ τα θυμοκύτταρα των νεογνών μόνος παρουσίαζονταν προτιμώμενη διαφοροποίηση προς τα CD8 κύτταρα (Harker et al., 2002). Επιπλέον δείχνει ότι τα μέλη της οικογένειας του IkARos απενεργοποιούν την έκφραση του γονίδιου CD8α (Harker et al., 2002). Επιπρόσθετα, τα Hox γονίδια, τα οποία εκφράζονται κατά την λεμφοσιαδή ανάπτυξη και σε ενεργοσιμένα περιφερικά Τ κύτταρα, επίσης συμμετέχουν στην ρύθμιση των προγονικών κυττάρων του θύμου (Taghon et al., 2003). Οι IZon et al. έδειξαν ότι η απενεργοποίηση του HoxA9 γονίδιου διαταράσσει τα πρόγονα στάδια της ανάπτυξης των Τ κυττάρων στον εμβρυοκινδύνο. Απουσία του HoxA9, η πρόοδος των εμβρυικών θυμοκύτταρων στο DP στάδιο καθυστερεί και τα εμβρυκαλβαστικά θυμοκύτταρα παρουσιάζουν αυξημένη απόπτωση (IZon et al., 1998). Παρόμοιες αναμετρίες στην διαφοροποίηση των DN σε DP κύτταρα παρατηρήθηκαν μετά την μεταμόδιευση κυττάρων του μυελού των οστών, στα οποία είχε γίνει υπερέκφραση του HoxB3, σε δέκτες που είχαν υποστεί ακτινοβολήσε. Η υπερέκφραση του HoxB3 προκάλεσε συνεπώς μια διακοπή της φυσιολογικής ανάπτυξης των Τ κυττάρων στο DN στάδιο προτείνοντας έναν ρυθμιστικό ρόλο του HoxB3 στην διαφοροποίηση των Τ κυττάρων (Sauvageau et al., 1997).

2.4. Επιγενετικοί και μεταγραφικοί παράγοντες καθορίζουν την κυτταρική διαφοροποίηση στο θύμο

Η εγκαθίδρυση των ακρβούς μεταγραφικού προγράμματος το οποίο οδηγεί σε δέσμευση των προγονικών αιμοποιητικών κυττάρων προς διαφοροποίηση στην Τ κυτταρική σειρά, απαιτεί την
χωροχρονική ρύθμιση της χρωματινικής δομής των γονιδίων στόχων. Τα σύμπλοκα αναδιάταξής της χρωματινής είναι σημαντικοί ρυθμιστές της διαφοροποίησης των προγονικών Τ κυττάρων κατά την Τ κυτταρική ανάπτυξη με λειτουργία την εισαγωγή χημικών τροποποιήσεων που επηρεάζουν την διαμόρφωση της χρωματινής (ανοικτή ή κλειστή) σε συγκεκριμένα αναπτυξιακά στάδια. Η γενετική στόχευση του BrgL1, της υπομονάδας ATPάσης του SWI/SNF, στο θύμο ανέδειξε την καρχισματική της προεπεξεργασία στα διαδοχικά στάδια της Τ κυτταρικής ανάπτυξης από τα DN έως τα SP στάδια (Chi et al., 2003; Chi et al., 2002; Gebhr et al., 2003). Η διαπομονή απελευθέρωσης του BrgL1, στις δραματικές μείωσης του συνολικού αριθμού κυττάρων στο θύμο, στην έκφραση του CD4 γονίδιου σε ένα υποσύνολο των DN κυττάρων και στην παρεμπόδιση της μετάβασης από το στάδιο των DN κυττάρων στα DP κύτταρα. Επιπλέον τα θημικότταρα από τα οποία αποσπάζει o BrgL1 παρουσιάσαν ανωμαλίες στην σήματοδότηση μέσω Wnt, γεγονός το οποίο οδήγησε σε καταστολή των γονιδίων c-kit και c-myc. Επιπρόσθετα αποσπάσει του BrgL1, τα DN θημικότταρα επάγουν την έκφραση του p21Cip1/Waf1/Sdi1 με αποτέλεσμα την διακοπή της προόδου του κυτταρικού κύκλου (Chi et al., 2003). Αυτά τα αποτελέσματα προέρχονται ότι αναδιάταξη της χρωματινής ανάπτυξης στην λειτουργία του BrgL1, ρυθμίζει την κυτταρική σήματοδότηση, την πρόοδο του κυτταρικού κύκλου, και την δέσμευση υποσύνολο διαφοροποίησης στην Τ κυτταρική σειρά (Chi et al., 2003).

Οι προτείνεις του συμπλόκου Polycomb οργανώνονται ως πολύμερη σύμπλοκα γνωστά ως PRC1 και PRC2 (Polycomb repressive complex 1&2). Διαπέρασμα σύμπλοκο μέλη του PRC συμπλόκου παίζουν ρόλο στην εγκαθίδρυση του μεταγραφικού προγράμματος για διαφοροποίηση στην Τ κυτταρική σειρά. Οι μέσως στους οποίους έχει στοχευθεί το γονίδιο Bmi1 παρουσιάζουν πολύ μειωμένο μέγεθος θύμον λόγω της αναστολής της διαφοροποίησης πέρα από το DN στάδιο (van der Lugt et al., 1994). Εξήγησε προταθεί ότι κατά την Τ κυτταρική διαφοροποίηση o Bmi1 ρυθμίζει αρνητικά μέσω επιγενετικών μηχανισμών την έκφραση του αναστολέα του κυτταρικού κύκλου p16INK4A, επιτρέποντας την ανάπτυξη του κυτταρικού κύκλου DP2 (Miyazaki et al., 2008). Επιπλέον η αναπτύξη στην πρόοδο της Τ κυτταρικής ανάπτυξης στο στάδιο της β-επιλογής (Richie et al., 2002).

Τα σύμπλοκα αναδιάταξής της χρωματινής και η εισαγωγή επιγενετικών τροποποιήσεων αποτελούν σημαντικό μέρος του δικτύου ελέγχου της Τ κυτταρικής ανάπτυξης, με λειτουργία την ενσωμάτωση εξωτερικών/περιβαλλοντικών σημάτων στην ρύθμιση της προόδου του κυτταρικού κύκλου και της επιλογής κυτταρικής μοίρας.
2.5. Ρύθμιση του κυτταρικού πολλαπλασιασμού και κυτταρικής διαφοροποίησης των περιφερικών Τ κυτταρικών πληθυσμών

Τα αθόα CD4 and CD8 T (naïve CD4, CD8 Tcells) κύτταρα του θύμου μεταναστεύουν στην περιφέρεια όπου συνεχίζουν να πολλαπλασιάζονται και να διαφοροποιούνται παράγοντας άμεσα δραστικά κυττάρων (effector cells). Επειδή ο αριθμός των Τ κυττάρων τα οποία εξέρχονται από τον θύμο δεν μπορεί να δικαιολογηθεί τον αριθμό των περιφερικών Τ κυττάρων, προτάθηκε ότι ο περιφερικός πολλαπλασιασμός των Τ κυττάρων επίσης συνεισφέρει στον συνολικό αριθμό των περιφερικών Τ κυττάρων (Rocha et al., 1989). Υπό σταθερές συνθήκες, ο αριθμός και η σύσταση των περιφερικών Τ κυττάρων παραμένουν σχετικά σταθερά μέσω ομοιοστατικών μηχανισμών (Bell et al., 1987; Rocha et al., 1989). Ωστόσο τόσο ο αριθμός όσο και η σύσταση των διαφόρων υποπληθυσμών των περιφερικών Τ κυττάρων επηρεάζεται από την ηλικία, το φύλο και τις λοιμώξεις που έχει υποστεί ο μις (Effros, 2000; Miller, 1996; Olsen and Kovacs, 2001). Κατά την περιοχή μιας λοίμωξης, τα αθόα T κύτταρα τα οποία συναντούν αντιγόνα, υπόκεινται σε μια δραματική κλωνική ανάπτυξη παράγοντας άμεσα δραστικά κύτταρα, τα οποία επιτελούν τις λειτουργίες τους μέσω της έκκρισης συγκεκριμένων κυτταροκινιών (Mackall et al., 1996). Κατά την επόμενη φάση, ακολούθως της εκκαθάρισης του αντιγώνου, η πλευρότητα των ενεργοποιημένων Τ κυττάρων απομακρύνεται και μόνο ένας μικρός αριθμός κυττάρων ειδικών έναντι του συγκεκριμένου αντιγώνου παραμένει ενεργός. Ένας διακριτός πληθυσμός περιφερικών Τ κυττάρων, τα οποία είναι γνωστά ως ρυθμιστικά Τ κύτταρα (Regulatory T cells), καταστέλλουν και περιορίζουν τους αναστατικούς από της επιβίωσης του αντιγώνου κυττάρων, που περιορίζουν την ανοσοϊκακή απάντηση. Τα επιζώντα κύτταρα τα οποία είναι ειδικά έναντι του αντιγώνου διαφοροποιούνται τελικά σε Τ κύτταρα μνήμης (Memory T cells), ενός πληθυσμού περιφερικών κυττάρων υποθέλουν για την απαλοίφη του ίδιου αντιγώνου σε περίπτωση εκ νέου εισαγωγής του στον οργανισμό (Kaech et al., 2002). Η διαφοροποίηση των αθόων κυττάρων σε άμεσα δραστικά κύτταρα και μνήμης, επιτυγχάνεται μέσω της εκπενθευτικής αναδιοργάνωσης του μεταγραφικού τους προφίλ ως αποτέλεσμα της δράσης επιγενετικών συμπλόκων και μεταγραφικών παραγόντων.

2.5.1. Αθόα T κύτταρα (Naïve T cells)

Τα αθόα (naïve) CD4 και CD8 T κύτταρα της περιφέρειας βρίσκονται τυπικά εκτός κυτταρικού κώκλου με χρόνο ζωής περίπου 6 μήνες. Οι χαμηλές συγγένειες αλληλεπιδράσεις με αυτό-αντιγώνο/MHC σύμπλοκα συνεισφέρουν στην επιβίωση, αφάνταση και διαφοροποίηση των αθόων περιφερικών Τ κυττάρων (Rocha et al., 1989; Tanchot et al., 1997). Επιπρόσθετα, οι αλληλεπιδράσεις με ξένο-αντιγώνο/MHC σύμπλοκα, έχει δειχθεί ότι προέρχονται τον πολλαπλασιασμό των αθόων Τ κυττάρων και την διαφοροποίησή τους σε άμεσα δραστικά Τ κύτταρα (effector T cells). Η ενεργοποίηση και ο πολλαπλασιασμός των αθόων Τ κυττάρων (naïve T cells) ενεργοποιείται μέσω της σημαντικότητας από
τον TCR και από συνυποδοχείς όπως οι CD28, CD40 και OX-40 (Kopf et al., 1999; Shahinian et al., 1993; Whimire et al., 1999). Η διάρκεια του κυτταρικού κόκκου, η συχνότητα των κυττάρων που εισέρχονται σε κυτταρικό πολλαπλασιασμό και ο αριθμός των διαιρεσών εξαρτάται από την ενεργοποίηση του TCR, την σηματοδότηση από τους συνυποδοχείς και την συγκέντρωση των διαιρέων κυτταροκινών (Mackall et al., 1996). Ο πολλαπλασιασμός και η κλονική ανάπτυξη των αδέοντ ορισμένων T κυττάρων προσδίδεται σε μεγάλο βαθμό μέσω του IL-2 (Ma et al., 2006). Τόσο τα CD4 όσο και τα CD8 κύτταρα πολλαπλασιάζονται μετά από αλληλεπίδραση με κάποιο αντιγόνο, εστόσο ο ρυθμός των κυτταρικών διαιρέων των CD4+ T κυττάρων είναι πολύ μικρότερος από τον αντίστοιχο των CD8+ T κυττάρων (Foulds et al., 2002). Επιπλέον ο αριθμός των CD8+ ευδικών κυττάρων έναντι του αντιγόνου που σχηματίζεται είναι μεγαλύτερος από τον αντίστοιχο των CD4+ T Συνεπώς διαφοροποιούν υποπληθυσμοί των αδέον Τ κυττάρων έχει βρεθεί ότι παρουσιάζουν διαφορετική διάρκεια ζωής και δυναμικό πολλαπλασιασμό.

2.5.2. Άμεσα δραστικά T κύτταρα (Effector T cells)

Τα αδέον CD4 και CD8 Τ κύτταρα της περιφέρειας διαφοροποιούνται σε T βοηθητικά κύτταρα (Th, T helper) και κυτταροτοξικά Τ κύτταρα, τα οποία συμμετέχουν σε εξειδικευμένες ανοσιακές απαντήσεις. Τα Th1 κύτταρα κινητοποιούν την κυτταρική ανοσιακή απάντηση, τα Th2 κύτταρα συμμετέχουν στην χομκή ανοσία και τα κυτταροτοξικά T κύτταρα απομακρύνουν κύτταρα του οργανισμού που έχουν προσβληθεί από ιούς και καρκινικά κύτταρα. Η διαφοροποίηση των αδέον Τ κυττάρων σε άμεσα δραστικά κύτταρα περιλαμβάνει την αναδιάταξη της γονιδιακής έκφρασης μέσω της επιγενετικής ρύθμισης της χρωματικής και ακολουθούν τη στρατολόγηση των ενεργών μεταγραφικών παραγόντων. Παρουσία του IL-12, τα αδέον T κύτταρα διαφοροποιούνται σε Th1 κύτταρα, τα οποία εκφέρουν in vivo αντίστοιχη IL-12 έχει δειχθεί να ενεργοποιεί τον μεταγραφικό παράγοντα STAT-4 ο οποίος με τη σειρά του ενεργοποιεί την έκφραση του IRF-1 (Coccia et al., 1999; Lohoff et al., 1997; Thierfelder et al., 1996). Σύμφωνα με τις προηγούμενες παρατηρήσεις είναι και το εύρημα ότι οι μύσα από τους οποίους έχει απενεργοποιηθεί o STAT4 παρουσιάζουν ανόμαλη ανάπτυξη των Th1 κυττάρων (Szabo et al., 2000). Πιο πρόσφατα δεδομένα προτείνουν ο μεταγραφικός παράγοντας T-bet επίσης εμπλέκεται στην μεταγραφική ρύθμιση των απαραίτητων γονιδίων για διαφοροποίηση προς Th1 κύτταρα (Miller and Weinmann, 2010). Επιπλέον, οι ανοσιακές απαντήσεις που στηρίζονται σε Th1 κύτταρα εμποδίζονται in vivo, σε μύσα οι οποίοι εκφέρουν μια επικρατή αρνητική μεταλλαγή του IkBa, εμπλέκοντας τον μεταγραφικό παράγοντα NF-kB στην ρύθμιση της διαφοροποίησης των Th1 κυττάρων (Aronica et al., 1999). Επιπλέον η διαφοροποίηση προς Th1 κύτταρα φαίνεται να ελέγχεται και από το Polycomb σύμπλοκο, αφού η παραγωγή Th1 κυττάρων μνήμης από Bmi1−/− Th1 κύτταρα δεν ήταν δυνατή (Yamashita et al., 2008).
Η διαφοροποίηση προς Th2 κύτταρα τα οποία εκφράζουν IL-4, IL-5 και IL-13, επίγευσε από την έκφραση της κυτταροκίνητης IL-4 (Εικόνα 2.3) (Le Gros et al., 1990). Η σηματοδότηση μέσω του IL-4R υποδοχέα βρέθηκε ότι ενεργοποιεί τον STAT6, ο οποίος είναι απαραίτητος για την εκκίνηση του προγράμματος διαφοροποίησης των Th2 κυττάρων (Shimoda et al., 1996). Επιπλέον έχει δειχθεί ότι ο

Εικόνα 2.3: Οι κυτταροκίνες εγκαθιδρύουν προγράμματα διαφοροποίησης των CD4 κυττάρων. Ύστερα από την ενεργοποίηση του TCR υποδοχέα από αντιγονοπαρουσιαστικά κύτταρα, τα αδώα CD4 T κύτταρα διαφοροποιούνται σε διαφορετικά σειρές βοηθητικών T κυττάρων υπό την καθοδήγηση των κυτταροκινητών. Η διαδικασία διαφοροποίησης περιλαμβάνει την αύξηση κύριων μεταγραφικών ρυθμιστών και την ενεργοποίηση των STAT πρωτεϊνών. Σε μετέπειτα στάδια διαφοροποίησης τα βοηθητικά T κύτταρα εκφράζουν συγκεκριμένους υποδοχές κυτταροκινητών (Από Zhu and Paul, 2010).

μεταγραφικός παράγοντας GATA-3 αλληλεπιδρά μέσω ψυχικής δέσμευσης με την πρωτεΐνη Bmi1 και αυτή η αλληλεπίδραση αποτρέπει την ουσικοποιήση και αποκοψίμηση του GATA-3, ενισχύοντας την διαφοροποίηση προς Th2 (Hosokawa et al., 2006). Αν και οι επιγενετικές τροποποιήσεις των IL-4 και IFN-γ γονίδια είναι απαραίτητες για την διαφοροποίηση των αδών T κυττάρων σε Th1 και Th2 κύτταρα αντίστοιχα, τα πρωτεϊνικά σύμπλοκα τα οποία εισάγουν αυτές τις τροποποιήσεις δεν έχουν ταυτοποιηθεί (Ansel et al., 2006).

2.5.3. Ρυθμιστικά T κύτταρα και T κύτταρα μνήμης (Memory and Regulatory T cells)

Η πλειοψηφία των ενεργοποιημένων T κυττάρων θα εξαλειφθεί ύστερα από την απομάκρυνση του αντιγόνου αλλά λίγα κύτταρα θα επιβιώσουν σχηματίζοντας τα T κύτταρα μνήμης (memory T cells). Διάφορες μελέτες έχουν εγκαθιδρύσει ότι οι αλληλεπιδράσεις των T κυττάρων με αντιγόνα δεσμευμένα στα αντιγονοπαρουσιαστικά κύτταρα (APC, antigen presenting cells) καθοδηγούν τους συνολικούς πολλαπλασιασμούς και τον συνολικό αριθμό των T κυττάρων μνήμης που παράγονται. Η υψηλή έκφραση του CD44 είναι χαρακτηριστική για T κύτταρα μνήμης (memory T cells) και έρευνες προτείνουν ότι τα T κύτταρα μνήμης διατηρούν την λειτουργία τους ως āμεσα δραστικά κύτταρα (Swain, 1994). Ωστόσο
Εισαγωγή

Ανάπτυξη και διαφοροποίηση των Τ λευκοκυττάρων

έχουμε περιορισμένη γνώση των μοριακών μηχανισμών οι οποίοι ρυθμίζουν την ανάπτυξη, επιβίωση και συντήρηση των Τ κυττάρων μνήμης. Ο μεταγραφικός ρυθμιστής IL-7 και η αλληλεπίδραση με μόρια MHC τάξης II έχουν προταθεί ότι παίζουν σημαντικό ρόλο στην ρύθμιση της λειτουργίας και της επιβίωσης των περιφερικών Τ κυττάρων μνήμης (Seddon et al., 2003).

Τα ρυθμιστικά Τ κύτταρα (regulatory T cell) είναι απαραίτητα για την διατήρηση της ανοχής σε αυτό-αντιγόνα (self-tolerance) και της ομοιόστασης του ανοσοποιητικού συστήματος. Η έκφραση του CD25 χαρακτηρίζει του Τ κυτταρικούς πληθυσμούς με κατασταλτικές ιδιότητες, ωστόσο αυτό το μόριο δεν εκφράζεται αποκλειστικά στα Treg κύτταρα. Διάφορες μελέτες έχουν εγκαθιδρύσει τον μεταγραφικό παράγοντα FoxP3 ως ρυθμιστή της διαφοροποίησης των Treg κυττάρων (Fontenot et al., 2003). Επιπλέον ο TGF-β και η IL-10 έχουν δειχθεί να συμμετέχουν στην ανάπτυξη των ρυθμιστικών Τ κυττάρων (O’Garra and Vieira, 2004). Αποδεικνύεται ότι ο FoxP3 δρα σαν καταστολέας της παραγωγής κυτταροκινών, σταχεώντας γονίδια όπως τα IL-2, IL-4 και IFN-γ (Bettelli et al., 2005; Kasprowicz et al., 2003). Ο Brg1, η υπομονάδα ATPάσης του συμπλόκου BAF, εμπλέκεται στην ρύθμιση της διατήρησης και επιβίωσης των περιφερικών Foxp3+ Tregs κυττάρων (Jani et al., 2009).

Η λειτουργία έτερων παραγόντων στην ρύθμιση της διαφοροποίησης προς τα ρυθμιστικά Τ κύτταρα χρειάζεται περεταίρω εξέταση.
Η Geminin εμπλέκεται στη ρύθμιση του κυτταρικού πολλαπλασιασμού και της κυτταρικής διαφοροποίησης

ΚΕΦΑΛΑΙΟ 3: Η ΠΡΩΤΕΙΝΗ GEMININ ΕΜΠΛΕΚΕΤΑΙ ΣΤΗ ΡΥΘΜΙΣΗ ΤΟΥ ΚΥΤΤΑΡΙΚΟΥ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΚΑΙ ΤΗΣ ΚΥΤΤΑΡΙΚΗΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ
H Geminin εμπλέκεται στη ρύθμιση του κυτταρικού πολλαπλασιασμού και της κυτταρικής διαφοροποίησης

3.1. Η πρωτεϊνική δομή της Geminin

Η Geminin αρχικά χαρακτηρίστηκε από 2 ανυρίστοις μελέτες σαν ένας αναστολέας της αντιγραφής του DNA και σαν ρυθμιστής της νευρικής διαφοροποίησης. Σε αυτές τις αρχικές μελέτες οι McGarry και Kirschner (McGarry and Kirschner, 1998) έδειξαν ότι η Geminin προτειλύεται ειδικά κατά την μίτωση και αναστέλλει την έναρξη της αντιγραφής του DNA αλλά όχι την επιμήκυνση. Επίσης, έδειξαν ότι η υπερέκφραση της Geminin ανέστειλε το «φόρτομα» του MCM πρωτεϊνικού συμπλόκου, ενός συμπλόκου απαραίτητου για την αδειοδότηση του DNA για έναν νέο κύκλο αντιγραφής, στην χρωματινή. Παράλληλα, οι Kroll et al. έδειξαν ότι η Geminin εμπλέκεται στον καθορισμό του νευροεξουδήματος κατά την πρώιμη εμβρυική ανάπτυξη στον Xenopus (Kroll et al., 1998).

Η Geminin είναι μια πυρηνική πρωτεΐνη, ομόλογα της οποίας έχουν βρεθεί στα είδη Xenopus laevis, Homo sapiens, Mus musculus, Drosophila melanogaster, Gallus gallus, Caenorhabditis elegans, Rattus norvegicus, Bos taurus. Φαίνεται ότι η Geminin απαντάται στα μετάξες και αποτελεί έναν εξελικτικό νέο ρυθμιστικό μηχανισμό της αντιγραφής του DNA. Μια μελέτη στο Arabidopsis thaliana έδειξε ότι μία ανάλογη της Geminin πρωτεΐνη η GEM προσδένει το Cdt1 και εμπλέκεται σε αποφάσεις κυτταρικής διαφοροποίησης στα φυτά (Caro et al., 2007).

Η Geminin έχει δειχθεί ότι φέρει διάφορα δομικά μοτίβα που καθορίζουν την αλληλεπίδραση της με άλλες πρωτεϊνές, ρυθμίζουν το προφίλ έκφρασης της κατά τον κυτταρικό κύκλο και τον ενδοκυτταρικό εντοπισμό της πρωτεΐνης. Στο αμινοτελικό άκρο της πρωτεΐνης υπάρχει μια σύντομη αλληλουχία, η RRTLKVIQP, η οποία αποτελεί το μοτίβο αποκοδόμησης (destruction box) της πρωτεΐνης (McGarry and Kirschner, 1998). Η συγκεκριμένη αλληλουχία γίνεται στόχος συβιολογικών ρυθμίσεων από το APC κατά την διάρκεια της μίτωσης και οδηγεί στην αποκοδόμηση της πρωτεΐνης. Επίσης στο αμινοτελικό άκρο του μορίου όπως δείχθηκε από πειράματα στον Xenopus l. υπάρχει ένα μοτίβο πυρηνικού εντοπισμού NLS (Nuclear Localising Signal,) (Boos et al., 2006). Επίσης η ίδια έδειξε πρότεινε ότι τα αμινοξέα 139-184 της XGeminin είναι απαραίτητα για την αλληλεπίδραση της με την Ctn πρωτεΐνη και τον Ctn-εξαρτόμενο πυρηνικό αποκλεισμό της Geminin, μια διαδικασία που μπορεί να συνδέεται με την απενεργοποίηση της Geminin (Boos et al., 2006). Επίσης το αμινοτελικό μέρος της πρωτεΐνης και συγκεκριμένα τα αμινοξέα 38-89 της Geminin επαρκούν για να επάγουν νευρογένεση σε έμβρυα του Xenopus laevis (Kroll et al., 1998).

Η κεντρική περιοχή της Geminin συγκροτείται από ένα μοτίβο σπειροειδούς σπειράματος (coiled coil) το οποίο αποτελείται από πέντε επανάληψες των επτά αμινοξέων. Έχει προταθεί ότι οι Hox και Six3 μεταγραφικοί παράγοντες ανταγωνίζονται το Cdt1 για την δέσμευση στην Geminin. Επομένως είναι πιθανό ότι οι περιοχές αλληλεπίδρασης της Geminin με τις Hox και Six3 πρωτεϊνές είναι αλληλεπικαλυπτόμενες με την περιοχή αλληλεπίδρασης με το Cdt1. Εναλλακτικά η δέσμευση των Hox ή Six3 πρωτεϊνών στην Geminin μπορεί να μεταβάλει την στερεοδιάταξη της Geminin, εμποδίζοντας την αλληλεπίδρασή της με το Cdt1. Η κύρια περιοχή αλληλεπίδρασης με το Cdt1 εντοπίζεται στο
αμινοτελικό άκρο του μοτίβου ελικοειδούς έλικας της πρωτεΐνης και ιδιαίτερα σημαντικά για αυτή την αλληλεπίδραση είναι τα αμινοξέα 113-119 της Geminin του ποντικού (Lee et al., 2004). Τα αμινοξέα αυτά είναι υψηλά συντηρημένα ανάμεσα στις ορθολογίες της geminin. Οι Lee et al. πρότειναν ότι το αμινοτελικό άκρο του διμερούς των σπειροειδών σπειραμάτων της Geminin αλληλεπιδρά τόσο με το αμινοτελικό όσο και με το καρβοξυτελικό άκρο του Cdt1 (Lee et al., 2004). Σε αντίθεση η καρβοξυτελική περιοχή της Geminin δεν φαίνεται να επηρεάζει την πρόοδο του Cdt1. Ωστόσο μια άλλη μελέτη πρότεινε ότι η καρβοξυτελική περιοχή της mGeminin και συγκεκριμένα τα αμινοξέα 145-160 αλληλεπιδρούν με αμινοξέα του Cdt1 και είναι υπεύθυνα για την δημιουργία ενός ετεροεξαμερικού Geminin-Cdt1 [2x(2xGeminin-1xCdt1) (De Marco et al., 2009). Ωστόσο, έχει δειχθεί ότι η Geminin αλληλεπιδρά με την καταλυτική υπομονάδα Brg1 του SWI/SNF συμπλόκου και ότι η αλληλεπίδραση αυτή συμβαίνει μέσω της αμινοτελικής περιοχής του Brg1 και των αμινοξέων 161-176 της mGeminin (Seo et al., 2005).

3.2. Ο ρόλος της Geminin στην αναστολή της αδειοδότησης της αντιγραφής και στην διατήρηση της γενομικής σταθερότητας

Από την ζώμη έως τον άνθρωπο, η εκκίνηση της αντιγραφής του DNA ελέγχεται από την συγκρότηση ενός πολυπροτεινικού συμπλοκού, το οποίο ονομάζεται προ-αντιγραφικό σύμπλοκο και οργανώνεται σε συγκεκριμένες περιοχές της χρωματινής όπου εκκινείται η αντιγραφή κατά την G1 φάση του κυτταρικού κύκλου (Εικόνα 3.1). Η συγκρότηση του προ-αντιγραφικού συμπλοκού ξεκινάει με την δέσμευση του συμπλοκού ORC (Origin Recognition Complex) στην χρωματινή και συνεχίζεται με την στρατολόγηση του Cdc6, Cdt1 και του συμπλοκού των προτεϊνών MCM (Mini chromosome maintenance complex) (Bell et al., 1993; Nishitani et al., 2000; Piatti et al., 1995). Το εξαμερός σύμπλοκο ORC είναι πιο πιθανό ότι δρα σαν ικρίωμα για την συγκρότηση των προ-αντιγραφικών συμπλοκών στην G1 φάση του κυτταρικού κύκλου (Rowles and Blow, 1997). Οι Cdc6 και Cdt1 αναγνωρίστηκαν ως απαραίτητοι παράγοντες στην ζώμη, το Xenopus και σε ανθρώπινα κύτταρα για την φόρτωση των MCMs στην χρωματινή και την έναρξη της αντιγραφής του DNA (Maiorano et al., 2004; Nishitani et al., 2000; Piatti et al., 1995; Tada et al., 2001). Το MCM σύμπλοκο αποτελείται από έξι προτεΐνες (MCM2-7), οι οποίες είναι υψηλά συντηρημένες μεταξύ των ευκαρυών, φέρουν ένα μοτίβο ATPάσης και θεωρείται ότι έχουν ενεργότητα DNA ελέκκησης (Blow and Dutta, 2005). Ακολούθως της συγκρότησης του προ-αντιγραφικού συμπλοκού, η αύξηση της ενεργότητας των συμπλοκών κυκλίνη-κυκλίνα-εξαρτώμενης κινάσης, κυκλίνης E/CDK2 και κυκλίνης A/CDK2 σημαντικά διευρύνει την έναρξη της αντιγραφής του DNA κατά την μετάβαση από την G1 στην S (Diffley, 2004; Dutta and Bell, 1997). Υπόστερα από την εκκίνηση της αντιγραφής του DNA, τα προ-αντιγραφικά σύμπλοκα αποδιοργανώνονται και παράγοντες αδειοδότησης απενεργοποιούνται με ένα χωρικά και χρονικά καθορισμένο τρόπο.
Αρκετοί ρυθμιστικοί μηχανισμοί εξασφαλίζουν ότι το προ-αντιγραφικό σύμπλοκο δεν θα επανασυγκροτηθεί σε κάποια από τις αφετηρίες έναρξης της αντιγραφής (origin of replication) ύστερα από την έναρξη της αντιγραφής από την συγκεκριμένη αλληλουχία (Hook et al., 2007). Το Cdt1 είναι ένας κεντρικός παράγοντας του προ-αντιγραφικού συμπλόκου, ο οποίος ρυθμίζεται από δυο μηχανισμούς για να εξασφαλίσει ότι η εκκίνηση της αντιγραφής του DNA από κάποια αφετηρία έναρξης θα συμβεί μόνο μια φορά κατά τη διάρκεια ενός κυτταρικού κύκλου (Eukóna 3.1). Η προτέθειν Cdt1 συσσωρεύεται κατά την G1 φάση, ενώ μετά την εκκίνηση της αντιγραφής του DNA στεγάζεται προς ουβικουτινιλίωση και αποκοδόμηση από το σύμπλοκο DDB1-Cul4 ή κυκλινο-εξαρτώμενη φωσφορυλίωση και αποκοδόμηση από το SCF-Skp2 (Hu and Xiong, 2006; Nishitani et al., 2006; Senga et al., 2006). Ένας επιπλέον μηχανισμός ο οποίος έχει αναπτυχθεί εξελικτικά στις μετάξους περιλαμβάνει τον αναστολέα Geminin. Έχει δειχθεί ότι η Geminin προσδένεται στο Cdt1 και εμποδίζει την φόρτωση των MCM προτεινόντας στις αφετηρίες έναρξης της αντιγραφής (Wohlschlegel et al., 2000). Η αλληλεπίδραση μεταξύ Geminin και Cdt1 αποδειχθήκε ότι είναι ιδιαίτερα ισχυρή, αφού χρειάζτηκαν 4M ύφασμα για να αποδιαταχθεί το σύμπλοκο (Tada et al., 2001). Η απενεργοποίηση της Geminin μέσω προτεϊνολύσης από το APC/C, μη προτεϊνολυτικής ουβικουτινιλίωσης εξαρτώμενης από την CDK και κυτταροπλασματικής μεταφοράς της Geminin εξασφαλίζει ότι το Cdt1 θα είναι διαθέσιμο για ένα νέο κύκλο αδιειδότητας μετά την έξοδο από την μείωση (Boos et al., 2006; Luo et al., 2007; McGarry and Kirschner, 1998).

Πειράματα σε καρκινικές κυτταρικές σειρές και οργανισμούς μοντέλα απέδειξαν την σημασία της αφετηρικής ρύθμισης της Geminin και του Cdt1, η οποία εξασφαλίζει ότι η επανεκκίνησή της αντιγραφής, δεν θα συμβεί στον ιδίο κυτταρικό κύκλο. Η έκτοπη έκφραση του Cdt1 στον Xenopus και σε ανθρώπινες κυτταρικές σειρές είχε ως αποτέλεσμα την εκδήλωση πολυπλοειδίας (>2N) λόγω επανεκκίνησης της αντιγραφής στον ιδίο κυτταρικό κύκλο (Li and Blow, 2005; Nishitani et al., 2004; Vaziri et al., 2003). Επιπλέον η υπερέκφραση του Cdt1 σε καρκινικές και φυσιολογικές κυτταρικές σειρές δημιούργησε βλάβες του DNA και ενεργοποίησε σημεία ελέγχου του κυτταρικού κύκλου τα οποία διέκοψαν την πρόοδο του κυτταρικού κύκλου. Οι ανθρώπινες ινοβλάστες οι οποίες υπερεκφράζουν το Cdt1 προκαλούν ανάπτυξη κυτταρικών όγκων στους ενεδόν σε μόνοι. Επιπλέον οι διαγονιδιακοί μόνοι οι οποίοι υπερεκφράζουν το Cdt1 σε Τ κύτταρα αναπτύσσουν λειοφόρα αποσπώματα λειτουργικού p53. Η αποσπώματη της Geminin σε φυσιολογικά και καρκινικά κύτταρα παρουσίαζε λειτουργικό p53 είχε ως αποτέλεσμα την πολλαπλή αντιγραφή του γονιδιώματος και την ενεργοποίηση σημείων ελέγχου του κυτταρικού κύκλου με ταυτόχρονη διακοπή του κυτταρικού κύκλου κατά τη μετάβαση από την G2 στην M (Melixetian et al., 2004; Zhu et al., 2004). Σε συμφωνία με τα προηγούμενα, πειράματα αποσπώματης του γονιδίου της Geminin σε Xenopus έμβρυα οδήγησαν σε αναστολή του κυτταρικού κύκλου και ενεργοποίηση της Chk1 (McGarry, 2002). Επίσης η αποσπώματη της Geminin σε κύτταρα Drosophila μέσω RNAi πρότεινε ότι κατά προτίμηση οι επερχορμομεταδικτικές περιοχές υπόκεινται σε πολλαπλή
Η Geminin εμπλέκεται στη ρύθμιση του κυτταρικού πολλαπλασιασμού και της κυτταρικής διαφοροποίησης

Εικόνα 3.1: Η ρύθμιση της αδειοδότησης της αντιγραφής. Ένα πολυπρωτεινικό σύμπλοκο (προ-αντιγραφικό σύμπλοκο) αποτελούμενο από τις πρωτεΐνες ORC, Cdc6, Cdt1 και MCM σχηματίζεται σε συγκεκριμένα σημεία του γονιδιώματος γνωστά ως αφετηρίες έναρξης της αντιγραφής κατά την G1 φάση. Η συγκρότηση του συμπλοκού σημαδεύει την αδειοδότηση της αντιγραφής. Ύστερα από την αδειοδότηση της αντιγραφής το προ-αντιγραφικό σύμπλοκο απομακρύνεται από την χρωματίνη, ενώ οι MCM πρωτεΐνες συνεχίζουν να μένουν στην χρωματίνη. Κατά τις S και G2 φάσεις του κυτταρικού κύκλου, το προ-αντιγραφικό σύμπλοκο υπόκειται σε αρνητική ρύθμιση: ο παράγοντας Cdt1 πρωτεολύεται ή απενεργοποιείται μέσω δέσμευσης του από την Geminin, ο παράγοντας Cdc6 πρωτεολύεται ή αποκλείεται από τον πυρήνα και το σύμπλοκο ORC ρυθμίζεται αρνητικά μέσω μετα-μεταγραφικών τροποποιήσεων. Τα προ-αντιγραφικά σύμπλοκα συγκροτούνται εκ νέου προς το τέλος της M φάσης (Από Petropoulou et al., 2008).

αντιγραφή απουσία της Geminin (Ding and MacAlpine, 2010). Αντίθετα, η καταστολή της έκφρασης της Geminin σε κύτταρα HeLa δεν είχε επιπτώσεις στην πρόοδο του κυτταρικού κύκλου και δεν είχε ως αποτέλεσμα την πολλαπλή αντιγραφή του γονιδιώματος (Kulartz and Knippers, 2004). Ενδιαφέρον είναι και το εύρημα ότι η αποσιώπηση της Geminin έφερε διακοπή του κυτταρικού πολλαπλασιασμού λόγω της επαγωγής πολλαπλής αντιγραφής του DNA μόνο σε καρκινικές κυτταρικές σειρές και όχι σε φυσιολογικά κύτταρα (Zhu and Depamphilis, 2009).
3.3. Ο ρόλος της Geminin στις αποφάσεις κυτταρικής διαφοροποίησης

Η ισορροπημένη ρύθμιση του πολλαπλασιασμού και της διαφοροποίησης είναι απαραίτητη για την ανάπτυξη και ομοιότητα του οργανισμού. Επιπρόσθετα του ρόλου της στην ρύθμιση του πολλαπλασιασμού, η Geminin αναγνωρίστηκε σαν μια πρωτείνη η οποία επάγει τη διαφοροποίηση προς νευρική κυτταρική μοίρα (Kroll et al., 1998). Η ένσταση του mRNA της Geminin σε έμβρυα Xenopus επάγει την επέκταση της νευρικής πλάκας και την έκταση νευρογένεσης εις βάρος της επιδερμίδας, με μια διαδικασία η οποία καταστέλλει την σηματοδότηση μέσω BMP4 και επάγει συγκεκριμένα προ-νευρικά γονίδια (Kroll et al., 1998). Παρόμοια αποτελέσματα αποκτήθηκαν από πειράματα στην Drosophila, όπου ή έκταση υπερέκφραση της του ομολόγου της Geminin της Drosophila, είχε ως αποτέλεσμα τον σχηματισμό νευρικών κυττάρων έξω από τα φυσιολογικά χωρικά περιθώρια (Quinn et al., 2001). Αν και αυτές οι αρχικές έρευνες πρότειναν ότι η Geminin έχει κάποιο ρόλο στην διαδικασία της νευρογένεσης, δεν ήταν εύκολα αντιληπτό πως ένας αναστολέας της αντιγραφής του DNA μπορεί να επηρεάσει την δέσμευση και διαφοροποίηση των νευρικών προγονικών κυττάρων.

3.3.1. H Geminin επηρεάζει κυτταρικές αποφάσεις μέσω αλληλεπίδρασης με μεταγραφικούς παράγοντες

Ακόλουθες έρευνες από τους Del Bene et al. 2004 and Luo et al. 2004, προτείνουν ότι η Geminin μπορεί να κατευθύνει την απόφαση των προγονικών κυττάρων για πολλαπλασιασμό ή διαφοροποίηση (Εικόνα 3.2). Πιο συγκεκριμένα πρότειναν ανταγωνιστικές αλληλεπίδρασες μεταξύ της Geminin, του Cdt1 και των μεταγραφικών παραγόντων Hox και Six3 (Del Bene et al., 2004). Η δέσμευση της Geminin στον sⅭ3 δεν επιδράζει στην αναγνώριση του sⅭ3 στο DNA αλλά επιδράζει στην ικανότητα του να ενεργοποιήσει την μεταγραφή, ενώ o sⅭ3 επιδράζει στην αλληλεπίδραση Geminin-Cdt1. Η υπερέκφραση της Geminin στον όγκο Medaka επάγει συγκεκριμένες ανομαλίες στον σχηματισμό του οφθαλμού και του πρόσθετου εγκεφαλίου λόγω μειωμένου κυτταρικού πολλαπλασιασμού, πρόωρης διαφοροποίησης και αυξημένης απόπτωσης. Αντίθετα η απενεργοποίηση της Geminin μέσω morpholino οδηγεί σε σχηματισμό μεγαλύτερου οφθαλμού λόγω της αυξημένης κυτταρικής πολλαπλασιασμού (Del Bene et al., 2004). Αυτά τα πειραματικά αποτελέσματα προειδοποιούν την άμεση, ανταγωνιστική αλληλεπίδραση μεταξύ της Geminin και του sⅭ3 για τον έλεγχο του κυτταρικού πολλαπλασιασμού και διαφοροποίησης (Εικόνα 3.2). Επιπλέον, η Geminin του μυώς έχει δειγτεί ότι αλληλεπίδρα με τα HoxD10 και HoxA11, ενώ πειράματα κατακρήμνισης, έδειξαν την αλληλεπίδραση της ανασυνδυασμένης Geminin με άλλες Hox πρωτείνες όπως οι HoxA7, B7, C8, C9, and A10 (Luo et al., 2004). Η αλληλεπίδραση αυτή εμποδίζει τους Hox μεταγραφικούς παράγοντες να προσδεθούν στο DNA και αναστέλλει την ικανότητα τους να ενεργοποιήσουν την μεταγραφή.
Η Geminin εμπλέκεται στη ρύθμιση του κυτταρικού πολλαπλασιασμού και της κυτταρικής διαφοροποίησης

Εικόνα 3.2: Η Geminin ρυθμίζει τον κυτταρικό πολλαπλασιασμό, την δέσμευση και διαφοροποίηση των προγονικών κυττάρων μέσω αλληλεπιδράσεων με μεταγραφικούς παράγοντες και σύμπλοκα αναδιάταξης της χρωματίνης. (Α) Οι ανταγωνιστικές αλληλεπιδράσεις μεταξύ της Geminin και του μεταγραφικού παράγοντα six3 καθορίζουν την απόφαση των προγονικών κυττάρων του φωτισμού για πολλαπλασιασμό ή διαφοροποίηση (Del Bene et al., 2004). Β) Οι αλληλεπιδράσεις της Geminin με τον μεταγραφικό παράγωνα AP4 έχουν προταθεί ότι περιορίζουν την έκφραση των νευρικών γονίδιων στα μη νευρικά κύτταρα. Η Geminin και ο AP4 συγκροτούν ένα λειτουργικό σύμπλοκο το οποίο προσελκύει τα SMRT και HDAC3 καταστέλλοντας τα γονίδια PAHX-AP1 και DYRK1A (Kim et al., 2006b). Γ) Η Geminin ρυθμίζει την έκφραση των Hox γονίδιων μέσω αλληλεπιδράσεων με το σύμπλοκο Polycomb και απευθείας δέσμευση των Hox πρωτεϊνών. Αυτές οι αλληλεπιδράσεις συνεποιούνται στην αναστολή της μεταγραφής των γονιδιακών στόχων των Hox πρωτεϊνών επηρεάζοντας τις κυτταρικές αποφάσεις νορίς κατά την ανάπτυξη (Luo et al., 2004). Δ) Η Geminin διευρύνεται απευθείας στην Brm προτεΐνη του SWI/SNF συμπλόκου και αναστέλλει την αλληλεπίδραση των με bHLH μεταγραφικού παράγοντας οι οποίοι ρυθμίζουν την διαδικασία της νευρογένεσης (Seo et al., 2005). Ε) Η χρονική ρύθμιση της έκφρασης του sox2 κατά την εγκαθίδρυση της νευρικής πλάκας εξαρτάται από αλληλεπιδράσεις μεταξύ των Geminin, ERNI και BERT, των καταστολέων HP1α και HP1γ και της καταλυτικής υπομονάδας του SWI/SNF συμπλοκού, Brahma (Brm). Η Geminin και ο Brg1 συνδέονται στο N2 υποκινητή του sox2 γονίδιου, προσελκύοντας τον ERNI. Ο παράγωνας ERNI αλληλεπίδρα με την Geminin και στρατολογεί την HP1γ η οποία καταστέλλει την έκφραση του sox2. Ο παράγωνας BERT καταστέλει την αλληλεπίδραση της Geminin με τον ERNI, μετατοπίζοντας την HP1γ από το σύμπλοκο και επιτρέποντας στην Geminin και τον Brm να επαύγουν την έκφραση του sox2 (Papanayotou et al., 2008). ΣΤ) Η ενεργοποίηση της μεταγραφής σε συγκεκριμένους υποκινητές ρυθμίζεται από τη συνεργαστική δράση της Geminin και του παράγοντα TIP2 (Pitulescu et al., 2009). Έχει προταθεί ότι η Geminin και ο TIP2 δρύνουν σαν μεταγραφικοί ενεργοποιητές των NF1 και TATA-box υποκινητών σε αλληλεπίδραση με την βασική μεταγραφική μηχανή (BTM).
3.3.2. Η Geminin αλληλεπιδρά με το βασικό μηχανισμό μεταγραφής

Η Geminin μπορεί να επηρεάσει την μεταγραφή μέσω της αλληλεπίδρασής της με το βασικό μηχανισμό μεταγραφής (Εικόνα 3.2). Ο παράγοντας TIPT2 (TATA-binding protein-like factor-interacting protein isoform 2), ο οποίος παρουσιάζει εκτεταμένο προφίλ έκφρασης σε ιστούς του εμβρύου και του εννηλίκου μυών, δείχνει ότι αποτελεί έναν καινούριο παράγοντα αλληλεπίδρασης της Geminin (Pitulescu et al., 2009). Ο TIPT2 αλληλεπιδρά με μέλη του Polycomb όπως τους Scmh1, Mph2, Ring1B, τον γενικό μεταγραφικό παράγοντα TBP (TATA box binding protein) και την σχετική προτεΐνη TBPL1. Ο TIPT2 δρα συνεργατικά με την Geminin και τον TBP για την ενεργοποίηση υποκινητών οι οποίοι περιέχουν TATA-box και με τον TBPL1 για την ενεργοποίηση του NF1 υποκινητή. Επιπλέον η Geminin και ο TIPT2 ανιχνεύθηκαν προσδεδεμένοι στην χρωματινή κοντά σε θέσεις πρόσδεσης του TBP/TBPL1. Αυτά τα δεδομένα προτείνουν ότι τόσο η Geminin όσο και ο TIPT2 προσδένονται στην βασική μεταγραφική μηχανή (basic transcriptional machinery) για την συνεργαστική ενεργοποίηση της μεταγραφής (Pitulescu et al., 2009).

3.3.3. Η Geminin καταστέλει νευρικά γονίδια σε μη νευρικά κύτταρα

Επιπλέον η Geminin αλληλεπιδρά με τον AP-4 (Activator Protein 4), έναν μεταγραφικό παράγοντα που φέρει το μοτίβο έλικα-στροφή-έλικα για τον περιορισμό της έκφρασης των νευρικών γονιδίων σε μη νευρικά κύτταρα (Kim et al., 2006b). Ο AP-4 και η Geminin σχηματίζουν ένα σύμπλεγμα το οποίο έλκει τον καταστολέα SMRT και την αποσυνταξιοποίηση ιστονότων HDAC3 (Histone De-acetylase 3) και καταστέλει την μεταγραφή του γονιδίου DYRK1A (Dual-Specificity Tyrosine-Phosphorylated and Regulated Kinase 1A). Αυτή η μελέτη πρότεινε ότι καινούριο μηχανισμό μέσω του οποίου η Geminin μπορεί να καταστέλει την έκφραση νευρικών γονιδίων σε μη νευρικά κύτταρα (Kim et al., 2006b).

3.3.4. Η Geminin επηρεάζει κυτταρικές αποφάσεις μέσω της αλληλεπίδρασης της με παράγοντες που ρυθμίζουν την δομή της χρωματίνης

Επιπρόσθετα του ρόλου της Geminin στην ρύθμιση της μεταγραφής μέσω της απευθείας αλληλεπίδρασής της με μεταγραφικούς παράγοντες, η Geminin είναι ικανή να επηρεάζει επιγενετικούς δείκτες και την οργάνωση της χρωματίνης. Πράγματι, οι Luo et al. έδειξαν χρησιμοποιώντας βιοχημικές μεθόδους ότι η Geminin αλληλεπιδρά με τον παράγοντα Scmh1 του συμπλόκου Polycomb (Luo et al., 2004). Η ανοσοκατακρήμνιση της Geminin από ολικά κυτταρικά εκχυλίσματα εμβρύων μυών, συγκατακρήμνισε την πρωτεΐνη Rae28, υποδεικνύοντας αλληλεπίδραση της Geminin με το PRC1 σύμπλοκο. Εκτός από απευθείας αλληλεπιδράσεις πρωτεΐνης-πρωτεΐνης με διάφορα μέλη του συμπλόκου Polycomb, περιήλθε και με τη θρήση της τεχνικής ChIP (Chromatin Immunoprecipitation) πρότειναν ότι η
Geminin προσδένεται σε Plzf ρυθμιστικά στοιχεία του HoxD11 γονιδίου, απαραίτητα για την Polycomb-εξαρτώμενη καταστολή της έκφρασης των Hox γονιδίων συμμετέχοντας στην καταστολή Hox γονιδίων (Luo et al., 2004). Αυτά τα πειράματα υποστηρίζουν περαιτέρω από την έκτοπη έκφραση της Geminin στο νευρικό σωλήνα όρισθος το οποίο είχε ως αποτέλεσμα σε μετακίνηση του οπίσθιου συνόρου μεταγραφής του HoxB9 γονιδίου, γεγονός το οποίο υποδεικνύει ότι η Geminin εμπλέκεται στην καταστολή της έκφρασης των Hox γονιδίων.

Επίσης η Geminin βρέθηκε να αλληλεπιδρά με το SWI/SNF, ένα ATP-εξαρτόμενο σύμπλοκο αναδιάταξης της χρωματινής (Εικόνα 3.2). Έχει προταθεί ότι η Geminin αλληλεπιδρά με τον Brg1, την καταλυτική υπομονάδα του SWI/SNF συμπλοκού, ρυθμίζοντας την νευρογένεση (Seo et al., 2005). Η έκφραση της Geminin δείχνει να εμποδίζει τις αλληλεπιδράσεις του SWI/SNF με bHLH μεταγραφικούς παράγοντες, με αποτέλεσμα την καταστολή της γονιδιακής έκφρασης νευρικών γονιδίων και την διατήρηση των νευρικών προγονικών κυττάρων σε μια αδιαφοροποιημένη κατάσταση. Ένα παράδειγμα του πως οι αλληλεπιδράσεις της Geminin μπορούν να ρυθμίσουν την δομή της χρωματινής και να οδηγήσουν σε μεταγραφική ενεργοποίηση γονιδίων προήλθε από μελέτες της μεταγραφικής ενεργοποίησης του sox2 γονιδίου. Ο sox-2 είναι ένας μεταγραφικός παράγοντας, ο οποίος σχετίζεται με την αναπτυξιακή πλαστικότητα των προγονικών κυττάρων, εμπλέκεται στον καθορισμό της κυτταρικής μοίρας και στην ρύθμιση της αρχιτεκτονικής της χρωματινής. Οι Papanayotou et al. 2008 αναγνώρισαν δύο νέες προτείνεις τις οποίες φέρουν μοτίβο σπειροειδούς σπειρόματος, τις ERNI και BERT, σαν μοριακούς παρτενέρ της Geminin (Papanayotou et al., 2008). Έδειξαν ότι οι ανταγωνιστικές αλληλεπιδράσεις μεταξύ Geminin, ERNI και BERT καθορίζουν την προσέλκυση των ετεροχρωματινικών πρωτεϊνών HP1α και HP1γ και ρυθμίζουν την ικανότητα του SWI/SNF συμπλοκού να ενεργοποιήσει την μεταγραφή του sox2 γονιδίου μέσω του N2 ενεργητή του (Εικόνα 3.2). Τα αποτελέσματα προτείνουν ότι αυτές οι αλληλεπιδράσεις ελέγχουν την χρονική έκφραση του sox2 γονιδίου, βοηθώντας τον καθορισμό της νευρικής πλάκας στα έμβρυα των πτηνών (Papanayotou et al., 2008).

Αυτά τα δεδομένα δείχνουν ότι η Geminin αλληλεπιδρά με έναν αριθμό μεταγραφικών παραγόντων και παραγόντων αναδιάταξης της χρωματινής ελέγχοντας μεταγραφικά προγράμματα και επιγενετικές τροποποιήσεις και επηρεάζοντας την αυτό-ανάνεωση και διαφοροποίηση των προγονικών νευρικών κυττάρων. Αυτός ο ρόλος υποστηρίζεται επίσης από πειράματα γενετικής απαλοιφής του γονιδίου στον Νυ, τα οποία καταδεικνύουν τον κεντρικό ρόλο της Geminin στην ρύθμιση της αυτό-ανανέωσης και διαφοροποίησης των εμβρυοκυτταρικών βλαστικών κυττάρων. Τα έμβρυα μικρό παραδείγμα από τα οποία αποστείλαται η Geminin σταματούν την ανάπτυξή τους στο στάδιο των 8 κυττάρων και αποτυχαπόλουν να δημιουργήσουν την ενδοκυττάρια μάζα (ICM inner cell mass) (Gonzalez et al., 2006). Αυτά τα δεδομένα καθώς και νεότερες μελέτες στο αμινοποιητικό σύστημα υποστηρίζουν την ιδέα ότι η Geminin μπορεί να έχει ένα γενικό ρόλο στην ρύθμιση της κυτταρικής διαφοροποίησης και δέσμευσης των προγονικών κυττάρων (Gonzalez et al., 2006; Hara et al., 2006).
ΣΚΟΠΟΣ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Η παραγωγή των πλήρως διαφοροποιημένων κυττάρων του αίματος κατά την διάρκεια της ζωής ενός οργανισμού στηρίζεται στην ικανότητα των βλαστικών κυττάρων του αιμοποιητικού για αυτό-ανανέωση και διαφοροποίηση. Κατά την ανάπτυξη του αιμοποιητικού συστήματος, τα βλαστικά κύτταρα του αιμοποιητικού παράγουν προγονικά κύτταρα τα οποία έχουν περιορισμένους δυναμικούς διαφοροποιητικούς και έχουν προγραμματιστεί για να ωριμάσουν σε συγκεκριμένους κυτταρικούς τύπους που παρουσιάζουν διακριτές λειτουργίες. Για την ομαλή ολοκλήρωση αυτής της διαδικασίας απαιτείται ο συστημάτικός έλεγχος της αυτό-ανανέωσης και της διαφοροποίησης των βλαστικών κυττάρων του αιμοποιητικού, ο οποίος επιτυγχάνεται μέσω του συντονισμού της αντιγραφής του DNA, της μεταγραφής συγκεκριμένων γονιδίων και της ρύθμισης της δομής της χρωματίνης.

Παρόμοιος είναι ο σωστή λειτουργία του ανοσοποιητικού συστήματος του οργανισμού και ειδικότερα της επίκτητης ανοσίας (adaptive immunity) στηρίζεται στην παραγωγή λειτουργικά εξειδικευμένων κυττάρων ικανών να διακρίνουν τα αυτό-αντιγόνα από τα ξένα αντιγόνα. Οι κυτταρικοί τύποι στους οποίους στηρίζεται η επίκτητη ανοσία είναι τα B και T λεμφόκύτταρα τα οποία διαφοροποιούνται και ωριμάζουν σταδιακά από προγονικά κύτταρα του αιμοποιητικού στο μυελό των οστών και στο θύμο. Κατά τη διαδικασία αυτή απαιτείται ο συντονισμός του πολλαπλασιασμού και της διαφοροποίησης ώστε να δημιουργηθεί ο σωστός αριθμός αλλά και όλοι οι απαραίτητοι κυτταρικοί τύποι για τη λειτουργία του ανοσοποιητικού συστήματος. Για την λειτουργική εξειδίκευση των B και T κυττάρων στο μυελό των οστών, το θύμο και στα δευτερογενή λεμφοειδή όργανα ο συντονισμός του κυτταρικού πολλαπλασιασμού και της διαφοροποίησης επιτυγχάνεται από τη δράση εξωγενών και εγγενών ρυθμιστικών παραγόντων.

Η Geminin είναι ένας αρνητικός ρυθμιστής της αδειοδότησης της αντιγραφής του DNA ενώ επηρεάζει κυτταρικές αποφάσεις για διαφοροποίηση μέσω της αλληλεπίδρασης της με μεταγραφικούς παράγοντες και μέλη των Polycomb και SWI/SNF συμπλόκων-ρυθμιστών της δομής της χρωματίνης. Στόχος της παρούσας διδακτορικής διατριβής ήταν η κατανόηση και περιγραφή του in vivo ρόλου της Geminin στην ανάπτυξη και διαφοροποίηση του αιμοποιητικού και ανοσοποιητικού συστήματος. Πιο συγκεκριμένα μελετήσαμε ποια είναι τα στάδια κατά την ανάπτυξη του αιμοποιητικού και ανοσοποιητικού συστήματος για τα οποία η Geminin είναι απαραίτητη. Για το σκοπό αυτό δημιουργήσαμε ζωικά μοντέλα στα οποία το γονίδιο της Geminin απενεργοποιήθηκε ειδικά στα λεμφοκύτταρα και βλαστικά κύτταρα του αιμοποιητικού. Χρησιμοποιώντας τα προηγούμενα ζωικά μοντέλα διερευνήσαμε τον ρυθμιστικό ρόλο της Geminin στην δημιουργία συγκεκριμένων κυτταρικών τύπων του ανοσοποιητικού και αιμοποιητικού συστήματος. Ειδικότερα μελετήσαμε την αμυντική αποστολή της Geminin στο εμβρυονικό ήπαρ και την ανάπτυξη και διαφοροποίηση των Τ κυττάρων στο θύμο και στα περιφερικά λεμφοειδή όργανα. Επιπλέον εξετάσαμε πως επηρεάζει η Geminin την
Σκοπός της διδακτορικής διατριβής

ανάπτυξη, πολλαπλασιασμό και διαφοροποίηση των Β λεμφοκυττάρων. Επιπρόσθετα διερευνήσαμε πως η Geminin ρυθμίζει την ομοιόσταση, πολλαπλασιασμό και διαφοροποίηση λειτουργικά εξειδικευμένων Τ κυττάρων όπως τα αθώα, Τ κύτταρα μνήμης και ρυθμιστικά Τ κύτταρα. Τέλος μέσω της μελέτης του in vivo ρόλου της Geminin στην αιμοποίηση επιδιώξαμε να κατανοήσουμε μοριακούς μηχανισμούς που εμπλέκονται στην ρύθμιση της αυτό-ανανέωσης και διαφοροποίησης των βλαστικών και προγονικών κυττάρων του αιμοποιητικού.
ΥΛΙΚΑ ΚΑΙ ΜΕΘΟΔΟΙ
4.1. Απομόνωση και καθαρισμός γενομικού DNA με διάλυμα φαινόλης-χλωροφορμίου-ισοαμυλικής αλκοόλης (PCI)

Πειραματική διαδικασία:

1. Ο ιστός ή τα κύτταρα από τα οποία απομονώνεται γενομικό DNA επωάζονται για 18h σε διάλυμα λύσης (500µl) με την παρουσία πρωτεινάσης K (100ng/ml).
2. Προσθήκη ίσου ογκού διαλύματος PCI και ισχυρή ανάδειξη.
3. Φυγοκέντρηση στις 13.000 rpm για 15min, σε θερμοκρασία δωματίου.
4. Αφαίρεση της υπερκείμενης φάσης και μεταφορά της σε καινούριο eppendorf.
5. Προσθήκη ίσου ογκού χλωροφορμίου και ισχυρή ανακίνηση του μείγματος.
6. Φυγοκέντρηση στις 13.000rpm για 5min στους 25° C.
7. Μεταφορά του υπερκείμενου σε καινούριο eppendorf, προσθήκη ίσου ογκού ισοπροπανόλης ακολουθούμενη από ισχυρή ανάμειξη του διαλύματος.
8. Κατακρήμνιση του DNA στους -20° C για 16 h.
9. Φυγοκέντρηση στις 13000 rpm για 30min σε θερμοκρασία 4° C.
10. Αφαίρεση του υπερκείμενου και ξέπλυμα του ιζήματος με 50µl 70% αιθανόλης (EtOH).
11. Ανάδειξη με ήπιο vortex.
12. Φυγοκέντρηση στις 13.000rpm για 10min σε θερμοκρασία δωματίου.
13. Αφαίρεση του υπερκείμενου και επαναδιάλυση του ιζήματος σε 300µl 70% αιθανόλης (EtOH).
14. Επώαση του επαναδιαλυμένου DNA σε θερμοκρασία δωματίου για αναδιπλώση της τριτοταγής του δομής.
15. Φωτομέτρηση του DNA για τον προσδιορισμό της συγκέντρωσής του.

Υλικά:

- Διάλυμα λύσης (100mM Tris HCl pH 8.5, 5mM EDTA, 0,2% SDS)
- Πρωτεινάση K (10mg/ml)
- Διάλυμα Φαινόλης-Χλωροφορμίου-Ισοαμυλικής Αλκοόλης (25:24:1 Phenol, Chloroform, Isoamyl alcohol, PCI)
- Χλωροφόρμιο
- Ισοπροπανόλη
- Διάλυμα EtOH 70%
- Αποστείρωμενο ddH₂O
4.2. Στρατηγική γονοτύπησης των γενετικά τροποποιημένων μυών στους οποίους επιτελείται ιστοειδική αδρανοποίηση του γονιδίου της Geminin

Για την γονοτύπηση των μυών στους οποίους πραγματοποιείται ιστοειδική απενεργοποίηση του γονιδίου της Geminin, χρησιμοποιήθηκε μια στρατηγική PCR κατά την οποία 2 ζεύγη εκκινητών (Πίνακας 4.4) με 2 ξεχωριστές αντιδράσεις PCR ανιχνεύουν όλα τα πιθανά αλληλόμορφα του γονιδιακού τόπου της Geminin (Karamitros et al., 2010a).

Εικόνα 4.1: Ο γονιδιακός τόπος της Geminin (αλληλόμορφο αγρίου τύπου), το αλληλόμορφο το οποίο έχει προέλθει ύστερα από γονιδιακή στόχευση (αλληλόμορφο floxed) και το αλληλόμορφο από το οποίο απουσιάζουν τα εξώνια 3&4 (αλληλόμορφο KO). Οι θέσεις πρόσδεσης των εκκινητών της στρατηγικής PCR που ακολουθήθηκε για την γονοτύπηση των ποντικών παριστάνονται με βέλη.

4.2.1. Αντίδραση PCR με τη χρήση των εκκινητών zo250-zo251

Η πρώτη αντίδραση PCR (Πίνακας 4.1) με τη χρήση του ζεύγους εκκινητών zo250-zo251, ενισχύει μια περιοχή 280bp του KO αλληλομόρφου του γενετικού τόπου της Geminin (Εικόνα 4.1). Οι ίδιοι εκκινητές ενισχύουν μια περιοχή περίπου 1900bp του αγρίου τύπου αλληλομόρφου, εστώσο συνήθως το προϊόν δεν ανιχνεύεται λόγω του μεγάλου μεγέθους του. Στο σχήμα 4.1 δίνονται οι θέσεις πρόσδεσης των εκκινητών και τα μεγέθη των προϊόντων της αλυσιδωτής αντίδρασης πολυμεράσης στα αλληλόμορφα αγρίου τύπου, floxed και KO.
Πίνακας 4.1. Αντίδραση PCR για την ανίχνευση του KO αλληλομόρφου του γονιδιακού τόπου της Geminin

<table>
<thead>
<tr>
<th>Αντιδραστήριο</th>
<th>Αρχική συγκέντρωση διαλυμάτων</th>
<th>Όγκος ανά 50µl αντίδρασης</th>
<th>Τελική συγκέντρωση διαλυμάτων</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δείγμα DNA</td>
<td>100ng/µl</td>
<td>3µl</td>
<td>6ng/µl</td>
</tr>
<tr>
<td>10X ρυθμιστικό διάλυμα PCR</td>
<td>10x</td>
<td>5µl</td>
<td>1x</td>
</tr>
<tr>
<td>Διάλυμα MgCl₂</td>
<td>25mM</td>
<td>3µl</td>
<td>1,5mM</td>
</tr>
<tr>
<td>Δεοξυριβονουκλεοτίδια (dNTPs)</td>
<td>10mM</td>
<td>1µl</td>
<td>200µM</td>
</tr>
<tr>
<td>zo250 εκκινητής</td>
<td>100pmoles/ul</td>
<td>0,5µl</td>
<td>1pmol/µl</td>
</tr>
<tr>
<td>zo251 εκκινητής</td>
<td>100pmoles/ul</td>
<td>0,5µl</td>
<td>1pmol/µl</td>
</tr>
<tr>
<td>Taq πολυμεράση</td>
<td>5U/µl</td>
<td>1µl</td>
<td>0,1 Units/µl</td>
</tr>
<tr>
<td>Αποστειρωμένο Η2Ο</td>
<td>.</td>
<td>'Εως τα 50µl</td>
<td>-</td>
</tr>
</tbody>
</table>

Πρόγραμμα της αντίδρασης PCR με τη χρήση των εκκινητών zo250-zo251:

Το πρόγραμμα που χρησιμοποιήθηκε με το παραπάνω ζεύγος εκκινητών

1. 94°C για 5min. x1
2. 94°C για 45sec.
3. 62.7°C για 45sec.
4. 72°C για 1min.
5. Επανάληψη των βημάτων 2,3,4 για 34 κύκλους
6. 72°C για 10min.

4.2.2. Αντίδραση PCR με τη χρήση των εκκινητών 2003-2004

Η δεύτερη αντίδραση PCR (Πίνακας 4.2) με τη χρήση του ζεύγους εκκινητών 2003-2004 ενισχύει μια περιοχή DNA 549bp στο αλληλόμορφο αγρίου τόπου και μια περιοχή 583bp στο αλληλόμορφο floxed (Εικόνα 4.1). Τα προϊόντα αυτά μπορούν να διαχωριστούν σε πικτή αγαρόζης περιεκτικότητας
2%. Στον παρακάτω πίνακα φαίνονται τα αντιδραστήρια και οι τελικές συγκεντρώσεις τους όπως χρησιμοποιήθηκαν στην συγκεκριμένη αντίδραση.

Πίνακας 4.2.: Αντίδραση PCR για την ανίχνευση των F1 και WT αλληλομόρφων του γονιδιακού τόπου της Geminin

<table>
<thead>
<tr>
<th>Αντιδραστήριο</th>
<th>Αρχική συγκέντρωση Διαλυμάτων</th>
<th>Όγκος ανά 50µl αντίδρασης</th>
<th>Τελική συγκέντρωση διαλυμάτων</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δείγμα DNA</td>
<td>100ng/µl</td>
<td>3µl</td>
<td>6ng/µl</td>
</tr>
<tr>
<td>10X ρυθμιστικό διάλυμα PCR</td>
<td>10x</td>
<td>5µl</td>
<td>1x</td>
</tr>
<tr>
<td>Διάλυμα MgCl₂</td>
<td>25mM</td>
<td>3µl</td>
<td>1.5mM</td>
</tr>
<tr>
<td>Δεοξυριβονουκλεοτίδια (dNTPs)</td>
<td>10mM</td>
<td>1µl</td>
<td>200µM</td>
</tr>
<tr>
<td>2003 εκκινητής</td>
<td>100pmoles/µl</td>
<td>0,5µl</td>
<td>1pmol/µl</td>
</tr>
<tr>
<td>2004 εκκινητής</td>
<td>100pmoles/µl</td>
<td>0,5µl</td>
<td>1pmol/µl</td>
</tr>
<tr>
<td>Taq πολυμεράση</td>
<td>5U/µl</td>
<td>1µl</td>
<td>0,1Units/µl</td>
</tr>
<tr>
<td>Αποστειρωμένο H₂O</td>
<td>-</td>
<td>Έως τα 50µl</td>
<td>.</td>
</tr>
</tbody>
</table>

Πρόγραμμα της αντίδρασης PCR με τη χρήση των εκκινητών 2003-2004:

Το πρόγραμμα που χρησιμοποιήθηκε με το παραπάνω ζεύγος εκκινητών:
1. 94°C για 5min. x1
2. 94°C για 45sec.
3. 65°C για 45sec
4. 72°C για 1min.
5. Επανάληψη των βημάτων 2,3,4 για 34 κύκλους
6. 72°C για 10min.
4.2.3. Αντίδραση PCR για την ανίχνευση των διαγονιδίων CD2Cre/VavCre

Η παρακάτω αντίδραση PCR χρησιμοποιήθηκε για την γονοτύπηση των ζώων που ήταν διαγονιδιακά για την έκφραση της CD2Cre/VavCre και ενισχύει μια περιοχή περίπου 200kb (Πίνακας 4.3).

Πίνακας 4.3.: Αντίδραση PCR για την ανίχνευση των CD2Cre και VavCre διαγονιδίων

<table>
<thead>
<tr>
<th>Αντιδραστήριο</th>
<th>Αρχική συγκέντρωση Διαλυμάτων</th>
<th>Ογκος ανά 20µl αντίδρασης</th>
<th>Τελική συγκέντρωση διαλυμάτων</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δέσμη DNA</td>
<td>100ng/µl</td>
<td>1µl</td>
<td>5 ng/µl</td>
</tr>
<tr>
<td>10X ρυθμιστικό διάλυμα PCR</td>
<td>10x</td>
<td>2µl</td>
<td>1x</td>
</tr>
<tr>
<td>Διάλυμα MgCl₂</td>
<td>25mM</td>
<td>1,6µl</td>
<td>2mM</td>
</tr>
<tr>
<td>Δεοξυριβονουκλεοτίδια (dNTPs)</td>
<td>10mM</td>
<td>0,4µl</td>
<td>200µM each</td>
</tr>
<tr>
<td>CD2Cre forward εκκινητής</td>
<td>50pmoles/ul</td>
<td>0,1µl</td>
<td>0,25pmoles/µl</td>
</tr>
<tr>
<td>CD2Cre reverse εκκινητής</td>
<td>50pmoles/ul</td>
<td>0,1µl</td>
<td>0,25pmoles/µl</td>
</tr>
<tr>
<td>Taq πολυμεράση</td>
<td>5U/µl</td>
<td>0,3µl</td>
<td>0,075Units/µl</td>
</tr>
<tr>
<td>Αποστειρωμένο H₂O</td>
<td>-</td>
<td>Έως τα 20ul</td>
<td></td>
</tr>
</tbody>
</table>

Πρόγραμμα της αντίδρασης PCR με τη χρήση των εκκινητών CD2/VavCre forward και reverse:

Το πρόγραμμα που χρησιμοποιήθηκε με το παραπάνω ζεύγος εκκινητών
1. 94°C for 3min.x1
2. 94°C for 40sec.
3. 62°C for 40sec.
4. 72°C for 30sec.
5. Επανάληψη των βημάτων 2,3,4 για 30 κύκλους
6. 72°C for 5min.
Πειραματική διαδικασία:

1. Προετοιμασία του master mix το οποίο περιέχει όλα τα συστατικά της αλυσιδωτής αντίδρασης πολυμεράσης (εκτός του DNA) υπολογισμένο για τον αριθμό των δειγμάτων DNA προς γονοτύπηση.
2. Αραίωση των δειγμάτων DNA προς γονοτύπηση σε τελική συγκέντρωση 100ng/µl.
3. Προσθήκη του κατάλληλου όγκου αντιδραστηρίων από το master mix στα ειδικά σωληνάρια της PCR και τελικά προσθήκη 3µl του DNA. Για τον αρνητικό μάρτυρα χρησιμοποιούνται όλα τα συστατικά της αντίδρασης εκτός από το DNA.
4. Τοποθέτηση των σωληναρίων PCR στον θερμοκυκλοποιητή και χρήση του αντίστοιχου προγράμματος.
5. Ανάλυση των προϊόντων της αντιδράσης PCR μέσω ηλεκτροφόρησης σε πήκτωµα αγαρόζης.

Υλικά:

- DNA μήτρα
- Εκκινητές (MWG/Eurofins)
- Taq πολυμεράση (Invitrogen)
- dATP, dTTP, dGTP, dCTP
- Διάλυμα MgCl₂ (Invitrogen)
- Ρυθμιστικό διάλυµα πολυμεράσης (Invitrogen)

Πίνακας 4.4: Αλληλουχίες εκκινητών που χρησιμοποιήθηκαν στις αντιδράσεις PCR για την γονοτύπηση των μυών στους οποίους είχε απενεργοποιηθεί η Geminin

<table>
<thead>
<tr>
<th>Όνομα εκκινητή</th>
<th>Αλληλουχία</th>
</tr>
</thead>
<tbody>
<tr>
<td>zo250</td>
<td>5-GGAATATTTTAGTTGAAATGAGATG-3</td>
</tr>
<tr>
<td>zo251</td>
<td>5-CCAACCTCAGTCGTCCTGTTC-3</td>
</tr>
<tr>
<td>2003</td>
<td>5-TTTGGACGGCATGGGACAGACC-3</td>
</tr>
<tr>
<td>2004:</td>
<td>5-GTCCAGGCTGCACTGTCC-3</td>
</tr>
<tr>
<td>CreForward: 5’</td>
<td>5-AGATGCCAGGACATCGGAACCTG-3</td>
</tr>
<tr>
<td>CreReverse: 5’</td>
<td>5-ATCAGCCACCAGACAGAGGATC-3</td>
</tr>
</tbody>
</table>
4.3. Πέψη γενομικού DNA με περιοριστικές ενδονουκλεάσες

Πειραματική διαδικασία:

Α. Για έλεγχο με ένα περιοριστικό ένζυμο:

1. 10µg DNA διαλυμένο σε νερό ή Tris EDTA (TE) ρυθμιστικό διάλυμα.
2. 5µl 10X ρυθμιστικό διάλυμα (κατάλληλο για το ένζυμο που χρησιμοποιείται κάθε φορά)
3. Προσθήκη ddH₂O μέχρι τελικού όγκου 50µl.
4. Προσθήκη περιοριστικής ενδονουκλεάσης (40units) και επώαση στην άριστη θερμοκρασία κατάλυσης του ενζύµου για 16h.

Β. Για έλεγχο με περισσότερα από ένα περιοριστικά ένζυμα:

Δύο ή περισσότερα ένζυμα μπορούν να προστεθούν στην ίδια αντίδραση αν διατηρούν την ενεργότητά τους στο ίδιο ρυθμιστικό διάλυμα και εμφανίζουν ενεργότητα στην ίδια θερμοκρασία. Ωστόσο, πολύ συχνά δύο ένζυμα έχουν μέγιστη απόδοση σε διαφορετικά ρυθμιστικά διαλύματα ή σε διαφορετικές θερμοκρασίες. Σε αυτήν την περίπτωση προτιμάται η διαδοχική πέψη (sequential digestion).

4.4. Ηλεκτροφόρηση σε πήκτωμα αγαρόζης

Πειραματική διαδικασία:

1. Επιλογή και συναρμολόγηση κατάλληλου καλουπιού αγαρόζης και ηλεκτροφορητικής συσκευής
2. Παρασκευή του ηλεκτροφορητικού διαλύματος. Ως ηλεκτροφορητικά διαλύματα χρησιμοποιούνται συνήθως το Tris-Acetate EDTA (TAE) και το Tris-Borate EDTA (TBE). Στην συγκεκριμένη πειραματική εργασία χρησιμοποιήθηκε το 0.5X TBE.
3. Ανάλογα με το μέγεθος του DNA που πρέπει να διαχωριστεί παρασκευάζεται αγαρόζη κατάλληλης συγκέντρωσης σε διάλυμα 0.5X TBE.
4. Η αγαρόζη τίθεται σε φούρνο μικροκυμάτων.
5. Αφήνουμε την αγαρόζη να κρύωσε και προσθέτουμε βρωμιούχο αιθίδι σε συγκέντρωση 0,5µg/ml.
6. Ρίχνουμε την αγαρόζη στην ηλεκτροφορητική συσκευή και αφού πολυμερίστει προσθέτουμε TBE.
7. Φορτώνουμε στις ειδικές θέσεις (πηγάδια) τα δείγματα του DNA, τα οποία έχουν αναμιχθεί με διάλυμα χρωστικών (6x DNA loading dye) στην κατάλληλη αναλογία.
8. Εφαρμογή κατάλληλης τάσης για όση όρα απαιτείται.
9. Παρατήρηση των ζωνών του DNA με έκθεση σε υπεριώδη ακτινοβολία.

Υλικά:

- TBE (Tris-borate/EDTA 10X):
 Για 1lt: 108gr. Tris base
 55gr. Boric acid
 40ml 0,5M EDTA pH :8.0
 Απεσταγμένο H₂O
- TAE (Tris-acetate/EDTA 50X):
 Για 1lt: 121gr Tris base
 28,55ml glacial acetic acid
 50ml 0,5M EDTA pH:8.0
- Διάλυμα χρωστικών(6x):
 0.25% orange G χρωστική
 20% ficoll
 110mM Tris-HCl, pH 7,5
- Αγαρόζη (Invitrogen)
- EtBr 10mg/ml
- Μάρτυρας DNA 1kb (Invitrogen, N3232)

4.5. Στύπωμα κατά Southern (Southern blotting)

Το στύπωμα κατά Southern είναι μια μέθοδος που χρησιμοποιείται στην μοριακή βιολογία για τον έλεγχο της ύπαρξης μιας συγκεκριμένης αλληλουχίας DNA σε ένα δείγμα γενωμικού DNA. Το στύπωμα κατά Southern συνδυάζει την ηλεκτροφόρηση σε πήκτωμα αγαρόζης για τον διαχωρισμό τμημάτων DNA με βάση το μέγεθός τους με μεθόδους μεταφοράς του DNA σε ειδικές μεμβράνες με στόχο την υβριδοποίηση του με ένα ραδιενεργά σημασμένο ιχνηθέτη. Η μέθοδος έχει πάρει το όνομα του εφευρέτη της, Edwin Southern.
Πειραματική Διαδικασία:

1. Το γενομικό DNA κατατμείται με το επιθυμητό ένζυμο περιορισμού και ακολουθεί ηλεκτροφόρηση του σε πήκτωµα αγαρόζης 0,7%.
2. Φωτογράφηση του πηκτώµατος με την βοήθεια ενός χάρακα για την εύρεση του μεγέθους του κομματιού DNA που ανιχνεύεται.
3. Μεταφορά του πηκτώµατος σε αλκαλικό διάλυµα αποδιάταξης και ανακίνηση για 40min.
4. Μεταφορά του πηκτώµατος σε διάλυµα ουδετεροποίησης και ανακίνηση για 40min.
5. Για την μεταφορά του DNA στην μεμβράνη ακολουθείται η διάταξη κατά Southern (όπως έχει περιγραφεί από Southern, 1974). Συντόμως η διάταξη περιλαμβάνει την διαδοχική τοποθέτηση ενός δοχείου με διάλυµα 20xSSC με μια πλαστική βάση πάνω στην οποία τοποθετείται ένα πλεξιγκλάς, πάνω στο οποίο τοποθετούμε ένα χαρτί Whatmann, οι άκρες του οποίου βυθίζονται στο δοχείο με το διάλυμα. Πάνω στο πλεξιγκλάς τοποθετείται το πήκτωµα αγαρόζης, η μεμβράνη, 3 χαρτιά Whatmann, μια στοίβα χαρτοπετσέτες και τελικά βάρος (Εικόνα 4.2).
6. Η μεταφορά του DNA στην μεμβράνη απαιτεί μια περίοδο 16h για την ολοκλήρωσή της.
7. Απομακρύνουμε τις χαρτοπετσέτες και τα χαρτία Whatmann και μεταφέρουμε το πήκτωµα με τη μεμβράνη πάνω σε ένα χαρτί Whatmann.
8. Επώαση της μεμβράνης σε κλίβανο στους 80ºC για 2h.

Υλικά:

- Διάλυµα αποδιάταξης: 0.5M NaOH , 1.5M NaCl
- Διάλυµα ουδετεροποίησης (neutralizing buffer): 1.5M NaCl , 1M Tris pH=7.4
- Διάλυµα 20xSSC: 3M NaCl, 0.3M Κιτρικό νάτριο
- Διάλυµα 2X SSC
- Νάιλον μεμβράνη Hybond N+ (Amersham Biosciences, Cat No RPN2020B)
- Χαρτία Whatmann (3mm)
- Απορροφητικό χαρτί (Χαρτοπετσέτες)

4.6. Υβριδισµός και ανάλυση των μεμβρανών μετά από στύπωµα κατά Southern

Τα μόρια του DNA που είναι καθηλωμένα σε νάιλον μεμβράνες μπορούν να υβριδοποιηθούν με κατάλληλο συμπληρωματικό ανιχνευτή.
Εικόνα 4.2: Στην εικόνα παρουσιάζεται η διάταξη που ακολουθείται για τη μεταφορά DNA σε νάιλον μεμβράνη (Southern, 2006).

Πειραματική Διαδικασία:

1. Η μεμβράνη εμβαπτίζεται σε διάλυμα 2X SSC.
2. Μεταφορά της μεμβράνης σε σωλήνα υβριδοποίησης ο οποίος περιέχει προθερμασμένο διάλυμα προ-υβριδοποίησης με αποδιαταγμένο σπέρμα σολομού (100μg/ml) στους 65° C, ώστε να καλύπτει 1/3 του όγκου του σωλήνα.
3. Επώαση και περιστροφή του σωλήνα για 2h στους 65° C.
4. Προσθήκη του ραδιενεργά σημασμένου και θερμικά αποδιαταγμένου DNA ανιχνευτή. Επώαση και περιστροφή για 16h στους 65° C.
5. Απομάκρυνση του διαλύματος υβριδοποίησης με τον ανιχνευτή και προσθήκη διαλύματος πλύσης, προθερμασμένο στους 65° C.
6. Επώαση και περιστροφή του σωλήνα για 30min στους 65° C.
7. Απομάκρυνση του περιεχομένου του σωλήνα και προσθήκη διαλύματος πλύσης. Η διαδικασία πλύσης επαναλαμβάνεται για τρεις φορές με τη χρήση διαλυμάτων πλύσης αυξημένης ισχύος (1 πλύσιμο με 3X SSC 0,1% SDS, 2 πλυσίματα με 0,3X SSC 0,1%SDS και 1 πλύσιμο με 0,1X SSC 0,1%SDS). Πριν από την τελευταία πλύση η μεμβράνη μετράται με μετρητή Geiger για να διαπιστωθεί η ανάγκη περεταίρω πλύσεων.
8. Η μεμβράνη είναι έτοιμη για αυτοραδιογραφία.
Υλικά και Μέθοδοι

Υλικά:

- Μεμβράνη στην οποία είναι προσδεμένο το DNA
- Ραδιενεργά σημασμένος ανιχνευτής
- Eιδικοί γυαλινοί σωλήνες υβριδοποίησης Hybaid
- Φωρύνος υβριδοποίησης με δυνατότητα περιστροφής
- Διάλυμα προ-υβριδοποίησης, υβριδοποίησης, DNA από σπέρμα σολωμού
- 3X SSC, 0,1% SDS (w/v), διάλυμα 10X Denhardts, 10% Dextran Sulphate
- Διάλυμα πλύσης
- 3X SSC 0,1% SDS
- 0,3X SSC 0,1%SDS
- 0,1X SSC 0,1%SDS

4.7. Ραδιενεργός σήμανση DNA

Το συγκεκριμένο πρωτόκολλο ραδιενεργής σήμανσης του μορίου ιχνηθέτη είναι ελαφρά τροποποιημένο από αυτό που περιγράφεται από τον Sambrook και τους συνεργάτες του (Sambrook et al.). Στηρίζεται στην εισαγωγή ραδιοσημασμένων βάσεων κυτοσίνης από το τμήμα Klenow της DNA πολυμεράσης χρησιμοποιώντας ως εκκινητές ένα μίγμα τυχαίων εννιαμερών ολιγονουκλεοτιδίων. Το kit που χρησιμοποιήθηκε για την ραδιενεργή ιχνηθέτηση του DNA είναι της GE (Κωδικός 27-9240-01). Για την απομάκρυνση της περίσσεις ραδιενέργειας και τον καθαρισμό του ιχνηθέτη χρησιμοποιήθηκε ειδική στήλη G50 sephadex (Nick column, 17-0855-01, GE).

Πειραματική Διαδικασία:

1. Αραίωση του γραμμικού DNA σε συγκέντρωση 50ng/µl και μεταφορά 2µl DNA σε ένα eppendorf που περιέχει 45µl H2O.
2. Αποδιάταξη του DNA στους 95ο C για 5min. και μεταφορά του σε δοχείο με πάγο.
3. Ανάμιξη του αποδιαταγμένου DNA με τα προ-αναμεμιγμένα συστατικά για την σήμανση (πολυμεράση, τυχαία ολιγονουκλεοτιδία, dATP, dTTP, dGTP).
4. Προσθήκη των 032P-dCTP 3,7MBq και επώαση στους 37ο C για 15min.
5. Καθαρισμός του ιχνηθέτη στην στήλη Nick column.
6. σημασμένος ιχνηθέτης μετάτασε με ένα μετρητή Geiger για να διαπιστωθεί η ενσωμάτωση των ραδιοσημασμένων βάσεων κυτοσίνης.
Υλικά:

- DNA προς σήμανση (για τα συγκεκριμένα πειράματα χρησιμοποιήθηκε ο 5’ εξωτερικός ιχνηθέτης μια περιοχής 750bp ανοδικά του γονίδιου της Geminin που καθορίζεται από τις θέσεις αναγνώρισης των AflII και SacII ενζύµων και είναι κλωνοποιηµένη στο pBluescript πλασµίδιο.)
- ddH₂O
- Κιτ σήμανσης (GE, 27-9240-01)
- Κολώνες καθαρισµού Nick columns (GE, 17-0855-01)

4.8. Παρασκευή ολικού πρωτεϊνικού εκχυλίσµατος από κυτταρικές σειρές

Πειραµατική Διαδικασία:

1. Αφαιρείται το θρεπτικό υλικό των κυττάρων από το τρυβλίο και ακολουθούν δύο πλύσεις µε 1x PBS στους 4° C.
2. Ακολουθεί προσθήκη 1 mL 1x PBS και αποµάκρυνση των προσκολληµένων στο τρυβλίο κυττάρων µε µηχανική δράση (και τη χρήση scraper) ή µηχανική διάσπαση του ιστού για δηµιουργία διαλύµατος µονών κυττάρων. Τελικά προστίθεται ψυχρό PBS.
3. Στη συνέχεια συλλέγεται το εναιώρηµα και τοποθετείται σε σωληνάρια τύπου eppendorf.
4. Φυγοκέντρηση του δείγµατος στις 8.000 rpm σε θερµοκρασία 4º C για 5min., οπότε και σχήµατιζεται ιζήµα. Ανάλογα µε την ποσότητα του ιζήµατος, προστίθεται ανάλογη ποσότητα 1X FSB+DTT στο οποίο έχουν προστεθεί αναστολείς πρωτεασών και ακολουθεί πολύ καλή ανάµειξη.
5. Τέλος τα δείγµατα υφίστανται βρασµό στους 95 ºC για πέντε λεπτά και ακολουθεί η αποθήκευσή τους στους –20 ºC.

Υλικά:

- Κύτταρα προς λύση
- Scraper, σύριγγες (1ml) για µηχανική λύση του ιστού/συσσωµάτων κυττάρων
- Για 1lt 10X PBS αναµιγνύουµε
 - 80gr NaCl
 - 2gr KCl
 - 2,4gr KH₂PO₄
 - 14,4gr Na₂HPO₄
Υλικά και Μέθοδοι

• 2X FSB DTT για την παρασκευή του οποίου χρησιμοποιούμε τα παρακάτω
 20% γλυκερόλη.
 160mM Tris HCl pH 6,8
 4% SDS
 0,01% bromophenol blue
 0,2M DTT (προστίθεται τελευταίο μόνο σε διάλυμα το οποίο πρόκειται να χρησιμοποιηθεί άμεσα)
• Μίγμα αναστολέων πρωτεασών Roche (13840300)

4.9. SDS-PAGE ηλεκτροφόρηση (Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis)

Ο όρος ηλεκτροφόρηση αναφέρεται στο φαινόμενο μετανάστευσης ηλεκτρικά φορτισμένων σωματιδίων-ιόντων ή άλλων σωματιδίων της ίδιας ύλης υπό την επίδραση ηλεκτρικού πεδίου. Σημαντικά βιολογικά μόρια, όπως τα αμινοξέα, τα πεπτίδια, οι πρωτεϊνες και τα νουκλεϊκά οξέα, μπορούν μέσα σε ηλεκτρικό πεδίο να μετακινηθούν είτε προς την άνοδο (-) είτε προς την κάθοδο (+) αναλόγως της φύσης του ηλεκτρικού τους φορτίου. Με αυτό τον τρόπο, εκμεταλλεύομαι τα διαφορετικά φορτία και μοριακά βάρη των πρωτεϊνών που υφίσταται την ηλεκτροφόρηση, επιτυγχάνεται ο διαχωρισμός τους.

Στο συγκεκριμένο αυτό είδος ηλεκτροφόρησης (SDS-PAGE) χρησιμοποιείται ως μέσο διαχωρισμού το ακρυλαμίδιο το οποίο δημιουργεί τρισδιάστατα πολυμερή δίκτυα σε μια ευρεία κλίμακα.

Εικόνα 4.3: Διάταξη ηλεκτροφόρησης γέλης πολυακρυλαμίδιο

Το πήκτωμα σχηματίζεται με πολυμερισμό των μονομερών ακρυλαμίδιον, που οδηγεί στη δημιουργία αλυσίδων πολυακρυλαμίδιον. Στις αλυσίδες αυτές ενσωματώνονται κατά διαστήματα μόρια NN-
μεθυλεν-bis-ακρυλαμίδιου (Lohoff et al.), τα οποία λόγω της δομής τους μπορούν να ενσωματωθούν σε δύο διαφορετικές αλυσίδες και έτσι να δημιουργηθεί πλέγμα. Ο πολυμερισμός του ακρυλαμίδιου είναι ένα παράδειγμα καταλυτικής δράσης των ελευθέρων ριζών. Η κατάλυση γίνεται μέσω μιας βάσης, της NNN’-τετραμεθυλαιθυλενοδιαμίνης (TEMED), αλλά μόνο με τη βοήθεια ελευθέρων ριζών που δημιουργούνται χημικά με υπερθειϊκά ιόντα (S\(_2\)O\(_3\)^2-), χάρη στην παρουσία ενός δεύτερου καταλύτη του Ammonium Persulphate (APS).

Στα πειράματα που πραγματοποιήθηκαν η ανάλυση των πρωτεϊνών έγινε με ηλεκτροφόρηση σε πήκτωμα πολυακρυλαμίδιου, παρουσία αποδιατακτικών παραγόντων (SDS, DTT). To SDS (Sodium Dodecyl Sulphate) είναι ένα ανιονικό απορρυπαντικό το οποίο δεσμεύεται στις πρωτεΐνες. Η επιπλέον χρήση αναγωγικών παραγόντων όπως είναι το DTT (DiThioThreitol), έχει σαν αποτέλεσμα τη διάσπαση των δισουλφιδικών δεσμών των πρωτεϊνών. Η αποδιάταξη των πρωτεϊνών επιτυγχάνεται πλήρως με τη θέρμανση των πρωτεϊνικών δειγμάτων για 5min στους 100°C, παρουσία όλων των παραπάνω αποδιατακτικών παραγόντων. Τελικά στην SDS-PAGE ηλεκτροφόρηση αναλύονται πολυπεπτίδια τα οποία έχουν αποκτήσει καθαρό αρνητικό φορτίο λόγω του SDS και επομένως η ηλεκτροφορητική τους κινητικότητα είναι συνάρτηση του μοριακού τους βάρους (Εικόνα 4.3). Σε όλα τα πειράματα που περιγράφονται χρησιμοποιήθηκαν ασυνεχείς σύστημα ρυθμιστικών διαλυμάτων (discontinuous PAGE), σύμφωνα με τη μέθοδο του Laemmli (Laemmli, 1970).

Πειραματική Διαδικασία:

1. Συναρμολόγηση της συσκευής ηλεκτροφόρησης (assembling) σύμφωνα με τις οδηγίες του κατασκευαστή (BIORAD).
2. Προετοιμασία του πηκτώματος διαχωρισμού στην επιθυμητή περιεκτικότητα σε ακρυλαμίδιο (όπως φαίνεται στον πίνακα).
3. Προετοιμασία του stacking gel.
4. Ύστερα από την πήξη της γέλης μεταφέρονται τα διαλύματα στο δοχείο ηλεκτροφόρησης και οι πρωτεΐνες φορτώνονται με διάλυμα Laemmli.
5. Ηλεκτροφόρηση σε κατάλληλη τάση (100-120V) και διάρκεια ανάλογα με το μοριακό βάρος των πρωτεϊνών προς εξέταση.
6. Ακολούθως το υλικό ηλεκτροφόρησης μεταφέρονται σε μεμβράνη PVDF.
Υλικά:

- 1M Tris.Cl pH:6,8 / 1,5M Tris.Cl pH:8,8:
 Για την παρασκευή 200ml διαλύματος χρησιμοποιώ 24,22gr Trizma-base
- 2X FSB (-DTT):
 Η παρασκευή αυτού του διαλύματος έχει αναφερθεί παραπάνω
- 0,1% PBS-Tween (PBS-T):
 Σε 500ml 1XPBS προστίθεται 1ml 50% Tween-20 και αναμιγνύεται καλά.
- 1M DTT:
 Σε 17,24ml ddH2O διαλύουμε 2,66gr DTT. Τα aliquots φυλάσσονται στους -20°C.
- 10% SDS:
 Σε 100ml ddH2O προσθέτουμε 10gr SDS. Αναδεύουμε πολύ καλά μέχρι να διαλυτοποιηθεί.
- 30:1 Acrylamide mix (Sigma-Aldrich)
- 10% APS:
 Σε 20ml ddH2O προστίθενται 2gr σκόνη APS. Ανακατεύουμε καλά και διηθούμε με φίλτρο µίας χρήσεως 0,22 µΜ. Φυλάσσεται μακροχρόνια στους -20°C, ενώ το aliquot που χρησιμοποιείται στους 4°C.
- 10X Laemmli stock διάλυμα ηλεκτροφόρησης:
 Για την παρασκευή 1lt προσθέτουμε σε 800ml ddH2O, 30,3gr Tris-base (MW=121,2), 144,2gr γλυκίνη (MW=75,07) και 10gr SDS. Ουγκομετρούμε στα 1000ml και φυλάσσουμε σε θερμοκρασία δωματίου.
- SDS-PAGE protein marker (Biorad No.161-0317)
- Συσκευή ηλεκτροφόρησης BIORAD

4.10. Ηλεκτρομεταφορά των πρωτεϊνών σε μεμβράνη PVDF και ανοσοανίχνευση συγκεκριμένων πρωτεϊνών (Western Blotting)

Η συγκεκριμένη μεθοδολογία χρησιμοποιείται για την ανέχυρευση ειδικών επιτόπων-πρωτεϊνών με τη χρήση αντισωμάτων που έχουν αναπτυχθεί και αναγνωρίζουν τους επιθυμητούς επιτόπους-πρωτεϊνές. Προβλέπει αρχικά την ανάλυση των πρωτεϊνών σε γέλη πολιακρυλαμίδης (Πίνακας 4.5) για τον διαχωρισμό τους με βάση το μέγεθός τους και την επακόλουθη μεταφορά-µονιμοποίηση των πρωτεϊνών σε ειδική µεµβράνη. Στο επόµενο βήμα οι µεµβράνες επωάζονται µε το ειδικό αντίσωµα εναντίον της πρωτείνης που επιθυµούµε να ανιχνεύσουµε ή ποσοτικοποιήσουµε. Το πρώτο αντίσωµα τελικά ανιχνεύεται µε ένα δεύτερο αντίσωµα το οποίο είναι συνήθως συζευγµένο µε κάποιο ένζυµο το οποίο
προκαλεί φωταύγεια όταν έλθει σε επαφή με το υπόστρωμα του. Τελικά η φωταύγεια που προκαλείται από την ειδική ανίχνευση της επιθυμητής πρωτεΐνης αποτυπώνεται σε φίλμ.

Πίνακας 4.5: Πίνακας για την παραγωγή γέλης πολυακρυλαμίδου διαφόρων συγκεντρώσεων (Από Maniatis, Molecular Cloning 1989).

<table>
<thead>
<tr>
<th>Solution components</th>
<th>5 ml</th>
<th>10 ml</th>
<th>15 ml</th>
<th>20 ml</th>
<th>25 ml</th>
<th>30 ml</th>
<th>40 ml</th>
<th>50 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_2O</td>
<td>2.6</td>
<td>3.5</td>
<td>7.9</td>
<td>10.6</td>
<td>13.2</td>
<td>15.9</td>
<td>21.2</td>
<td>26.5</td>
</tr>
<tr>
<td>30% acrylamide mix</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>8.0</td>
<td>10.0</td>
</tr>
<tr>
<td>1.5 M Tris, pH 8.8</td>
<td>1.3</td>
<td>2.5</td>
<td>3.5</td>
<td>5.0</td>
<td>6.3</td>
<td>7.5</td>
<td>10.0</td>
<td>12.5</td>
</tr>
<tr>
<td>10% SDS</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>10% ammonium persulfate</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>TEMED</td>
<td>0.004</td>
<td>0.008</td>
<td>0.012</td>
<td>0.016</td>
<td>0.02</td>
<td>0.024</td>
<td>0.032</td>
<td>0.04</td>
</tr>
<tr>
<td>8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_2O</td>
<td>2.3</td>
<td>4.6</td>
<td>6.9</td>
<td>9.3</td>
<td>11.5</td>
<td>13.9</td>
<td>18.5</td>
<td>23.2</td>
</tr>
<tr>
<td>30% acrylamide mix</td>
<td>1.3</td>
<td>2.7</td>
<td>4.0</td>
<td>5.3</td>
<td>6.7</td>
<td>8.0</td>
<td>10.7</td>
<td>13.3</td>
</tr>
<tr>
<td>1.5 M Tris, pH 8.8</td>
<td>1.3</td>
<td>2.5</td>
<td>3.8</td>
<td>5.0</td>
<td>6.3</td>
<td>7.5</td>
<td>10.0</td>
<td>12.5</td>
</tr>
<tr>
<td>10% SDS</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>10% ammonium persulfate</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>TEMED</td>
<td>0.003</td>
<td>0.006</td>
<td>0.009</td>
<td>0.012</td>
<td>0.015</td>
<td>0.018</td>
<td>0.024</td>
<td>0.03</td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_2O</td>
<td>1.9</td>
<td>4.0</td>
<td>5.9</td>
<td>7.9</td>
<td>9.9</td>
<td>11.9</td>
<td>15.9</td>
<td>19.8</td>
</tr>
<tr>
<td>30% acrylamide mix</td>
<td>1.7</td>
<td>3.3</td>
<td>5.0</td>
<td>6.7</td>
<td>8.3</td>
<td>10.0</td>
<td>13.3</td>
<td>16.7</td>
</tr>
<tr>
<td>1.5 M Tris, pH 8.8</td>
<td>1.3</td>
<td>2.5</td>
<td>3.8</td>
<td>5.0</td>
<td>6.3</td>
<td>7.5</td>
<td>10.0</td>
<td>12.5</td>
</tr>
<tr>
<td>10% SDS</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>10% ammonium persulfate</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>TEMED</td>
<td>0.002</td>
<td>0.004</td>
<td>0.006</td>
<td>0.008</td>
<td>0.01</td>
<td>0.012</td>
<td>0.016</td>
<td>0.02</td>
</tr>
<tr>
<td>12%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_2O</td>
<td>1.6</td>
<td>3.3</td>
<td>4.9</td>
<td>6.6</td>
<td>8.2</td>
<td>9.9</td>
<td>13.2</td>
<td>16.5</td>
</tr>
<tr>
<td>30% acrylamide mix</td>
<td>2.0</td>
<td>4.0</td>
<td>5.0</td>
<td>8.0</td>
<td>10.0</td>
<td>12.0</td>
<td>16.0</td>
<td>20.0</td>
</tr>
<tr>
<td>1.5 M Tris, pH 8.8</td>
<td>1.3</td>
<td>2.5</td>
<td>3.8</td>
<td>5.0</td>
<td>6.3</td>
<td>7.5</td>
<td>10.0</td>
<td>12.5</td>
</tr>
<tr>
<td>10% SDS</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>10% ammonium persulfate</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>TEMED</td>
<td>0.002</td>
<td>0.004</td>
<td>0.006</td>
<td>0.008</td>
<td>0.01</td>
<td>0.012</td>
<td>0.016</td>
<td>0.02</td>
</tr>
<tr>
<td>15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_2O</td>
<td>1.1</td>
<td>2.3</td>
<td>3.4</td>
<td>4.6</td>
<td>5.7</td>
<td>6.9</td>
<td>9.2</td>
<td>11.5</td>
</tr>
<tr>
<td>30% acrylamide mix</td>
<td>2.5</td>
<td>5.0</td>
<td>7.5</td>
<td>10.0</td>
<td>12.5</td>
<td>15.0</td>
<td>20.0</td>
<td>25.0</td>
</tr>
<tr>
<td>1.5 M Tris, pH 8.8</td>
<td>1.3</td>
<td>2.5</td>
<td>3.8</td>
<td>5.0</td>
<td>6.3</td>
<td>7.5</td>
<td>10.0</td>
<td>12.5</td>
</tr>
<tr>
<td>10% SDS</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>10% ammonium persulfate</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>TEMED</td>
<td>0.002</td>
<td>0.004</td>
<td>0.006</td>
<td>0.008</td>
<td>0.01</td>
<td>0.012</td>
<td>0.016</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Πειραματική πορεία:

1. Μετά την SDS-PAGE τα πολυπεπτίδια που έχουν αναλυθεί στο πήκτωμα διαχωρισμού μεταφέρονται σε μεμβράνη PVDF, παρουσία ρυθμιστικού διαλύματος μεταφοράς 10mM CAPS με την εφαρμογή ηλεκτρικού πεδίου τάσεως 42V για 45min σε θερμοκρασία δωματίου.
2. Στη συνέχεια, η μεμβράνη ξεπλένεται με ddH₂O και βάφεται με χρωστική Ponceau S με σκοπό την παρατήρηση των ζώνων των μεταφερόμενων πρωτεϊνών. Η μεμβράνη αποχρωματίζεται με χρωστική Ponceau S με σκοπό την παρατήρηση των μεταφερόμενων πρωτεϊνών.

3. Πριν γίνει η επώαση της μεμβράνης με το επιθυμητό αντίσωμα, γίνεται η κατάλληλη έπρεπη διαμόρφωση της μεμβράνης µε το επίσημο νερό και κατόπιν με PBSμε 0,01% Tween (PBS-T).

4. Ακολουθεί η επώαση με το πρωτοαντίσωµα, το οποίο διαλύεται στην επιθυµητή αραίωση σε γάλα 5% διαλυμένο σε PBT παρουσία 0,02% NaN3, σε θερµοκρασία δωµατίου για όλη τη νύχτα σε περιστρεφόµενο τροχό.

5. Ακολουθούν 2 πλύσεις της μεμβράνης µε PBS-T 15min.

6. Μετά τις πλύσεις ακολουθεί η επώαση με το δευτεροαντίσωµα, το οποίο είναι συνδεδεµένο με το ένζυµο της υπεροξειδάσης για 1h.

7. Η μεμβράνη ξεπλένεται όπως προηγουµένως και ακολουθεί ανίχνευση του σήµατος µε χρήση του αντιδραστηρίου της ECL (Amersham Pharmacia)

Υλικά:

- **10X CAPS (100 mM)**
 Για την παρασκευή 1lt stock διαλύματος ηλεκτροµεταφοράς πρωτεϊνών χρησιµοποιούµε 22,13gr CAPS (MW: 221,3) σε 800 ml ddH₂O. Το pH προσαρµόζεται στην τιµή 11 µε NaOH 10N. Το διάλυμα είναι φωτοευαίσθητο.

- **Ponceau S SIGMA**

- **ddH₂O**

- **PBS 0,1% Tween (PBS-T)**

- **Διάλυμα µπλοκαρίσµατος µη ειδικών θέσεων στην PVDF μεµβράνη:**
 Σε 50ml διαλύµατος 1XPBS-T διαλύουµε 2,5gr γάλα σε σκόνη έτσι ώστε να έχει τελική συγκέντρωση 5%.

- **rabbit anti-Geminin** σε αραίωση 1:3000

- **mouse anti-tubulin** σε αραίωση 1:20.000 (Sigma)

- **anti-rabbit-HRP** σε αραίωση 1:5000 (Santa Cruz)

- **anti-mouse-HRP** σε αραίωση 1:2500 (Santa Cruz)

- **Amersham hyperfilm ECL**

- **Fujifilm FPM 3800 AD Developer**
4.11. Απομόνωση κυττάρων του αιμοποιητικού/λεμφοκυττάρων από ιστούς και χρώση των αντιγόνων επιφανείας τους για ανάλυση με κυτταρομετρία ροής

Η κυτταρομετρία ροής είναι μια τεχνολογία η οποία ταυτόχρονα μπορεί να μετρήσει και να αναλύσει πολλά φυσιολογικά χαρακτηριστικά ανεξάρτητων σωματιδίων, συνήθως κυττάρων, καθώς διέρχονται σαν υγρό εναιόρημα από μια δέσμη φωτός. Τα χαρακτηριστικά που μετρώνται περιλαμβάνουν το σχετικό μέγεθος το σωματίδιο, τη σχετική εσωτερική πολυπλοκότητα και την ένταση φθορισμού. Αυτές οι ιδιότητες μετρώνται με τη χρήση ενός συστήματος που συνδυάζει οπτικά και ηλεκτρονικά χαρακτηριστικά για την καταγραφή του πώς τα κύτταρα σκεδάζουν μια ακτίνα laser και του πώς εκπέμπουν φθορισμό.

Ένας κυτταρομετρητής ροής αποτελείται από 3 κύρια συστήματα: το οπτικό, το ηλεκτρονικό και το υπολογιστή (Εικόνα 4.4). Το τελευταίο σύστημα είναι υπεύθυνο για την δημιουργία ενός ρεύματος σωματίδιων τα οποία βρίσκονται σε εναιόρημα και αναλύονται προς την δέσμη φωτός. Το οπτικό σύστημα αποτελείται από lasers για την διέγερση των σωματίδιων της ροής και από οπτικά φίλτρα για την κατεύθυνση των οπτικών σημάτων στους κατάλληλους ανιχνευτές.

Το ηλεκτρονικό σύστημα μετατρέπει το ανιχνευόμενο φως σε ηλεκτρικά σήματα τα οποία μπορούν να επεξεργαστούν από τον υπολογιστή. Για κάποια από τα όργανα που είναι κατάλληλα για διαχωρισμό σωματίδιων (sorting), το ηλεκτρονικό σύστημα είναι ικανό να αρχίζει διαδικασίες διαχωρισμού αποκλείοντας κάποια σωματίδια. Στον κυτταρομετρητή ροής, τα σωματίδια μεταφέρονται μέσω μιας ροής υγρού προς την ακτίνα laser. Οποιοδήποτε διαλυμένο σωματίδιο ή κύτταρο μεγέθους από 0.2-150μm είναι δυνατόν να μετρηθεί. Κύτταρα που προέρχονται από ιστό πρέπει να διαχωριστούν σε μονάδες πριν την ανάλυση. Όταν τα κύτταρα διασταυρώνονται με το laser, σκεδάζουν την ακτινοβολία

Εικόνα 4.4: Παρουσιάζονται τα κύρια όργανα ενός κυτταρομετρητή ροής.
Πειραματική Διαδικασία:

1. Τα ζώα τα οποία θέλουμε να μελετήσουμε θανατώνονται με χρήση διοξειδίου του άνθρακα (CO₂).
2. Γίνεται τομή κατά μήκος της κοιλιακής χώρας και ο ποντικός τοποθετείται όπου στην διάταξη που παρουσιάζεται στο σχήμα.
3. Αφαιρούνται οι λεμφάδενες, ο σπλήνας, ο θόμος ή το εμβρυικό ήπαρ και τοποθετούνται σε universals τα οποία περιέχουν 5ml θρεπτικού μέσου IMDM. Καθ’ όλη την διάρκεια του πειράματος οι ιστοί και τα κύτταρα κρατούνται σε πάγο.
4. Ασκείται μηχανική πίεση στους ιστούς και με τη χρήση φίλτρων με πόρους διαμέτρου 70μμ, δημιουργείται εναέριμα κυττάρων του κάθε ιστού.
5. Ακολουθεί φυγοκέντρηση 1200rpm για 5min στους 4°C. Στην περίπτωση του σπλήνα μετά την φυγοκέντρηση στο ξύμα προστίθεται στο ξύμα διάλυμα λύσης των ερυθρών κυττάρων (5ml/σπλήνα) για 10min σε θερμοκρασία δοματίου. Μετά την επώδυση προστίθεται ίδιος όγκος IMDM και γίνεται φυγοκέντρηση κατά τον ίδιο τρόπο.
6. Τα κύτταρα από το θόμο επαναφέρονται σε 5ml IMDM, τα κύτταρα από τον σπλήνα σε 3ml, τα κύτταρα από τους λεμφάδενες σε 2ml συνολικά και τα κύτταρα από το εμβρυικό ήπαρ σε 2ml IMDM.
7. Στη συνέχεια ο αριθμός των κυττάρων από κάθε ιστό καταμετρείται με τη χρήση κυτταρομετρητή Casytron αφού πρώτα γίνει αραίωση 1:10.000 σε ισότονο διάλυμα.
8. Στο επόμενο βήμα χρησιμοποιείται πάνω 96 πηγαδιών U-bottom στο οποίο μεταφέρονται 10⁶ κύτταρα ανά πηγάδι από κάθε ιστό. Για κάθε αντίσωμα που χρησιμοποιείται για χρόνια αντιγόνων επιφανείας πρέπει να γίνει και μονή χρόση μόνο με αυτό το αντίσωμα οπότε σε κάθε πείραμα χρησιμοποιούνται και οι κατάλληλοι μάρτυρες. Ως αρνητικοί δείκτες χρησιμοποιούνται ισοτυπικά μονοκλωνικά αντισώματα τα οποία προέρχονται από το ίδιο ζώο.
9. Τα πιάτα 96 πηγαδίων φυγοκέντρονται στις 1500rpm για 5min στους 4°C.
10. Τα κύτταρα επαναφέρονται σε 100μl διαλύματος PBS-BSA(0,01%)-Azide(0,05%).
11. Επαναλαμβάνεται η φυγοκέντρηση στις 1200rpm για 5min στους 4°C.
12. Τα κύτταρα επαναφέρονται σε 100μl διαλύματος PBS-Azide που περιέχει τα επιθυμητά αντισώματα στις κατάλληλες αραιώσεις. Ακολουθεί επώαση για 30min σε πάγο.
13. Πλύση της περίσσειας των αντισώματων με προσθήκη 200μl PBS-BSA-Azide και φυγοκέντρηση στις 1500rpm για 5min στους 4°C.
14. Τα κύτταρα επαναφέρονται σε 100μl PBS-Azide και μεταφέρονται σε σωληνάρια FACS.
15. Τα δείγματα αναλύονται σε κυτταρομετρητή ροής BD.

Υλικά:

- Σύνεργα ανατομίας, Λαβίδες
- V bottom universals των 15 ml
- Cell strainer 70μm BD (201210)
- AB IMDM (Sigma-Aldrich)
- PBS
- Διάλυμα λύσης ερυθρών κυττάρων
 17mM Tris-HCl pH 7,2
 0,144M NH₄Cl
- Casytron κυτταρομετρητής
- PBS-BSA(0,01%)-Azide(0,05%)
 Σε 1L PBS διαλύουμε 0,1gr BSA και 0.5ml NaN₃ (τελική συγκέντρωση 0,05%)
- Σωληνάρια φυγοκέντρου
- Πιάτο 96 πηγαδίων
- Μονοκλωνικά αντισώματα έναντι των επιθυμητών δεικτών επιφανείας (Πίνακας 4.9 και 4.10)

4.12. Απομόνωση ολικού RNA

Η απομόνωση του RNA από κύτταρα του αιμοποιητικού ή λεμφοκύτταρα έγινε με την χρήση του αντιδραστηρίου Trizol (Invitrogen) ή με την χρήση του kit RNeasy (Qiagen micro ή mini).
Πειραματική διαδικασία:

1. Για την απομόνωση RNA από κύτταρα του αιμοποιητικού/λεμφοκύτταρα, τα κύτταρα πλένονται και επαναιωρούνται σε κρύο PBS.
2. Ακολουθεί φυγοκέντρηση των κυττάρων στις 1200rpm για 5min. και προσθήκη Trizol στο ιζήμα σε συγκέντρωση 1ml για κάθε 1x10⁶ κύτταρα. Η λύση των κυττάρων επιτυγχάνεται με μηχανική λύση με τη χρήση πιπέτας ή σύριγγας του 1ml.
3. Το εκχύλισμα των κυττάρων επωάζεται σε θερμοκρασία δωματίου για 5min. για την πλήρη λύση των κυττάρων. Η υπερκείμενη φάση μεταφέρεται σε νέο σωληνάριο eppendorf και προστίθενται 0.2ml χλωροφόρμιου για κάθε ml Trizol. Ακολουθεί ισχυρή ανακίνηση των δειγμάτων και φυγοκέντρηση στις 1200rpm για 15min. στους 4°C.
4. Η φυγοκέντρηση διαχωρίζει το μίγμα σε μια υποκείμενη φάση φαινόλης-χλωροφόρμιου, μια μεσόφαση και μια υπερκείμενη φάση στην οποία βρίσκεται το RNA. Η υπερκείμενη φάση μεταφέρεται σε νέο σωληνάριο eppendorf χωρίς να διαταραχθεί η μεσόφαση.
5. Προσθήκη 0.5ml ισοπροπανόλης για κάθε ml Trizol που χρησιμοποιήθηκε αρχικά και κατακρήμνιση του RNA με φυγοκέντρηση στις 12000rpm για 10min στους 4°C.
6. Πλύση του κατακρημνισμένου RNA με 75% διάλυμα EtOH και φυγοκέντρηση του στις 7500rpm για 5min στους 4°C.
7. Επαναδιάλυση του RNA σε H₂O από το οποίο έχει απενεργοποιηθεί οποιαδήποτε ενεργότητα RNase.
8. Ακολουθεί φωτομέτρηση του απομονωμένου RNA σε nanodrop για τον προσδιορισμό της συγκέντρωσης, ποιότητας και συνολικής ποσότητας του. Εναλλακτικά μπορεί να γίνει ανάλυση σε Bioanalyzer της Agilent ακολουθώντας τις οδηγίες του κατασκευαστή.

Για τα πειράματα που απαιτούσαν υψηλής ποιότητας RNA από μικρό αριθμό κυττάρων (<10⁶) είναι προτιμήθηκε το RNeasy micro κιτ της Qiagen για την απομόνωση του RNA σύμφωνα με τις οδηγίες του κατασκευαστή.

Υλικά:

- Αντιδραστήριο Trizol (Invitrogen)
- Μικροσυρικες του 1ml
- PBS
- Χλωροφόρμιο
- Ισοπροπανόλη
- 75% Αιθανόλη
• Σωληνάρια eppendorf RNase-free
• H₂O RNase-free
• Qiagen Rneasy mini ή micro kit

4.13. Σύνθεση cDNA από ολικό mRNA

Για την ποσοτικοποίηση του mRNA συγκεκριμένων γονιδίων χρησιμοποιήθηκε ένα πρωτόκολλο cDNA σύνθεσης 2 βήματων με την χρήση εκκινητών oligo-dT ή τυχαίων εξαμερών. Στο πρώτο βήμα (αντίστροφη μεταγραφή) γίνεται η σύνθεση του 1ον κλώνου συμπληρωματικού cDNA με τη χρήση της Murine Moloney Leukemia Virus (MMLV) αντίστροφης μεταγραφάσης και στην δεύτερη αντίδραση PCR χρησιμοποιείται το προϊόν της 1ής αντίδρασης και το ένζυμο πολυμεράση 1 σε συνδυασμό με ειδικούς εκκινητές έναντι του γονιδίου, το mRNA του οποίου θέλουμε να ποσοτικοποιήσουμε.

Πειραματική διαδικασία:

1. Προσδιορίζεται η αρχική συγκέντρωση του RNA και ανάλογα με την εφαρμογή η αντίδραση σύνθεσης cDNA αρχίζει με την χρήση 100-500ng RNA.
2. Προετοιμάζεται το master mix (Πίνακας 4.6) και ως αντίστροφης μάρτυρας χρησιμοποιείται master mix το οποίο περιέχει όλα τα υπόλοιπα αντιδραστήρια εκτός της αντίστροφης μεταγραφάσης.
3. Το master mix κατανέμεται στα σωληνάρια της PCR και τελικά προστίθεται το RNA από τα δείγματα προς εξέταση. Εφαρμόζεται το ακόλουθο πρόγραμμα στον θερμοκυκλοποιητή:
 37°C για 60 min.
 95°C για 3 min.
 10°C έως την αφαίρεση των δειγμάτων
4. Το προϊόν cDNA-RNA της προηγούμενης αντίδρασης αντίστροφης μεταγραφής χρησιμοποιείται ως μήτρα για την 2η αντίδραση PCR στην οποία χρησιμοποιούνται εκκινητές ειδικοί για τα προς εξέταση γονίδια. Το master mix για την 2η αντίδραση PCR φαίνεται στον παρακάτω πίνακα (Πίνακας 4.7). Για την 2η αντίδραση PCR εφαρμόζεται το ακόλουθο πρόγραμμα:
 1. 95°C για 10min. x1
 2. 94°C για 45sec.
 3. 60°C για 1min.
 4. 72°C για 1min 30sec.
 5. Επανάληψη των βήματων 2,3,4 για 40 κύκλους
 6. 72°C για 10min.
Πίνακας 4.6: Αντίδραση αντίστροφης μεταγραφής RNA σε cDNA

<table>
<thead>
<tr>
<th>Αντιδραστήριο</th>
<th>Αρχική συγκέντρωση Διαλυμάτων</th>
<th>Όγκος ανά 15µl αντίδρασης</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA</td>
<td>100ng/µl</td>
<td>5µl</td>
</tr>
<tr>
<td>10X ρυθμιστικό διάλυμα PCR</td>
<td>10x</td>
<td>1.5µl</td>
</tr>
<tr>
<td>Διάλυμα MgCl₂</td>
<td>25mM</td>
<td>2µl</td>
</tr>
<tr>
<td>Δεοξυριβονουκλεοτίδια (dNTPs)</td>
<td>10mM</td>
<td>1.5µl</td>
</tr>
<tr>
<td>Oligo-dT</td>
<td>12.5µM</td>
<td>0,16µl</td>
</tr>
<tr>
<td>RNasin</td>
<td>40U/µl</td>
<td>1µl</td>
</tr>
<tr>
<td>Murine moloney leukemia virus (MMLV) αντίστροφη μεταγραφάση</td>
<td>500U/µl</td>
<td>0,7µl</td>
</tr>
<tr>
<td>H₂O (nuclease free)</td>
<td>.</td>
<td>'Εως τα 15µl</td>
</tr>
</tbody>
</table>

Πίνακας 4.7: 2η Αντίδραση PCR για την ανίχνευση της έκφρασης γονιδίων προς μελέτη

<table>
<thead>
<tr>
<th>Αντιδραστήριο</th>
<th>Αρχική συγκέντρωση Διαλυμάτων</th>
<th>Όγκος ανά 20µl αντίδρασης</th>
</tr>
</thead>
<tbody>
<tr>
<td>cDNA</td>
<td>NA</td>
<td>1µl από την αντίδραση αντίστροφης μεταγραφής</td>
</tr>
<tr>
<td>10X ρυθμιστικό διάλυμα PCR II</td>
<td>10x</td>
<td>2µl</td>
</tr>
<tr>
<td>Διάλυμα MgCl₂</td>
<td>25mM</td>
<td>1.6µl</td>
</tr>
<tr>
<td>Δεοξυριβονουκλεοτίδια (dNTPs)</td>
<td>10mM</td>
<td>2µl</td>
</tr>
<tr>
<td>Εκκινητής forward</td>
<td>25µM</td>
<td>0,2µl</td>
</tr>
<tr>
<td>Εκκινητής reverse</td>
<td>25µM</td>
<td>0,2µl</td>
</tr>
<tr>
<td>Taq Gold πολυμεράση</td>
<td>50U/µl</td>
<td>0,1µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>.</td>
<td>'Εως τα 20µl</td>
</tr>
</tbody>
</table>
Υλικά:

- Σωληνάρια PCR (nuclease free)
- MMLV αντίστροφη μεταγραφή (+PCR buffer, +MgCl₂, Applied Biosystems N8080018)
- Gene Amp dNTPs (Applied Biosystems, N4303442)
- AmpliTaq Gold πολυµεράση (+PCR buffer II, +MgCl₂, Applied Biosystems N8080245)
- Η₂Ο (nuclease-free)
- Ειδικοί εκκινητές για τα προς εξέταση γονίδια (βλέπε πίνακα)

4.14. Αντίδραση PCR πραγματικού χρόνου (Real Time PCR)

Η αντίδραση PCR πραγματικού χρόνου είναι μια παραλλαγή της κλασσικής PCR και χρησιμοποιείται για την ταυτόχρονη ενίσχυση και ποσοτικοποίηση συγκεκριμένων γονιδίων-στόχων. Η ποσοτικοποίηση μπορεί να αναφέρεται είτε στον απόλυτο αριθμό αντιγράφων ενός μορίου DNA είτε στην σχετική ποσότητα σε σχέση με συγκεκριμένα γονίδια τα οποία έχει βρεθεί ότι διατηρούν σχετικά σταθερή την έκφραση τους σε διάφορους κυτταρικούς τύπους (housekeeping genes). Δυο από τις πιο κοινές μεθοδολογίες που χρησιμοποιούνται περιλαμβάνουν την χρήση α) χρωστικών οι οποίες ενσωματώνονται στο DNA και β) ιχνηθετών ειδικών για συγκεκριμένα γονίδια οι οποίοι είναι σημασιούχοι με µια χρωστική που φθορίζει μόνο ύστερα από την υβριδοποίηση των ιχνηθετών στις συμπληρωματικές αλληλουχίες DNA. Για τους σκοπούς της παρούσας μελέτης χρησιμοποιήθηκε ένα πρωτόκολλο με τη χρήση ενός αναλόγου της SYBR green χρωστικής.

Πειρασμική διαδικασία:

- Τα δείγματα cDNA προς ανάλυση επωάζονται στους 60°C για 10min. για την αποδιάταξη της τριτοταγούς τους δομής.
- Οι εκκινητές για τα προς εξέταση γονίδια επαναδιαλύονται σε συγκέντρωση 100µM και φυλάσσονται στους -80°C. Στην αντίδραση Real Time PCR χρησιμοποιούνται σε συγκέντρωση 25µM.
- Προστίθενται αρχικά 2µl cDNA και ακολούθως 18µl του master mix της αντίδρασης ανά πηγάδι του ειδικού 48- ή 96-well πιάτου. Είναι απαραίτητο να υπάρχουν 3 επαναλήψεις της αντίδρασης για κάθε δείγμα.
- Για το master mix της αντίδρασης προστίθενται τα παρακάτω αντιδράστηρια: 10µl από το SYBR Green PCR μίγμα 0.2µl εκκινητής forward
Υλικά και Μέθοδοι

0.2μλ εκκινητής reverse
7.6μλ H2O

- Τα 48- ή 96-well πιάτα επικαλύπτονται με το ειδικό διαφανές πλαστικό καπάκι και μεταφέρονται στον Real Time θερμοκυκλοποιητή.
- Το πρόγραμμα PCR που εφαρμόζεται είναι το ακόλουθο:

 1. 95°C για 10min. x1
 2. 94°C για 30sec.
 3. 60°C για 40sec.
 4. 72°C για 40sec.
 5. Επανάληψη των βημάτων 2,3,4 για 40 κύκλους

Υλικά:

- SYBR Green PCR master mix (Applied Biosystems 4309155)
- MicroAmp 96-well Fast Optical Reaction Plates (Applied Biosystems 4346906)
- MicroAmp optical adhesive film (Applied Biosystems 4311971)
- Θερμοκυκλοποιητής Real Time ABI PRISM 7900HT
- Εκκινητές (βλ. πίνακα 4.8)
- ddH2O

Πίνακας 4.8: Αλληλουχίες εκκινητών που χρησιμοποιήθηκαν σε RT-PCR

<table>
<thead>
<tr>
<th>Όνομα εκκινητή</th>
<th>Αλληλουχία</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-GEM1</td>
<td>5-CTCTCTACGAAGCGCTCGAA-3</td>
</tr>
<tr>
<td>RT-GEM2</td>
<td>5-AGCTCCTGAGTCTCCAGTT-3</td>
</tr>
<tr>
<td>HPRT-A</td>
<td>5-TCCCTGGTTAAGCAGTACAG-3</td>
</tr>
<tr>
<td>HPRT-B</td>
<td>5-GCTTTGTATTTGCTTTTC-3</td>
</tr>
<tr>
<td>HPRT-C</td>
<td>5-GACCTCTCGAAGTGTTGGAT-3</td>
</tr>
</tbody>
</table>
4.15. Απομόνωση κυττάρων του αιμοποιητικού με τη χρήση μαγνητικών σφαιριδίων

Τα πρωτόκολλα απομόνωσης κυττάρων με την χρήση μαγνητικών σφαιριδίων αποτελούν χρήσιμες εναλλακτικές τεχνικές για την απομόνωση συγκεκριμένων κυτταρικών πληθυσμών σε υψηλή καθαρότητα, όταν δεν είναι δυνατή η χρήση FACS. Η απομόνωση κυττάρων μέσω της χρήσης μαγνητικών σφαιριδίων περιορίζεται τη σήμανση των κυττάρων με τα επιθυμητά μονοκλωνικά βιοτινυλιωτικά αντισώματα και ακολουθώντας την επώαση τους με τα μαγνητικά σφαιριδία στρεπταβιδίνης. Ανάλογα με την εφαρμογή υπάρχει η δυνατότητα συλλογής των σημασμένων κυττάρων (θετική επιλογή) ή των υπολοίπων κυττάρων του πληθυσμού ύστερα από την απομάκρυνση των σημασμένων κυττάρων (αρνητική επιλογή). Για απομόνωση κυττάρων μέσω αρνητικής επιλογής χρησιμοποιήθηκε το ακόλουθο πρωτόκολλο.

Πειραματική διαδικασία (πρωτόκολλο αρνητικής επιλογής):

1. Απομόνωση του ιστού και χρήση φίλτρων με πόρους 70µm για την δημιουργία εναιώρηματος κυττάρων. Στην περίπτωση που τα κύτταρα βρίσκονται σε καλλιέργεια ξεπλένονται από το θρεπτικό μέσο και επαναιωνόθηκαν σε PBS.
2. Τα κύτταρα σημαίνονται με το κοκτέιλ των επιθυμητών βιοτινυλιωτικών αντισώματων σε συγκέντρωση 1x10^8 κύτταρα/ml PBS. Ακολουθεί επώαση στους 4°C για 30min.
3. Πλύση των κυττάρων για την απομάκρυνση της επίπλωσης αντισώματος, 2X με κρύο PBS.
4. Αραίωση των κυττάρων σε συγκέντρωση 7.5x10^6/ml σε IMDM 2% Foetal Calf Serum (FCS).
5. Προσθήκη 3x10^7 σφαιριδίων Dynabeads ανά 1x10^7 κύτταρα και επώαση σε σωληνάρια των 10ml υπό περιστροφή για 1h.
6. Τοποθέτηση των σωληναρίων 10ml που περιέχουν τα κύτταρα στους ειδικούς μαγνήτες. Τα σφαιριδία που έχουν δεσμεύει τα σημασμένα κύτταρα συγκεντρώνονται στην μια πλευρά του σωληναρίου κοντά στον μαγνήτη. Ύστερα από επώαση 5min. αφαιρείται το εναιώρημα που περιέχει τα επιθυμητά κύτταρα και μεταφέρεται σε νέο σωληνάριο. Η προηγούμενη διαδικασία επαναλαμβάνεται μια ακόμη φορά.
7. Τα κύτταρα καταμετρούνται με αιμοκυτταρόμετρο Neubauer και διαπιστώνεται ο συνολικός αριθμός των κυττάρων.

Υλικά:

• U-bottom σωληνάρια των 10ml
• Βιοτινυλιωτικά αντισώματα (βλ. πίνακα)
• PBS
Για θετική επιλογή ενός κυτταρικού πληθυσμού χρησιμοποιήθηκε το παρακάτω πρωτόκολλο:

Πειραματική διαδικασία (πρωτόκολλο θετικής επιλογής):

1. Απομόνωση του ιστού και χρήση φίλτρων με πόρους 70µm για την δημιουργία ενασφορήματος κυττάρων. Στην περίπτωση που τα κύτταρα βρίσκονται σε καλλιέργεια ξεπλένονται από το θρεπτικό μέσο και επαναποτίζονται σε PBS.
2. Τα κύτταρα σημαίνονται με το κοκτέιλ των επιθυμητών βιοτινυλιωµένων αντισώµατων σε συγκέντρωση 1x10^8 κύτταρα/ml PBS. Ακολουθεί επώαση στους 4°C για 30min.
3. Πλύση των κυττάρων για απομάκρυνση της περίσσειας των αντισώµατων 2Χ µε κρύο PBS. Φυγοκέντρηση των κυττάρων στις 1200rpm για 5min. Απομάκρυνση του υπερκείµενου.
4. Τα κύτταρα επαναποτίζονται σε 90µl διαλύµατος διαχωρισµού και προστίθενται 10µl Microbeads συζευγµένων με στρεπταβιδίνη ανά 10^7 κύτταρα.
5. Ακολουθεί καλή ανάµιξη και επώαση για 15min στους 4°C.
6. Πλύση των κυττάρων με 1-2ml διαλύµατος διαχωρισµού και φυγοκέντρηση στις 1200rpm για 10min. Ακολούθως της φυγοκέντρησης αφαιρείται πλήρως το υπερκείµενο και τα κύτταρα επαναποτίζονται σε 500µl διαλύµατος διαχωρισµού.
7. Η στήλη MS τοποθετείται στον μαγνήτη MACS και προετοιµάζεται με την προσθήκη 500µl διαλύµατος διαχωρισµού. Στην συνέχεια το ενασφορήµατο υποτίζεται στη στήλη.
8. Ακολούθως 3 πλύσεις µε την προσθήκη 3x3ml διαλύµατος διαχωρισµού. Η στήλη αφαιρείται από τον μαγνήτη και τοποθετείται σε σωληνάριο universal 15ml για την συλλογή των κυττάρων.
9. Προστίθεται 1ml διαλύµατος διαχωρισµού και τα σημασµένα κύτταρα συλλέγονται ύστερα από την άσκηση πίεσης µε την χρήση του εµβόλου της στήλης.

Υλικά:

- Microbeads συζευγµένα µε στρεπταβιδίνη (130-048-101 Miltenyi Biotech)
- Μαγνήτης Macs separator
- Σωληνάρια universals των 15ml
- Στήλες MS Macs columns (130-042-201 Miltenyi Biotech)
- Βιοτυνυλιωµένα αντισώµατα (βλ. πίνακα)
4.16. *In vitro* καλλιέργεια λεμφοκυττάρων και ενεργοποίηση B ή T λεμφοκυττάρων

Πειραματική διαδικασία:

1. Απομόνωση των λεμφαδένων, σπλήν του μυός και χρήση φίλτρων με πόρους 70µm για την δημιουργία εναισχυμάτου κυττάρων. Ακολούθως εφαρμόζεται το κατάλληλο πρωτόκολλο διαχωρισμού (Πρωτόκολλο 4.15) για την απομόνωση των επιθυμητών κυτταρικών υποπληθυσμών Τ ή Β κυττάρων.

2. Τα κύτταρα ύστερα από τον διαχωρισμό τους τοποθετούνται για καλλιέργεια σε πιάτο 96 πηγαδιών σε 3 επαναλήψεις για το κάθε δείγμα. Συνολικά τοποθετούνται 5x10⁵ κύτταρα σε 200µl RPMI 1640 (10% FCS, 100mg/ml στρεπτομυκίνη, 100U/ml πενικιλλίνη 2mM γλουταμίνη και 50mM β-μερκαπτοεθανόλη). Τα κύτταρα επωάζονται σε επωαστικό θάλαμο κυτταροκαλλιέργειας για την διάρκεια του πειράματος ενώ το θρεπτικό μέσο αντικαθίσταται ανά 24h.

3. Για την ενεργοποίηση των T κυττάρων τα πιάτα 96 πηγαδιών στα οποία θα καλλιεργηθούν τα T κύτταρα επωάζονται για 12h με 50µl PBS στο οποίο έχουν προστεθεί τα αντισώματα αντί-CD3 (2µg/ml) και αντί-CD28 (10µg/ml).

4. Εναλλακτικά για την ενεργοποίηση των T κυττάρων με PDBU (0.5mg/ml) ή PDBU (0.5mg/ml) και Ionomycin (1mg/ml), ή Concanavalin A (5µg/ml) τα αντιδραστήρια αυτά αραιώνονται στις κατάλληλες συγκεντρώσεις και προστίθενται στο θρεπτικό μέσο των κυττάρων.

5. Για την ενεργοποίηση των B κυττάρων με IgM (10µg/ml) ή LPS (10µg/ml) τα αντιδραστήρια αυτά αραιώνονται στις κατάλληλες συγκεντρώσεις και προστίθενται στο θρεπτικό μέσο των κυττάρων.

Υλικά:

- Πιάτα 96 πηγαδιών
- Φίλτρα 70µm
- Θρεπτικό μέσο λεμφοκυττάρων RPMI 1640
Υλικά και Μέθοδοι

10% FCS,
100mg/ml στρεπτομυκίνη,
100U/ml πενικιλλίνη
ten
2mM γλουταμίνη
ten
50mM β-μερκατοεθανόλη
ten
• Αντι-CD3 και αντι-CD28 μονοκλωνικά αντισώματα (145.2C11 και 37.51, αντίστοιχα από την e-Bioscience)
• PDBU (Sigma Aldrich)
• Ionomycin (Sigma Aldrich)
• Concanavalin-A (Ionomycin)

4.17. Χρώση CFSE για την ανάλυση των κυτταρικών διαιρέσεων των λεμφοκυττάρων

Πειραματική διαδικασία:

1. Πριν την συλλογή και χρώση των κυττάρων προετοιμάζεται διάλυμα CFSE (1µM) σε PBS το οποίο και επωάζεται στους 37°C για 10min.
2. Τα λεμφοκύτταρα συλλέγονται, ξεπλένονται και επαναιωρούνται στο προηγούμενο διάλυμα σε συγκέντρωση 1.5x10⁷ ανά ml διάλυμα CFSE.
3. Ακολουθεί επώαση στους 37°C για 10min υπό συνθήκες σκότους.
4. Για την απενεργοποίηση του CFSE προστίθεται 10πλάσιος άγκος θρεπτικού μέσου (IMDM 2% FCS) αμέσως μετά την επώαση.
5. Ακολουθούν 2X πλύσεις με PBS 2%FCS για την πλήρη απομάκρυνση του CFSE.
6. Τα λεμφοκύτταρα κρατιούνται σε κυτταροκαλλιέργεια ή μεταμοσχεύονται σε µύες.
7. Η ανάλυση σε κυτταροµετρητή ροής γίνεται ύστερα από την διέγερση µε µονοχρωµατική ακτινοβολία στα 488nm.

Υλικά:

• IMDM 2%FCS
• PBS και PBS 2%FCS
• CFSE (Molecular Probes C34554)
4.18. Τεχνικές ανάλυσης του κυτταρικού κύκλου των λεμφοκυττάρων και κυττάρων του αιμοποιητικού - Χρώση με propidium iodide ή 7AAD

Η χρήση χρωστικών οι οποίες ενσωματώνονται στο DNA όπως to propidium iodide ή to 7-AAD σε συνδυασμό με την κυτταρομετρία των ροής βρίσκει χρήσιμες εφαρμογές στην ανάλυση του κυτταρικού κύκλου (υπότιτα από μονιμοποίηση και διάτρηση των κυττάρων) και στην ποσοτικοποίηση των αποτελέσματος κυττάρων (χωρίς διάτρηση).

Πειραματική διαδικασία:

1. Απομόνωση του ιστού και χρήση φίλτρων με πόρους 70μμ για τη δημιουργία εναιωρήματος κυττάρων. Στην περίπτωση που τα κύτταρα βρίσκονται σε καλλιέργεια ξεπλένονται από το θρεπτικό μέσο και επαναιωρούνται σε PBS.
2. Τα κύτταρα μεταφέρονται σε σωληνάρια U-bottom των 5ml.
3. Φυγοκέντρηση στις 1500rpm για 5min και απομάκρυνση του υπερκείμενου.
4. Τα κύτταρα μονιμοποιούνται με την ρίψη ψυχής EtOH με ροή σταγόνα. Κατά την προσθήκη της αιθανόλης είναι απαραίτητη η διαρκής ανακίνηση των σωληναρίων για την αποφυγή κυττάρων.
5. Τα κύτταρα επωάζονται στους 4°C για 30min. Τα δείγματα μπορούν να παραμείνουν στο στάδιο αυτό για 2-3 εβδομάδες πριν την περιτέλεση του υπερκείμενου.
6. Για την χρώση με propidium iodide ή 7-AAD, τα κύτταρα ξεπλένονται 3X με PBS και ακολουθεί η χρώση στις 2000rpm για 10min. Αφαιρείται το υπερκείμενο.
7. Για την χρώση αυστηρά και μόνο του DNA, γίνεται επώαση των δειγμάτων με 50µl RNάσης (100µg/ml).
8. Ακολούθως στα σωληνάρια προστίθενται 200µl propidium iodide ή 7-AAD (50µg/ml)
9. Τα δείγματα αναλύονται στον κυτταρομετρητή. Η καταγραφή του φθορισμού από τις κυτταρικές χρωστικές γίνεται υψηλότερα των 600nm.

Υλικά:

- Σωληνάρια U-bottom των 5ml
- PBS
- 70% EtOH
- Ribonuclease A (Sigma-Aldrich, R5125)
- Propidium iodide (Sigma-Aldrich, P4170)
- 7-Amino-Actinomycin διάλυμα 2ml (BD 559925)
4.19. Ανάλυση της απόπτωσης των λεμφοκυττάρων με χρώση PI/Annexin V

Η απόπτωση είναι μια φυσιολογική διαδικασία η οποία παρατηρείται κατά την εμβρυική ανάπτυξη. Παράλληλα έχει δειχθεί ότι είναι επίσης σημαντική για την διατήρηση της ομοιόστασης των ιστών. Το αποπτωτικό πρόγραμμα των κυττάρων χαρακτηρίζεται από συγκεκριμένες μορφολογικές μεταβολές, όπως η καταστροφή της κυτταροπλασματικής μεμβράνης, η σμίκρυνση του κυτταροπλάσματος και του πυρήνα και η κατάτμηση του DNA. Στα πρώτα γεγονότα της απόπτωσης περιλαμβάνεται η μεταφορά του μεμβρανικού φωσφολιπιδίου φωσφατιδυλσερίνης (phosphatidylserine PS) από την εσωτερική στην εξωτερική πτυχή της κυτταρικής μεμβράνης. Η Annexin V είναι μια πρωτεΐνη με μεγάλη συγγένεια πρόσδεσης στο φωσφολιπίδιο PS. Ως εκ τούτου η Annexin V συζευγίζεται με το φθορίχρωμα FITC και χρησιμοποιείται στην ανάλυση μέσω κυτταρομετρίας ροής των αποπτωτικών κυττάρων.

Πειραματική διαδικασία:

1. Τα κύτταρα συλλέγονται από την καλλιέργεια έξπλενόνται 2X με PBS και επαναιωνούνται σε 1X διάλυμα δέσμευσης σε συγκέντρωση 1x10^6/ml.
2. Μεταφορά 100µl του διαλύματος δέσμευσης (1x10^5 κύτταρα) σε σωληνάριο των 5ml
3. Προσθήκη 5µl FITC AnnexinV και 5µl propidium iodide.
4. Ακολουθεί ήπια ανάδευση και επώαση των κυττάρων για 15min. σε συνθήκες σκότους.
5. Προσθήκη 400µl 1X διαλύματος δέσμευσης σε κάθε σωληνάριο και ανάλυση μέσω κυτταρομετρίας ροής.

Υλικά:
- Σωληνάρια U-bottom των 5ml
- PBS
- FITC Annexin V Apoptosis kit (BD 556547)

4.20. Ανάλυση μέσω κυτταρομετρίας ροής κυττάρων σημασμένων με BrdU

Ο ανοσοφθορισμός για την ανίχνευση του ενσωματωμένου BrdU σε συνδυασμό με ανάλυση κυτταρομετρίας ροής είναι μια τεχνική η οποία βρίσκει εφαρμογή στον καθορισμό και καταμέτρηση των κυτταρικών τύπων οι οποίοι έχουν συνθέσει DNA. Σύμφωνα με αυτή την μέθοδο το BrdU (ένα ανάλογο της θυμιδίνης) ενσωματώνεται στους νεοσυντιθέμενους κλώνους του DNA σε κύτταρα τα οποία έχουν εισέλθει στην S φάση του κυτταρικού κύκλου. Το ενσωματωμένο BrdU ανιχνεύεται με τη χρήση μονοκλωνικού αντισώματος συζευγιμένου με κατάλληλο φθορίχρωμα. Τα κύτταρα τα οποία έχουν
Πειραματική διαδικασία:

1. Για την in vitro σήμανση κυττάρων του αιμοποιητικού ή λεμφοκυττάρων in vitro, προστίθεται BrdU στην κυτταροκαλλιέργεια σε τελική συγκέντρωση 10μΜ. Δίνεται ιδιαίτερη προσοχή ώστε τα κύτταρα να μην διαταραχθούν κατά την διάρκεια της επώασης (π.χ. με φυγοκέντρηση ή αλλαγή θερμοκρασίας) και επηρεαστεί η φυσιολογική πρόοδος του κυτταρικού κύκλου. Ανάλογα με την εφαρμογή η διάρκεια επώασης των κυττάρων με BrdU κυμαίνεται από 30-120min.

2. Για την in vivo σήμανση των ημιανθρώπινων εμβρύων μηνός, πραγματοποιείται ένσωση BrdU (66mg/kg του μηνός) σε έγκυο με 15 ημερών. Το ζώο θετικά είναι 2h. αργότερα και γίνεται συλλογή των εμβρύων ημάτων και πραγματοποιείται δημιουργία εναορθήματος κυττάρων από κάθε ιστό σε PBS.

3. Ανεξάρτητα από το εάν έχει γίνει in vitro ή in vivo σήμανση με BrdU μικρής ή μακράς διάρκειας τα επόμενα βήματα για την πραγματοποίηση ανοσοφθορισμού έναντι του BrdU και ανάλυση των κυττάρων με κυτταρομετρία ροής είναι τα παρακάτω. Τα κύτταρα ξεπλένονται με PBS και μεταφέρονται σε σοληνάρια των 5ml (10⁶ κύτταρα).

4. Τα κύτταρα επωάζονται σε διάλυμα χρώσης το οποίο περιέχει τα επιθυμητά μονοκλωνικά αντισώματα έναντι των δεικτών επιφανείας προς ανάλυση. Επώαση για 15min. στους 4°C και ξέπλυμα με 1ml διαλύματος χρώσης. Φυγοκέντρηση 1500rpm για 5min. και αφαίρεση του υπορεκτικού

5. Προσθήκη 100μl διαλύματος Cytofix/Cytoperm για την μονιμοποίηση των κυττάρων. Επώαση για 15min. σε πάγο. Ξέπλυμα, φυγοκέντρηση και αφαίρεση του υπορεκτικού όπως στο βήμα 4.

6. Προσθήκη 100μl διαλύματος Cytoperm για την διάταξη της κυτταρικής και πυρηνικής μεμβράνης των κυττάρων. Επώαση για 10min. σε πάγο. Ξέπλυμα, φυγοκέντρηση και αφαίρεση του υπορεκτικού όπως στο βήμα 4.

7. Προσθήκη 100μl DNάσης (τελική συγκέντρωση 300μg/ml σε PBS) και επώαση των κυττάρων στους 37°C για 1h. Το βήμα αυτό είναι απαραίτητο για έκθεση των θέσεων του ενσωματωμένου BrdU. Ξέπλυμα, φυγοκέντρηση και αφαίρεση του υπορεκτικού όπως στο βήμα 4.

8. Προσθήκη 50μl αντισώματος αντι-BrdU συζευγμένο με FITC (αραίωση 1:50 σε διάλυμα χρώσης) και επώαση για 20min. σε θερμοκρασία δωματίου. Ξέπλυμα, φυγοκέντρηση και αφαίρεση του υπορεκτικού όπως στο βήμα 4.

92
9. Εάν είναι επιθυμητό τα κύτταρα επωάζονται σε 20μι 7-AAD (50μg/ml) για ταυτόχρονη ανάλυση του περιεχομένου DNA.
10. Τα κύτταρα αναλύονται στον κυτταρομετρητή.

Υλικά:
- Σωληνάρια U-bottom των 5ml
- PBS
- FITC BrdU Flow kit (BD, 559619)

4.21. *In vitro* σχηματισμός αποικιών από προγονικά κύτταρα του αιμοποιητικού

Στο εμβρυικό ήπαρ και τον ενήλικο μυελό των οστών του μυός ένας μικρός αριθμός βλαστικών κυττάρων του αιμοποιητικού παράγει επωάζοντας προγονικό DNA. *In vitro* συστήματα, όπως αυτό που περιγράφεται εδώ, έχουν αναπτυχθεί για την δημιουργία κυττάρων προγονικού στον αιμοποιητικό. Περιγράφεται εδώ το πειραματικό σύστημα, με την βοήθεια για την δημιουργία κυττάρων προγονικού στον αιμοποιητικό.

Πειραματική διαδικασία:

1. Απομόνωση του ήπατος από τα έμβρυα 15 ημερών και χρήση φίλτρων με πόρους 70μμ για την δημιουργία εναισχυμένων κυττάρων σε IMDM.
2. Το θρεπτικό μέσο MethoCult έχει τοποθετηθεί την προηγούμενη μέρα του πειράματος στους 4°C για να ξεπαγώσει.
3. Τα κύτταρα καταμετρούνται και επαναφορτίζονται σε IMDM σε συγκέντρωση 1x10^6 κύτταρα.
4. Στο θρεπτικό μέσο Methocult προστίθενται οι επιθυμητές κυτταροκινές στην κατάλληλη συγκέντρωση (rhEpo, 10 ng/mL mIL-3, 10 ng/mL rhIL-6, 50 ng/mL mSCF, 50ng/ml mFlt3L, 20ng/ml GM-SCF and 50ng/ml mTPO).
5. Προστίθενται 0.3ml κυττάρων σε 3ml MethoCult. Το μίγμα αναδεύεται έντονα και αφίνεται σε περιοχές για 15min ώστε να απομακρυνθούν οι φυσαλίδες που έχουν σχηματιστεί.
6. Με τη χρήση εμβόλου και ειδικής σύριγγας με στρογγυλά άκρα γίνεται η μεταφορά 2x 1.1ml μίγματος Methocult-κυττάρων από κάθε δείγμα σε 2 πιάτα διαμέτρου 35mm.
7. Περιφορά του πιάτου ώστε να διανεμηθεί ομοιόμορφα το μιγμα Methocult-κυττάρων.
8. Τα 2 πιάτα του κάθε δείγματος τοποθετούνται σε ένα 100mm πιάτο. Προστίθεται ένα τρίτο 35mm πιάτο το οποίο περιέχει 3ml αποστειρωμένου H2O.
9. Τα κύτταρα στην διάταξη που περιγράφηκε στο προηγούμενο βήμα τοποθετούνται στον επιαστή και συντηρούνται στους 37°C, 5% CO₂ και 95% υγρασία.
10. Οι αποικίες καταμετρούνται την 3η, 7η και 10η ημέρα μετά την έναρξη της καλλιέργειας σε φωτονικό μικροσκόπιο.

Υλικά:
- IMDM
- Φίλτρα 70µm
- Πιάτα 30mm και 100mm
- Methocult θρεπτικό μέσο (M3234, M3334, M3434 StemCell Technologies)
- Κυτταροκίνες rhEpo, mIL-3, rhIL-6, mSCF, mFlt3L, GM-SCF και mTPO (Peprotech)

4.22. Απομόνωση περιφερικού αίματος από ποντικούς και ανάλυση με κυτταρομετρία ροής

1. Οι μύες από τους οποίους πρόκειται να απομονωθεί αίμα μεταφέρονται σε ένα κλουβί και τοποθετούνται κάτω από έναν λαμπτήρα πυρακτώσεως για αύξηση της αιματικής ροής.
2. Οι μύες απομακρύνονται ένας τη φορά και τοποθετούνται στην ειδική θήκη η οποία περιορίζει τον κορμό του μυ και αφήνει ελεύθερη την ουρά.
3. Γίνεται μικρή τομή στο σοκαριστικό τμήμα της ουράς στο οποίο βρίσκονται η φλέβα και αορτή της ουράς. Συλλέγονται 1-2 σταγόνες αίματος με τη βοήθεια ενός τριχοειδούς σωληναρίου ηπαρίνης.
4. Το αίμα απομακρύνεται με πιπέτα από το τριχοειδές σωληνάριο και τοποθετείται σε σωληνάριο eppendorf το οποίο περιέχει 50µl διαλύματος ηπαρίνης.
5. Τα δείγματα μεταφέρονται σε σωληνάρια των 5ml και φυγοκεντρούνται στις 1200rpm για 5min στους 4°C.
6. Ακολουθεί χρώση έναντι των δεικτών επιφανείας με τη βοήθεια του βλ. πρωτόκολλου 4.11
7. Τα κύτταρα μονιμοποιούνται και γίνεται λύση των ερυθρών κυττάρων με επώαση σε διάλυμα λύσης.
8. Τα κύτταρα αναλύονται σε κυτταρομετρητή.

Υλικά:
- Διάλυμα ηπαρίνης (Sigma-Aldrich H3393)
- Τριχοειδή σωληνάρια ηπαρίνης (BD 361027)
• Λεπίδα Lancet
• Σωληνάρια U-bottom των 5µl
• PBS
• Μονοκλωνικά αντισώματα έναντι μαρτύρων επιφάνειας συζευγμένα με κατάλληλα φθοριοχρώματα (βλ. πίνακα αντισωμάτων)
• Διάλυμα λύσης ερυθροκυττάρων και μονιμοποίησης (FACS lysing solution, BD 349202)

4.23. Πρωτόκολλο ακτινοβόλησης μυών με ιονιζουσα ακτινοβολία

1. Οι μύες προς ακτινοβόληση τοποθετούνται στα ειδικά μεταλλικά δοχεία και καλύπτονται αρχικά με το γυαλίνο καπάκι και εξωτερικά με τα υφασμάτινα καλύμματα.
2. Οι μύες μεταφέρονται στον δωμάτιο όπου βρίσκεται η πηγή Cesium και ανοίγουμε την πόρτα πατώντας F1. Οι μύες τοποθετούνται στην ειδική θήκη ενώ η πόρτα της συσκευής κλειδώνεται.
3. Ρυθμίζεται η διάρκεια της ακτινοβόλησης ανάλογα με την δόση που απαιτείται να δοθεί (για τη συγκεκριμένη εργασία 950rad) και πατάμε Clear ακολουθούμενο από Start Cycle.
4. Αναμονή για την ολοκλήρωση του κύκλου ακτινοβόλησης. Η συσκευή τοποθετείται στο Off οι μύες αφαιρούνται από την θήκη και μεταφέρονται πίσω στο ζωοκομείο.
Πίνακας 4.9: Πρωτογενή μονοκλωνικά αντισώματα που χρησιμοποιήθηκαν στην ανάλυση των διαφόρων ιστών με κυτταρομετρία ροής

<table>
<thead>
<tr>
<th>Αντίσώμα</th>
<th>Κλόνος</th>
<th>Εταιρεία</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3-biotin</td>
<td>145-2C11</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD8a-biotin</td>
<td>53-6.7</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD19-biotin</td>
<td>MB19-1</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>B220-biotin</td>
<td>RA3-6B2</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>GR-1-biotin</td>
<td>GR1</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD11b-biotin</td>
<td>M1/70</td>
<td>BioLegend</td>
</tr>
<tr>
<td>CD11c-biotin</td>
<td>N418</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>Ter119-biotin</td>
<td>TER119</td>
<td>BioLegend</td>
</tr>
<tr>
<td>CD38-biotin</td>
<td>90</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD44-biotin</td>
<td>Ly-24</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>Thy1.2-biotin</td>
<td>30-H12</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>TCRγδ-biotin</td>
<td>GL3</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>LY6A/E-Pacific Blue</td>
<td>D7</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD4-Pacific Blue</td>
<td>-</td>
<td>CALTAQ</td>
</tr>
<tr>
<td>CD4-FITC</td>
<td>H129.19</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>CD8α-FITC</td>
<td>53-6.7</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD19-FITC</td>
<td>MB19-1</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD34-FITC</td>
<td>RAM-34</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD44-FITC</td>
<td>-</td>
<td>CALTAQ</td>
</tr>
<tr>
<td>TCRβ-FITC</td>
<td>H57-597</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>LY6A/E-FITC</td>
<td>D7</td>
<td>BioLegend</td>
</tr>
<tr>
<td>Thy1-FITC</td>
<td>H1551</td>
<td>e-bioscience</td>
</tr>
<tr>
<td>IgM-FITC</td>
<td>MHM-88</td>
<td>BioLegend</td>
</tr>
<tr>
<td>CD4-PE</td>
<td>RM4-5</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD45.1-PE</td>
<td>A20</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD62L-PE</td>
<td>MEL-14</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD69-PE</td>
<td>H1.2F3</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD117-PE</td>
<td>ACK2</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD127-PE</td>
<td>A7R34</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>TCRβ-PE</td>
<td>H57-597</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>LY6A/E-PE</td>
<td>D7</td>
<td>BioLegend</td>
</tr>
<tr>
<td>IL7Rα-PE</td>
<td>A7R34</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>IgD-PE</td>
<td>11-26</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>FcRII/III-PE</td>
<td>93</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD135-PECY7</td>
<td>AF210</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD150-PECY7</td>
<td>TC15-12F12.2</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>FcRII/III-PECY7</td>
<td>93</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD11b-PECY7</td>
<td>M1/70</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>GR1-PECY7</td>
<td>GR1</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD4-PERCP</td>
<td>RM4-5</td>
<td>e-Bioscience</td>
</tr>
</tbody>
</table>
Πίνακας 4.9.(συνέχεια): Πρωτογενή μονοκλωνικά αντισώματα που χρησιμοποιήθηκαν στην ανάλυση των διαφόρων ιστών με κυτταρομετρία ροής

<table>
<thead>
<tr>
<th>Αντίσωμα</th>
<th>Κλώνος</th>
<th>Εταιρεία</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD8α-PECP</td>
<td>53-6.7</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD4-APC</td>
<td>GK1.5</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD8α-APC</td>
<td>53-6.7</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD19-APC</td>
<td>MB19-1</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD25-APC</td>
<td>PC61.5</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD45.2-APC</td>
<td>104</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD38-APC</td>
<td>90</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD48-APC</td>
<td>BCM1</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD117-APC</td>
<td>ACK2</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>AA4.1-APC</td>
<td>AA4.1</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>LY6A/E-APC</td>
<td>D7</td>
<td>BioLegend</td>
</tr>
<tr>
<td>TCRβ-APC</td>
<td>H57-597</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>GR-1-APC</td>
<td>GR1</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD34-AF647</td>
<td>RAM-34</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>B220-AF750</td>
<td>RA3-6B2</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD117-eFluor780</td>
<td>ACK2</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>CD11c-eFluor780</td>
<td>N418</td>
<td>e-Bioscience</td>
</tr>
</tbody>
</table>

Πίνακας 4.10.: Δευτερογενή αντισώματα που χρησιμοποιήθηκαν στην ανάλυση των διαφόρων ιστών με κυτταρομετρία ροής

<table>
<thead>
<tr>
<th>Αντίσωμα</th>
<th>Κωδικός</th>
<th>Εταιρεία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptavidin-PE</td>
<td>12-4317</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>Streptavidin-PECP</td>
<td>46-4317</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>Streptavidin-APC</td>
<td>17-4317</td>
<td>e-Bioscience</td>
</tr>
<tr>
<td>Streptavidin-Alexa Fluor 610</td>
<td>S-20982</td>
<td>Invitrogen</td>
</tr>
</tbody>
</table>
Αποτελέσματα: O ρόλος της Geminin στην αυτό-ανανέωση και διαφοροποίηση των HSPCs

ΑΠΟΤΕΛΕΣΜΑΤΑ
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκυττάρων
5.1. Η συγχρονισμένη ρύθμιση του κυτταρικού πολλαπλασιασμού και της κυτταρικής διαφοροποίησης είναι απαραίτητη για την ανάπτυξη του λεµφοκυττάρου συστήματος

Η ανάπτυξη του λεµφοκυττάρου συστήματος έχει ως σκοπό την παραγωγή πλήρους διαφοροποιημένων κυττάρων τα οποία είναι λειτουργικά εξειδικευμένα και μέσω των οποίων επιτελούνται οι λειτουργίες της επίκτησης ανοσιακής απάντησης του οργανισμού (Bonilla and Oettgen). Κατά την διάρκεια της ανάπτυξης αυτών των κυττάρων, μια διαδικασία που αρχίζει στην εμβρυογένεση και συνεχίζεται στον ενήλικο οργανισμό, ο αυστηρός έλεγχος του κυτταρικού πολλαπλασιασμού συντονίζεται με αλλαγές στην οργάνωση της χρωματικής και στην μεταγραφή οδηγώντας στην παραγωγή του κατάλληλου αριθμού πλήρους διαφοροποιημένων κυττάρων της ενήλικης ανάπτυξης επίκτητης κυτταρικής διαφοροποίησης.

5.1. H

Εικόνα 5.1: Ο γονιδιακός τόπος της Geminin. Το γονιδίο της Geminin στον μυ (αλληλόμορφο αγρίου τύπου WT), το αλληλόμορφο το οποίο έχει προέλθει άσπερα από γονιδιακή στήχωση (αλληλόμορφο floxed) και το αλληλόμορφο από το οποίο αποστάζουν τα εξώνα 3&4 (αλληλόμορφο KO). Τα τετράγωνα παριστάνουν τα εξώνα του γονίδιου της Geminin και τα τρίγωνα τις θέσεις ενέθεσης των IoxP αλληλογονών. Οι θέσεις αναγνώρισης των ενζυμών περιορισμού SacII, XhoI και BstXI, Asp718 ορισθείσαν τους 5’ και 3’ βραχίονες ομολογίας αντίστοιχα. Οι θέσεις αναγνώρισης των ενζυμών περιορισμού Asp718, BamH1, SacII, XhoI και BstXI απεικονίζονται ως A, B, S, X και Bα αντίστοιχα.

5.2. H Geminin εκφράζεται σε υψηλά επίπεδα στα Τ λεµφοκύτταρα που πολλαπλασιάζονται

Έρευνες σε καρκινικές κυτταρικές σειρές και πρωτογενή κύτταρα έχουν δείξει το mRNA μήνυμα
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκυττάρων

Εικόνα 5.2: Έκφραση της Geminin στους Τ κυτταρικούς πληθυσμούς του θύμου και του σπλήνα: Α) Υστερά από απομόνωση ολικού mRNA από θυμοκύτταρα, σπληνοκύτταρα, λεμφαδένες ή διαχωρισμένων μέσω κυτταρομετρίας ροής DN1, DN2, DN3, DN4, DP, CD4 και CD8 T κυττάρων του σπλήνα, πραγματοποιήθηκε σύνθεση cDNA και ανίχνευση του μηνύματος της Geminin με τη χρήση ειδικών εκκινητών. Β) Η ποσοτικοποίηση του μηνύματος που κωδικοποιεί για την Geminin στα DN1, DN2, DN3, DN4, DP, CD4 και CD8 T κύτταρα του θύμου και CD4 και CD8 T κύτταρα του σπλήνα πραγματοποιήθηκε με τη χρήση PCR πραγματικού χρόνου (Real Time PCR). Γ) Ανάλυση κατά Western των ολικών κυτταρικών εκχυλισμάτων από θύμο και ενεργοποιημένα Τ κύτταρα με anti-CD3, anti-CD28 (10µg/ml και 2µg/ml) με τη χρήση αντισωμάτων anti-Geminin, anti-tubulin και anti-actin. Δ) Ανάλυση κατά Western των ολικών κυτταρικών εκχυλισμάτων από θύμο, σπλήνα, λεμφαδένες και ενεργοποιημένα Τ κύτταρα με anti-CD3, anti-CD28 (10µg/ml και 2µg/ml) ή PDBU/Ionomycin (0,5µg/ml και 1µg/ml) με τη χρήση αντισωμάτων anti-Geminin, anti-tubulin και anti-actin.
καθώς και η πρωτεϊνική έκφραση της Geminin είναι αυξημένη σε κύτταρα τα οποία βρίσκονται σε κυτταρικό πολλαπλασιασμό και αντίθετα σημαντικά μειωμένη ή απουσία σε κύτταρα εκτός του κυτταρικού κύκλου (Wohlschlegel et al., 2002). Επίσης προηγούμενες παρατηρήσεις του εργαστηρίου μας έχουν προτείνει ότι τόσο το mRNA όσο και τα πρωτεϊνικά επίπεδα της Geminin μειώνονται δραματικά ύστερα από την έξοδο ανθρώπινων ινοβλαστών από τον κυτταρικό κύκλο ενώ ανεβαίνουν σημαντικά ύστερα από 12h από την είσοδο τους στον κυτταρικό κύκλο (Xouri et al., 2004).

Εικόνα 5.3: Στρατηγική PCR για την ανάλυση των γεγονότων ανασυνδυασμού στο γονιδιακό τόπο της Geminin σε κύτταρα λεµφικών ιστών. DNA από ουρά, θύμο, σπλήν και λεµφάδενες χρησιμοποιήθηκε για την γονοτύπηση των µυών με τη χρήση PCR. Τα αλληλόµορφα Gem WT, GEM floxed και GEM KO παράγουν τµήματα DNA των 549, 597 και 240bp αντίστοιχα ύστερα από ενίσχυση µέσω PCR αντίδρασης. Β. Ανάλυση της αποτελεσµατικότητας εκτοµής των εξωνίων 3&4 αντίστοιχα ύστερα από την έξοδο ανθρώπινων ινοβλαστών από τον κυτταρικό κύκλο ενώ ανεβαίνουν σηµαντικά ύστερα από 12h από την είσοδο τους στον κυτταρικό κύκλο.

Για την διερεύνηση των επιπέδων έκφρασης της Geminin κατά την ανάπτυξη των Τ κυττάρων στο θύμο, σε ηρεµούντα περιφερικά Τ κύτταρα και σε περιφερικά Τ κύτταρα που βρίσκονται σε κυτταρικό πολλαπλασιασμό, ποσοτικοποιήσαµε τα επίπεδα του mRNA και της πρωτεϊνικής της Geminin στους προηγούμενους Τ κυτταρικούς πληθυσµούς µε τη χρήση της RT-PCR και ανάλυσης κατά Western. Υστερα από αποµόνωση ολικού mRNA από θυμικότταρα, σπληνοκύτταρα, λεµφαδένες ή διαχωρισµένους µέσω κυτταροµετρίας ροής DN1, DN2, DN3, DN4, DP, CD4 και CD8 Τ κυττάρον του θύμου και CD4 και CD8 Τ κυττάρον του σπλήνα πρεµισµωρίας σύνθεσης cDNA και ανίχνευσης του µηνύµατος της Geminin µε τη χρήση ειδικών εκκινητών. Παρατηρήθηκε ότι το mRNA της Geminin είναι ισοµήκως τους Τ προγονικούς κυτταρικούς πληθυσµούς του θύμου, από τα DN1 έως και τα µονά θετικά CD4 και CD8 κύτταρα (Εικόνα 5.2A και 5.2B). Επιπλέον το µήνυµα για την Geminin ανιχνεύθηκε
και στα όρια περιφερικά CD4 και CD8 T κύτταρα του σπλήνα αλλά και σε ολικά κύτταρα του θύμου, του σπλήνα και των λεμφαδένων (Εικόνα 5.2). Η ποσοτικοποίηση του μηνύματος mRNA για την Geminin μέσω Real Time-PCR έδειξε ότι το mRNA για την Geminin βρίσκεται σε χαμηλότερα επίπεδα στους πληθυσμούς από DN1-DN3 του θύμου, ενώ αυξάνεται στα DN4 και DP κύτταρα και διατηρείται σε χαμηλά επίπεδα στα περιφερικά CD4 και CD8 T κύτταρα (Εικόνα 5.2B). Η αύξηση των επιπέδων του mRNA που παρατηρήθηκε κατά την μετάβαση από το DN3 στο DN4 συμπίπτει με τον έντονο κυτταρικό πολλαπλασιασμό του σημειώνεται κατά το ίδιο στάδιο. Η ανάλυση κατά Western των ολικών κυτταρικών εκχυλισμάτων από θύμο, σπλήνα, λεμφαδένες και ενεργοποιημένα T κύτταρα έδειξε ότι τα πρωτεϊνικά επίπεδα της Geminin είναι χαμηλά σε ηρεμικά T κύτταρα και αυξάνονται καθώς τα T κύτταρα εισέρχονται σε κυτταρικό πολλαπλασιασμό (Εικόνα 5.2Γ).

5.3. Ανάλυση των γεγονότων ανασυνδυασμού στον γονιδιακό τόπο της Geminin στα T λεμφοκύτταρα των Fl/koCD2Cre μυών

Μελέτες του εργαστηρίου μας (Διπλωματική εργασία Πανοραίας Κοταντάκης, Διδακτορική διατριβή Πανοραίας Κοταντάκη) έδειξαν ότι η απενεργοποίηση του γονιδίου της Geminin δεν είναι συμβατή με τη ζωή. Για αυτό το λόγο δημιουργήθηκαν από το εργαστήριο μας μύες στους οποίους μπορεί να γίνει κατά συνήθη αδρανοποίηση του γονιδίου της Geminin (Διδακτορική διατριβή Πανοραίας Κοταντάκη).

Υστέρα από επιλεκτικές διασταύρώσεις δημιουργήθηκαν μύες οι οποίες για το γονιδιακό τόπο της Geminin έφεραν: α) ένα αλληλόμορφο σημείο τύπου και ένα αλληλόμορφο από το οποίο τα εξόντια 3&4 του γονιδίου της Geminin έχουν αποκοπεί (GemininWT/KO) β) δύο αλληλόμορφα με ένθεση δύοloxP θέσεων εκατέρωθεν των εξοντίων 3&4 (GemininPFF). Οι μύες του γονιτότυπου GemininWT/KO διασταύρωθηκαν με διαγωνισμικούς μύες στους οποίους η έκφραση του γονιδίου της Cre ελέγχεται από τα ρυθμιστικά στοιχεία του γονιδίου hCD2 (de Boer et al., 2003). Έχει δειχθεί ότι η hCD2Cre εκφράζεται σε T και B λεμφοκύτταρα. Τα ζώα από τους γονιτότυπους GemininWT/KO, Cd2Cre από την προηγούμενη διασταύρωση επιλέχθηκαν και διασταύρωθηκαν εκ νέου με μύες του γονιτότυπου GemininPFF. Η τελευταία διασταύρωση οδήγησε στην γέννηση μυών των γονιτότυπων GemininPWT, GemininFL/KO, GemininFL/WTCD2Cre τα οποία χρησιμοποιούνται ως ζώα μάρτυρες και GemininFL/KOCD2Cre οι οποίοι είναι μύες στους οποίους απενεργοποιείται το γονιδίο της Geminin στα λεμφοκύτταρα (Εικόνα 5.4).

Για την μελέτη του in vivo ρόλου της Geminin κατά την ανάπτυξη και διαφοροποίηση των T κυττάρων στο θύμο και στην περιφέρεια χρησιμοποιήθηκαν Fl/koCD2Cre μύες ενώ ως ζώα μάρτυρες χρησιμοποιήθηκαν μύες του γονιτότυπου Fl/wt, Fl/wtCD2Cre ή Fl/ko. Για την ανάλυση των γεγονότων ανασυνδυασμού στους πειραματικούς μύες και στους μύες μάρτυρες χρησιμοποιήθηκε μια στρατηγική βασισμένη στη χρήση PCR ή Southern. Χρησιμοποιώντας PCR και ειδικούς εκκινητές που αναγνώριζαν και τα 3 πιθανά αλληλόμορφα (floxed, knockout, WT) βρέθηκε ότι στους Fl/koCD2Cre μύες το floxed αλληλόμορφο, η ζώνη η οποία ενισχύεται από τους εκκινητές 2003-2004 και έχει μέγεθος 583bp,
αποστάζει από το DNA των θυμοκυττάρων και είναι πολύ σημαντικά μειωμένο στο DNA των σπληνοκυττάρων και λεμφαδένων (Εικόνα 5.3Α). Τα θυμοκύτταρα μπορούν να καταταγούν σε συγκεκριμένους πληθυσμούς ανάλογα με το στάδιο διαφοροποίησης και την έκφραση συγκεκριμένων αντιγόνων επιφανείας: το 5% χαρακτηρίζεται ως διπλά αρνητικά (DN double negative δεν εκφράζουν ούτε CD4 ούτε CD8), το 80% είναι διπλά θετικά (DP double positive εκφράζουν τόσο CD4 όσο και CD8), το 10% εκφράζει μόνο CD4 (CD4 SP single positive) και το 5% μόνο CD8 (CD8 SP single positive). Η ανάλυση με PCR σε γενομικό υλικό που προήλθε από τους 4 κτυπαρικούς πληθυσμούς του θύμου, δείχνει την πλήρη απουσία του floxed αλληλομορφίου όπου εκφράζεται η Cre (Εικόνα 5.3Β).

Εικόνα 5.4: Σχήμα διασταύρωσεων για τη δημιουργία μοίρων στους οποίους αδρανοποιείται το γονίδιο της Geminin στα λεμφοκύτταρα: Στο εργαστήριο είχαν προηγουμένως δημιουργηθεί με κατάλληλους γενετικούς χειρισμούς και επιλεκτικές διασταύρωσεις μίας οποία για το γονιδιακό τόσο της Geminin έφεραν: a) ένα αλληλόμορφο αγρίου τύπου και ένα αλληλόμορφο από το οποίο τα εξώνα 3&4 του γονίδιου της Geminin έχουν αποκοπεί (GemininWT/KO) β) δυο αλληλόμορφα με ένδειξη δύο loxp θέσεων εκτεταμένων των εξώνων 3&4 (Gemininfloxed). Οι μίες του γονοτύπου GemininWT/KO διασταύρωθηκαν με διαγωνιδιακές μίες στους οποίους ή έκφραζε το γονίδιο της Cre ελέγχεται από τα ρυθμιστικά στοιχεία του γονίδιου hCD2. Τα ζώα απογονούν του γονοτύπου GemininWT/KO/Cd2Cre από την προηγούμενη διασταύρωση επιλέχθηκαν και διασταύρωθηκαν εκ νέου με μίες του γονοτύπου Gemininfloxed. Η τελευταία διασταύρωση οδήγησε στην γέννηση μοίρων των γονοτύπων GemininWT/WT, GemininWT/KO, Gemininfloxed/Cd2Cre τα οποία χρησιμοποιούνται ως ζώα μάρτυρες και Gemininfloxed/Cd2Cre οι οποίοι είναι μίες στους οποίους απενεργοποιείται το γονίδιο της Geminin στα λεμφοκύτταρα.

Επιπλέον η ανάλυση κατά Southern δειγμάτων DNA από την ουρά, θύμο, σπλήνα και λεμφαδένες χρησιμοποιούντας τον 5' εξωτερικό χρησιμοποιεί την αποτελεσματική απαλοιφή των εξώνων 3&4 σε κύτταρα στα οποία εκφράζεται η Cre (Εικόνα 5.5). Πιο συγκεκριμένα για την ανάλυση κατά Southern πραγματοποιήθηκε πέντε του γενομικού υλικού με την περιοριστική ενδονοικελάση BamH1.
και ακολούθως το DNA αναλύθηκε σε πηκτή αγαρόζη και υβριδοποιήθηκε με τον ραδιοσημασμένο 5' εξωτερικό ιχνηθέτη (ιχνηθέτης που έχει προέλθει ύστερα από διπλή πέψη με AflII-SacII). Η ζώνη DNA των 11.4-Kb αντιστοίχει στο floxed αλληλόμορφο ενώ η ζώνη των 9.8Kb αντιστοίχει στο KO αλληλόμορφο. Στα ζώα Fl/koCD2Cre δεν ανιχνεύθηκε ζώνη των 11.4-kb στους ιστούς του θύμου, του σπλήνα και των λεµφαδένων (Εικόνα 5.5). Συνολικά η ανάλυση του DNA από Fl/koCD2Cre μύες και ζώα μάρτυρες απέδειξε την αποτελεσματική απαλοίφη του floxed αλληλόμορφου στα Τ λεµφοκύτταρα.

Για την διαπίστωση της αποτελεσματικής απαλοιφής της Geminin από τα Τ λεµφοκύτταρα σε πρωτεινικό επίπεδο αναλύθηκαν ολικά κυτταρικά εκχυλίσματα από θυµοκύτταρα και σπληνοκύτταρα. Η πρωτεΐνη Geminin ανιχνεύθηκε στα κυτταρικά εκχυλίσματα από τα λεµφοειδή όργανα των μυών μαρτύρων ενώ αντίθετα η πρωτεΐνη δεν ανιχνεύθηκε στο θύμο των Fl/koCD2Cre μυών και μόνο μια υπολεμιματική εκφραση παρατηρήθηκε στα κυτταρικά εκχυλίσματα από τα σπληνοκύτταρα. Τα χαμηλά επίπεδα εκφρασης της πρωτεϊνής στα σπληνοκύτταρα είναι πιο πιθανό να προέρχονται από κύτταρα του σπλήνα στα οποία δεν εκφράζεται και επομένως δεν έχει ενεργότητα ανασυνδυασμού η CD2Cre.

Εικόνα 5.5: Ανάλυση κατά Southern των γεγονότων ανασυνδυασμού στον γονιδιακό τόπο της Geminin. Ανάλυση κατά Southern γενωμικού DNA απομονωμένου από ουρά, θύμο, σπλήνα και λεµφαδένες. Α) Το μέγεθος των προβλεπόμενων τµηµάτων για τα FL, WT και KO αλληλόμορφα στον γονιδιακό τόπο της Geminin ύστερα από πέψη με BamH1 και υβριδοποίηση με τον 5' εξωτερικούς ιχνηθέτης. Β) Ακολούθως της πέψης με την περιοριστική ενδονουκλεάση BamH1, το DNA αναλύθηκε σε πηκτή αγαρόζη και υβριδοποιήθηκε με τον ραδιοσημασμένο 5' εξωτερικούς ιχνηθέτης (ιχνηθέτης που έχει προέλθει ύστερα από διπλή πέψη με AflII-SacII). Η ζώνη DNA των 11.4Kb αντιστοίχει στο floxed αλληλόμορφο ενώ η ζώνη των 9.8Kb αντιστοίχει στο KO αλληλόμορφο.
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκύτταρων

Επιπρόσθετα ενώ τα ενεργοποιημένα Τ κύτταρα με CD3/CD28 ή PDBU/Ionomycin από τους μύες μάρτυρες παρουσίαζουν υψηλά επίπεδα έκφρασης της Geminin, η πρωτεϊνή δεν ανιχνεύθηκε στα ενεργοποιημένα Τ κύτταρα από Fl/koCD2Cre μύες (Εικόνα 5.3Δ). Συμπερασματικά η έκφραση της Cre υπό τον έλεγχο των ρυθμιστικών στοιχείων του ανθρώπινου CD2 γονιδίου οδήγει στην αποτελεσματική απενεργοποίηση του γονιδίου της Geminin στα Τ κύτταρα.

5.4. Φυσιολογική ανάπτυξη και διαφοροποίηση των Τ κυττάρων στο θύμο απουσία της Geminin

Οι μύες του γονοτύπου Fl/koCD2Cre από τους οποίους απουσίαζε η Geminin στα λεμφοκύτταρα αναπτύσσονται φυσιολογικά, χωρίς εμφανές διαταράξεις σε ζωτικά οργάνα του οργανισμού. Ο συνολικός αριθμός των θυμοκύτταρών εμφανίζεται ελαττωμένος κατά 21% στους Fl/koCD2Cre μύες σε σχέση με τους μύες του γονοτύπου Fl/wt (2,55x10^8, n = 17, έναντι 3,24x10^8, n = 12; t test, p = 0,009). Επιπλέον η απουσία της Geminin δεν επηρεάζει το πρόγραμμα διαφοροποίησης των Τ κυττάρων στο θύμο. Ζώα από τα οποία απουσίαζε η Geminin παρουσίαζαν μικρές μειώσεις στους Τ κυτταρικούς πληθυσμούς του θύμου. A) Ο μέσος όρος των συνολικού αριθμού θυμοκύτταρων και του αριθμού των DN1, DN2, DN3, DN4, DP, CD4 και CD8 κυτταρικών υποπληθυσμών του θύμου (Fl/wt N=12 και Fl/koCD2Cre N=17). B) Αντιπροσωπευτικό προφίλ ενός θύμου ύστερα από χρώση με αντι-CD4 και αντι-CD8 αντισώματα και ανάλυση με κυτταρομετρία ροής απεικονίζεται στα διαγράμματα.

Εικόνα 5.6: Η απουσία της Geminin δεν επηρεάζει το πρόγραμμα διαφοροποίησης των Τ κυττάρων στο θύμο. Ζώα από τα οποία απουσίαζε η Geminin παρουσίαζαν μικρές μειώσεις στους Τ κυτταρικούς πληθυσμούς του θύμου. A) Ο μέσος όρος των συνολικού αριθμού θυμοκύτταρων και του αριθμού των DN1, DN2, DN3, DN4, DP, CD4 και CD8 κυτταρικών υποπληθυσμών του θύμου (Fl/wt N=12 και Fl/koCD2Cre N=17). B) Αντιπροσωπευτικό προφίλ ενός θύμου ύστερα από χρώση με αντι-CD4 και αντι-CD8 αντισώματα και ανάλυση με κυτταρομετρία ροής απεικονίζεται στα διαγράμματα.

106
ποσοτικοποίηση των ευχροιστών Τ κυτταρικών πληθυσμών του θύμου μέσω FACS ανάλυσης με την χρήση αντισώματων έναντι των CD4 και CD8, προτίθεντα ότι στους μύες από τους οποίους αποστάζει η Geminin ο πληθυσμός των DP (διπλά θετικών) Τ κυττάρων είναι μειωμένος κατά 22% (1,84x10^8, n = 17, έναντι 2,36x10^8, n = 12; t test, p = 0,009) ενώ τα DN, CD4 SP και CD8 SP κύτταρα δεν παρουσιάζουν στατιστικά σημαντικές διαφορές. Περαιτέρω εξέταση και διάκριση των διπλά αρνητικών Τ κυττάρων στους υποπληθυσμούς από DN1 έως DN4 είδειξε ότι οι υποπληθυσμοί DN1 και DN4 παρουσίασαν μειώσεις 24% (0,721x10^6, n = 17, έναντι 0,951x10^6, n = 12; t test, p = 0,04) και 21% (2,753x10^6, n = 17, έναντι 3,4x10^6, n = 12; t test, p = 0,03 αντίστοιχα (Εικόνα 5.6A και 5.6B). Τα αποτελέσματα αυτά προτείνουν ότι η ανάπτυξη και διαφοροποίηση των Τ κυττάρων στο θύμο δεν επηρεάζεται σημαντικά από την αποστία της Geminin αφού όλες οι υποπληθυσμοί των Τ κυττάρων του θύμου παράγονται με σημαντικές παρατηρούμενες μειώσεις μόνο στα DN1, DN4 και DP κύτταρα.

5.5. Η αποστία της Geminin οδηγεί στην μείωση του αριθμού των περιφερικών Τ κυττάρων

Μετά την οφήμανση τους στο θύμο τα μονά θετικά CD4 και CD8 Τ κύτταρα μεταναστεύουν στα περιφερικά λεμφικά όργανα όπου ενσωμάτωνε σε συγκεκριμένα ανατομικά διαμερίσματα του σπλήνα και των λεμφαδένων. Ανάλυση με κυτταρομετρία ροής των περιφερικών Τ κυττάρων του σπλήνα

Εικόνα 5.7: Σημαντικές μειώσεις στα περιφερικά Τ κύτταρα των Fl/koCD2Cre. Αντιπροσωπευτικό προφίλ των Τ κυττάρων ενός σπλήνα ύστερα από χρώση με anti-CD4 και anti-CD8 αντισώματα και ανάλυση με κυτταρομετρία ροής. Ο μέσος όρος του αριθμού των CD4, CD8 και CD4/CD8+ κυττάρων ενός σπλήνα απεικονίζεται στα ραβδογράμματα (Fl/wt Ν=12 και Fl/koCD2Cre, Ν=17 **p<0,01)

έδειξε ότι οι CD4 και οι CD8 κύτταρα του σπλήνα των Fl/koCD2Cre μικριούς μειώνονται κατά 35% και 33% αντίστοιχα (0,89x10^7, n = 17, έναντι 1,36x10^7, n = 12; t test, p = 0,004) και 33% (4,73x10^6, n =17, έναντι 7,01x10^6, n = 12; t test, p = 0,002) σε σχέση με τα ζώα μάρτυρες (Εικόνα 5.7). Είναι γνωστό ότι οι περιφερικοί Τ κυτταρικοί πληθυσμοί αποτελούνται από κύτταρα με διαφορετική διάρκεια ζωής, ρυθμό πολλαπλασιασμού και κυτταρική εξελίξεωση (Tough and Sprent, 1994). Θεωρήθηκε σκόπιμο να εξεταστούν κατά πόσο οι μειώσεις που παρατηρήθηκαν στα περιφερικά Τ κύτταρα επηρεάζουν
λειτουργικά εξειδικευμένους πληθυσμούς περιφερικών Τ κυττάρων όπως τα αθώα, ρυθµιστικά και Τ κύτταρα μνήµης. Όταν συγκρίθηκαν αθώα CD4 και CD8 Τ κύτταρα τα οποία δεν εκφράζουν CD44 και εκφράζουν υψηλά επίπεδα του CD62L από Fl/koCD2Cre μύες σε σχέση με τα αντίστοιχα από μύες μάρτυρες παρατηρήθηκε μια μείωση 43% (2,83 x 10^6, n = 10, έναντι 5,03 x 10^6, n = 6; t test, p = 0.002) και 32% (2,11 x 10^6, n =10, έναντι 3,11 x 10^6, n = 6; t test, p = 0,008) αντίστοιχα (Εικόνα 5.8A και 5.8B). Εξετάσαμε επίσης τα CD4+CD62L- κύτταρα παρατηρήθηκε μείωση κατά 18% σε σχέση µε Fl/koCD2Cre µύες σε σχέση µε αντίστοιχα από µύες µάρτυρες (Pepper and Jenkins, 2011). Στους µύες από τους οποίους απουσίαζε η Geminin από τα λεµφοκύτταρα παρατηρήθηκε ότι τα CD4+CD44 high (1,42 x 10^6, n = 8, έναντι 2,96 x 10^6, n = 8; t test, p = 0,009) παρουσιάζουν ελάττωση κατά 52% σε σχέση με τους µύες από µύες µάρτυρες (Εικόνα 5.9A). Σε φυσιολογικούς µύες περίπου 10% των CD4 Τ κυττάρων εκφράζουν την αλυσίδα α του υποδοχέα IL2 (IL2R-a chain; CD25). Αυτά τα CD4+CD25+ κύτταρα περιέχουν ένα πληθυσμό κυττάρων τα οποία εκφράζουν το FoxP3+ μεταγραφικό παράγοντα και είναι γνωστά ως ρυθµιστικά Τ κύτταρα επειδή έχουν την ικανότητα να περιορίζουν ανοσολογικές αποκρίσεις και να

Εικόνα 5.8: Σηµαντικές µειώσεις παρατηρούνται στα αθώα Τ κύτταρα των Fl/koCD2Cre µυών. Αντιπροσωπευτικό προφίλ των λειτουργικών υποπληθυσμών του Τ κυττάρου του σπλήνα ύστερα από ανάλυση µε κυτταροµετρία ροής. (Α) Ο µέσος όρος του αριθµού των CD4 Τ κυττάρων µνήµης και (B) των CD8 Τ κυττάρων του σπλήνα από Fl/wt (N=6) και Fl/koCD2Cre µύες (N=10) απεικονίζεται στα ραβδογράµµατα (**p<0,01)

καταστέλουν αυτό-άνοσες ασθένειες (Shevach, 2002). Η ανάλυση FACS πρότεινε ότι στον σπλήνα των Fl/koCD2Cre µυών, τα CD4+CD25+ FoxP3+ κύτταρα µειώνονται κατά 35% συγκρινόµενα µε τους µύες
μάρτυρες (Εικόνα 5.9Β). Είναι σημαντικό το γεγονός ότι η μείωση που παρατηρήθηκε στα ρυθμιστικά T κύτταρα (Regulatory T cells) των Fl/koCD2Cre ζώων δεν οφείλεται στην μειωμένη έκφραση του CD25 αφού όπως δείχτηκε σε σχετικά πειράματα που διενεργήθηκαν, σε απομονωμένα T κύτταρα από τα οποία αποστάζει η Geminin, η CD25 πρωτεΐνη αυξάνει την έκφραση της σε συγκρινόμενα επίπεδα με τα T κύτταρα αγρίου τύπου σε απόκριση σε μικτά σήματα in vitro (Εικόνα 5.10 και αποτελέσματα που δεν παρουσιάζονται).

![Diagram A: CD4 memory](image1)

![Diagram B: Foxp3 CD4 Tregs](image2)

Εικόνα 5.9: Σημαντικές μειώσεις παρατηρούνται στα ρυθμιστικά και T κύτταρα μνήμης των Fl/koCD2Cre μυών. Αντιπροσωπευτικό προφίλ των λειτουργικών υποπληθυσμών των T κυττάρων του σπλήνα ύστερα από ανάλυση με κυτταρομετρία ροής. (A) Ο μέσος όρος του αριθμού των CD4 T κυττάρων μνήμης του σπλήνα από Fl/wt (N=8) και Fl/koCD2Cre μύες (N=8) και (B) των CD4 ρυθμιστικών T κυττάρων του σπλήνα από Fl/wt (N=3) και Fl/koCD2Cre μύες (N=6) απεικονίζονται στα ραβδογράμματα (*p<0,05; **p<0,01)

5.6. Ανωμαλίες του κυτταρικού πολλαπλασιασμού των T κυττάρων που δεν εκφράζουν την Geminin

Έρευνες στον S. cerevisiae, στον X. laevis, στον ιχθύ Medaka και σε ανθρώπινες και κυτταρικές σειρές μυών έχουν δείξει τον σημαντικό ρόλο της Geminin στην ρύθμιση του κυτταρικού κύκλου (Del Bene et al., 2004; Saxena and Dutta, 2005; Zhu et al., 2004). Επειδή είναι πιθανό ότι η απορύθμιση της έκφρασης της Geminin θα έχει σοβαρές επιπτώσεις στην ομαλή πρόοδο του κυτταρικού κύκλου, εξετάσαμε την ικανότητα κυτταρικού πολλαπλασιασμού των T κυττάρων από τα οποία αποστάζει η
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκυττάρων

Geminin. Η ενσωμάτωση [3H] θυμιδίνης στα T κύτταρα από Fl/koCD2Cre μύες ύστερα από διέγερση για 64h με αντι-CD3 και αντι-CD28 ήταν μειωμένη σε ποσοστό μεγαλύτερο του 60% σε σχέση με τα T κύτταρα από ζώα μάρτυρες (Εικόνα 5.11A).

Εικόνα 5.10: Φυσιολογική απόκριση των T κυττάρων από τα οποία απουσιάζει η Geminin στην ενεργοποίηση μέσω του T κυτταρικού υποδοχέα. Τα κύτταρα ενεργοποιήθηκαν με τη χρήση αντι-CD3 (10µg/ml), αντι-CD3 και αντι-CD28 (10µg/ml and 2µg/ml αντίστοιχα), concanavalin A (ConA, 5µg/ml) και phorbol 12,13-dibutyrate/Ionomycin (PdBu/Ion 0.5 and 1µg/ml). Τα ποσοστά των CD4 και CD8 T κυττάρων τα οποία εκφράζουν CD44 και CD62L προσδιορίστηκαν σε κάθε χρονική στιγμή.
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκυττάρων

Για να αποκλείσουμε το ενδεχόμενο ότι ο παρατηρούμενος φαινότυπος μειωμένου κυτταρικού πολλαπλασιασμού οφείλεται σε τυχόν ανομαλίες στην μεταγωγή σήματος μέσω του TCR υποδοχέα εξετάσαμε την έκφραση μορίων επιφανείας που μεταβάλλονται ύστερα από διέγερση του TCR υποδοχέα. Όπως από την διέγερση Τ κυττάρων από Fl/koCD2Cre μύες και μύες μάρτυρες, με αντι-CD3 και αντι-CD28 ή με PDBU και Ionomycin ή με Concanavalin A, η μεταβολή της έκφρασης των IL-2R (CD25), CD62L, CD69 και CD44 μετρήθηκε σε διάφορα χρονικά σημεία μέσω κυτταρομετρίας ροής.

Εικόνα 5.11: Τα Τ κύτταρα από τα οποία απουσιάζει η έκφραση της Geminin παρουσιάζουν μειωμένο κυτταρικό πολλαπλασιασμό και αδυνατούν να διαιρεθούν συνεχόμενα. Α) Τα Τ κύτταρα από τα οποία έχει απενεργοποιηθεί η Geminin ενσωματώνουν θυμιδίνη με μειωμένο ρυθμό σε σχέση με τα κύτταρα μάρτυρες. Β) Τ κύτταρα από ζώα μάρτυρες ή Fl/koCD2Cre ζώα σημάδεψαν με CFSE και καλλιεργήθηκαν in vitro σε πίατα επικαλυμμένα με αντι-CD3 και αντι-CD28. Τα τοιχογράμματα αναπαριστούν τις διαιρέσεις του πληθυσμού των CD4+CD25high (αριστερή στήλη) και CD8+CD25high (δεξιά στήλη).

(Εικόνα 5.10). Η αύξηση των επιπέδων έκφρασης των CD69 και CD44 καθώς και η μείωση των επιπέδων έκφρασης των CD25 και CD62L μεταξύ Τ κυττάρων από τα οποία απουσιάζει η Geminin και Τ κυττάρων μαρτύρων δεν έδειξαν στατιστικά σημαντικές διαφορές (Εικόνα 5.10A και 5.10B). Τα προηγούμενα αποτελέσματα προτείνουν ότι στα Τ κύτταρα από τα οποία απουσιάζει η Geminin, οι σήματα μέσω του TCR υποδοχέα μεταβιβάζονται επαρκώς με αποτέλεσμα της φυσιολογικής μεταβολής στούς μάρτυρες επιφανείας που αποκρίνονται στην ενεργοποίηση του TCR υποδοχέα.

Για να εξετάσουμε περαιτέρω εάν η παρατηρούμενη μειωμένη πρόσληψη τριτιωμένης θυμιδίνης οφείλόταν σε διακοπή των κυτταρικών διαφρέσεων ή/και αυξημένου κυτταρικού θανάτου μετρήθηκε ο κυτταρικός θάνατος μέσω της εξέτασης της έκφρασης της AnnexinV και της ενεργοποιημένης κασπάσης-3. Τα Τ κύτταρα που προερχόταν από Fl/wt και Fl/koCD2Cre μύες παρουσίαζαν παρόμοια
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκυττάρων

επίπεδα Annexin-V ή ενεγοποιημένης κασπάσης-3 ύστερα από 24 ή 48 ώρες ενεργοποίησης μέσω του TCR υποδοχέα (Εικόνα 5.14). Τα αποτελέσματα αυτά δείχνουν ότι δεν παρατηρείται αυξημένος κυτταρικός θάνατος στα Τ κύτταρα απουσία της Geminin. Για την εξέταση των κυτταρικών διαιρέσεων με μια διαφορετική τεχνική χρησιμοποιήθηκε η ενδοκυτταρική χρώση με CFSE (carboxyfluorescein diacetate, succinimidyl ester). Πιο συγκεκριμένα Τ κύτταρα απομονώθηκαν από τους λεμφαδένες Fl/koCD2Cre και Fl/wt μικρών, υπέστησαν χρώση με CFSE και ενεγοποίησαν με αντι-CD3 και αντι-CD28 μονοκλωνικά αντισώματα. Οι διαιρέσεις των Τ κυττάρων ελέγχθηκαν στη συνέχεια μέσω της παρακολούθησης με κυτταρομετρία ροής της αραίωσης της χρώστικης CFSE ύστερα από χρώση με αντισώματα έως γονίδιον του που υπερεκφράζονταν ύστερα από την ενεργοποίηση των Τ κυττάρων όπως τα CD69 και CD25 για να ελεγχθεί τους υπερενεργοποιημένους της ενεργοποίησης των T κυττάρων. Στις 24h μετά την ενεργοποίηση δεν παρατηρήθηκαν κυτταρικές διαιρέσεις στα Τ κύτταρα τα οποία δεν εκφράζουν Geminin ούτε στα T κύτταρα αγρίου τύπου (Εικόνα 5.11Β). Στις 96h μετά την ενεργοποίηση, η πλειονότητα των

CD4 T κυττάρων από τους μικροί μάρτυρες είχαν διαιρεθεί 4 φορές, ενώ μόνο ένα μικρό ποσοστό των κυττάρων από Fl/koCD2Cre μικροίς διαιρέθηκαν 3 φορές (Εικόνα 5.11Β). Επίσης ένα σημαντικό ποσοστό των CD8 T κυττάρων από WT μικροίς διαιρέθηκαν 4 φορές ενώ τα CD8 T κύτταρα από Fl/koCD2Cre ζώα δεν διαιρέθηκαν (Εικόνα 5.11Β). Στο σύνολο τους προηγούμενα αποτελέσματα προτείνουν πολύ σημαντικές ανωμαλίες στον κυτταρικό πολλαπλασιασμό των Τ κυττάρων απουσία της Geminin και ύστερα από ενεργοποίηση μέσω του TCR.
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκυττάρων

Εικόνα 5.13: Τα T κύτταρα από τα οποία απουσιάζει η Geminin εισέρχονται στην S φάση αλλά αδυνατούν να εξέλθουν από τις S/G2/M και να εισέλθουν σε ένα νέο κυτταρικό κύκλο. Τα κύτταρα από Fl/koCD2Cre και Fl/wtCD2Cre ζώα μάρτυρες ενεργοποιήθηκαν μέσω του T κυτταρικού υποδοχέα με τη χρήση αντί-CD3 και αντί-CD28 (10µg/ml και 2µg/ml) αντισώματα για 38h. Ακολούθως, τα κύτταρα καλλιεργήθηκαν παρατηρώντας την διάδοση για 2h. Στην συνέχεια τα BrdU αφαιρέθηκαν και ακολουθηθηκε πρωτόκολλο χρώσης με αντί-BrdU FITC και 7-AAD στις χρονικές στιγμές που υποδεικνύονται μετά την προσθήκη του BrdU.

5.7. Ανωμαλή πρόοδος του κυτταρικού κύκλου των T κυττάρων απουσία ης Geminin

Για την ταυτοποίηση ανωμαλιών σε συγκεκριμένες φάσεις κατά την πρόοδο του κυτταρικού κύκλου των T κυττάρων από τα οποία απουσιάζει η Geminin, τα T κύτταρα αναλύθηκαν με κυτταρομετρία ροής για την ένθεση BrdU και με ταυτόχρονη χρώση του DNA 7-AAD. Τα κύτταρα από Fl/koCD2Cre και αγρίου τύπου μυών ενεργοποιήθηκαν με αντί-CD3 και αντί-CD28 για 48h και στην συνέχεια προστέθηκε BrdU στο θρεπτικό μέσο τους για 1h. Ακολούθως, τα T κύτταρα μονιμοποιήθηκαν, υπέστησαν διάτρηση και χρώση με 7-AAD και αντί-BrdU μονοκλωνικό αντίσωμα συζευγμένο με FITC.

Η ανάλυση του προφίλ του κυτταρικού κύκλου, έδειξε ότι τα T κύτταρα από τα οποία απουσιάζει η Geminin, παρουσιάζουν μειωμένη ένθεση BrdU και αυξημένο ποσοστό κύτταρων στην G0/G1 φάση. Πιο
συγκεκριμένα τα ποσοστά των T κυττάρων αγριού τύπου στις διάφορες φάσεις του κυτταρικού κύκλου ήταν G0: 17.3 G1: 39.6%, S: 39.1%, G2/M: 1.83% ενώ τα αντίστοιχα ποσοστά για τα T κύτταρα από τα οποία απουσιάζει η Geminin ήταν G0: 20.4 G1: 43.7%, S: 26.8%, G2/M: 3.33% (Εικόνα 5.12). Τα ποσοστά προ-αποπτωτικών κυττάρων ή κυττάρων της G0 φάσης ήταν παρόμοια για τα T κύτταρα από Fl/koCD2Cre ή μάρτυρες μίγες, αποτελέσματα τα οποία είναι σύμφωνα με την εξέταση της απότομης μέσω χρώσης Annexin-V. Επιπρόσθετα δεν παρατηρήθηκε στατιστικά σημαντική διαφορά στα κύτταρα με DNA >4N, γεγονός το οποίο υποδεικνύει ότι δεν υπάρχουν εκτεταμένες ανομαλίες στην αντιγραφή του γενετικού υλικού στα T κύτταρα απουσίας της Geminin.

Για την παρακολούθηση της προδόου ενός πλήθους Τ κυττάρων στον κυτταρικό κύκλο, αθώα T κύτταρα από Fl/koCD2Cre και μίγες μάρτυρες ενεργοποιήθηκαν για 38h με τη χρήση αντι-CD3 και αντι-CD28 και στην συνέχεια συμανήθηκαν με 20μM BrdU για 2h. Στην συνέχεια το BrdU αφαιρέθηκε και τα κύτταρα μονιμοποιήθηκαν σε διάφορες χρονικές στιγμές (2h, 8h και 16h). Αμέσως μετά την αφαίρεση του BrdU, τα T κύτταρα από τους μίγες οι οποίοι έχουν υποστεί γενετική στόχευση και τους μίγες μάρτυρες παρουσίασαν τα ίδια ποσοστά στις διάφορες φάσεις του κυτταρικού κύκλου (Εικόνα 5.13A, όνο γραμμή), γεγονός το οποίο προτείνει ότι τόσο τα T κύτταρα στα οποία έχει απενεργοποιηθεί η Geminin όσο και τα T κύτταρα μάρτυρες εισέρχονται με τον ίδιο ρυθμό στην S φάση του κυτταρικού κύκλου. Στις 8h μετά την ένθεση του BrdU, >49% των BrdU+ T κυττάρων από τους Fl/koCD2Cre μίγες παραμένουν στις S/G2/M φάσεις σε σύγκριση με το 23% των T κυττάρων μαρτύρων (Εικόνα 5.13A, μέση γραμμή). Τα προηγούμενα αποτελέσματα προτείνουν την καθυστέρηση της προδόου των T κυττάρων από τα οποία απουσιάζει η Geminin στην G1 φάση. Παρόμοια αποτελέσματα παρατηρήθηκαν και στις 16h μετά την ένθεση του BrdU αφού το 37.3% των T κυττάρων από τα οποία απουσιάζει η Geminin βρισκόταν στις S/G2/M φάσεις ενώ μόλις το 22.4% των T κυττάρων μαρτύρων βρισκόταν στις ίδιες φάσεις (Εικόνα 5.13A, κάτω γραμμή). Επίσης κατά το ίδιο χρονικό σημείο, >18% των BrdU+ T κυττάρων από Fl/koCD2Cre μίγες ήταν αρνητικά για το Ki-67 σε σχέση με το 7,0% των T κυττάρων από μίγες μάρτυρες, δείχνοντας αυξημένη έξοδο από τον κυτταρικό κύκλο των T κυττάρων που δεν εκφράζουν την Geminin. Συνεπώς τα προηγούμενα αποτελέσματα δείχνουν ότι απουσία της Geminin τα T κύτταρα δεν παρουσιάζουν ανομαλίες κατά την είσοδο στην S φάση, αλλά δείχνουν μια καθυστέρηση στην έξοδο από τις S/G2/M φάσεις καθώς και μειωμένη είσοδο σε ένα νέο κυτταρικό κύκλο. Επίσης είναι σημαντικό το γεγονός ότι δεν παρατηρήθηκαν ανομαλίες της ευπλοείας του γενετικού υλικού ή αυξημένη κυτταρική απόπτωση απουσίας της Geminin.

5.8. Η απενεργοποίηση της Geminin οδηγεί σε βλάβες του ομοιοστατικού πολλαπλασιασμού των T κυττάρων

Το συνολικό μέγεθος και η σύσταση της δεξαμενής των περιφερικών T κυττάρων ελέγχεται από ομοιοστατικούς μηχανισμούς οι οποίοι ρυθμίζουν την κυτταρική επαφή και τον ρυθμό του κυτταρικού
πολλαπλασιασμού (Jameson, 2002; Surh and Sprent, 2000). Λόγω αυτών των μηχανισμών, όταν ο πληθυσμός των περιφερειών Τ κυττάρων μειώνεται σημαντικά, τα υπολειμένα Τ κύτταρα πολλαπλασιάζονται με έντονο ρυθμό για να επαναφέρουν τον συνολικό αριθμό των Τ κυττάρων της

![Graph](image)

Εικόνα 5.14: Τα Τ κύτταρα δεν παρουσιάζουν ανυξημένη απόπτωση απουσία της Geminin. Α) Τ κύτταρα από Fl/koCD2Cre και Fl/wtCD2Cre ζώα μάρτυρες ενεργοποιήθηκαν μέσω του T κυτταρικού υποδοχέα με τη χρήση αντί-CD3 και αντί-CD28. Η καταμέτρηση με κυτταρομετρία ροής των AnnexinV⁺PI κυττάρων για τους CD4⁺CD69⁺高层 και CD4⁺CD25高层 πληθυσμούς δεν δείχνει στατιστικά σημαντικές διαφορές.

περιφέρειας σε φυσιολογικά επίπεδα (Li et al., 2007). Για να ελέγξουμε την ικανότητα των Τ κυττάρων από αυτά οι παρουσιάζονται την Geminin να πολλαπλασιάζονται σε καταστάσεις όπου η ομοστατική ισορροπία του οργανισμού διατηρείται, πραγματοποιήσαμε πειράματα μεταμόσχευσης γνωστών CD4⁺CD69高层 και CD4⁺CD25高层 απουσιών με δείχνει στατιστικά σημαντικές διαφορές.

περιφέρειας σε φυσιολογικά επίπεδα (Li et al., 2007). Για να ελέγξουμε την ικανότητα των Τ κυττάρων από αυτά οι παρουσιάζονται την Geminin να πολλαπλασιάζονται σε καταστάσεις όπου η ομοστατική ισορροπία του οργανισμού διατηρείται, πραγματοποιήσαμε πειράματα μεταμόσχευσης γνωστών CD4⁺CD69高层 και CD4⁺CD25高层 απουσιών με δείχνει στατιστικά σημαντικές διαφορές.

Περιεχόμενοι περισσότερα στην επόμενη σελίδα.
μεταμόσχευση των κυττάρων στους μύες δέκτες. Τα CD8 T κύτταρα μάρτυρες είχαν πραγματοποιήσει τουλάχιστον 5 διαιρέσεις όσο την 3η ημέρα, ενώ η πλειονότητα των T κυττάρων από τα οποία απουσιάζει η Geminin είχαν διαιρεθεί μόνο μια φορά ενώ ένα μικρότερο ποσοστό κυττάρων

\begin{center}
\includegraphics[width=0.5\textwidth]{figure.png}
\end{center}

Εικόνα 5.15: Η απενεργοποίηση της Geminin οδηγεί σε μειωμένο ομοιοστατικό πολλαπλασιασμό των T κυττάρων in vivo. Τα T κύτταρα από Fl/koCD2Cre και ζώα μάρτυρες (Fl/ko, wt/koCD2Cre) σημάδιζαν με CFSE και μεταμόσχευθηκαν σε Rag2KOgc/- μύες. Οι σπλήνες των μυών (n=3 από κάθε ομάδα) ανακτήθηκαν κατά την 3η και 5θ ημέρα μετά την μεταμόσχευση και οι διαιρέσεις των CD4 και CD8 T κυττάρων αναλύθηκαν με κυτταρομετρία ροής. Τα ζώα μάρτυρες απεκανονίζονται με µαύρες στήλες ενώ τα Fl/koCD2Cre ζώα με λευκές στήλες. Β) Μετά την πάροδο 2 εβδομάδων από την μεταμόσχευση τα CD4 και CD8 T κύτταρα από τα Fl/koCD2Cre ή ζώα μάρτυρες τα οποία είχαν αποικίσει τους σπλήνες των δεκτών καταμετρήθηκαν. Οι τιμές απεκανονίζουν τον μέσο αριθμό κυττάρων (p<0,01).

διαιρέθηκαν 2 ή παραπάνω φορές. Κατά την 5η ημέρα, τα CD8 κύτταρα μάρτυρες είχαν πραγματοποιήσει περισσότερες από 11 διαιρέσεις, ενώ αντίθετα τα CD8 κύτταρα από τους Fl/koCD2Cre μύες είχαν πραγματοποιήσει μόλις 4 διαιρέσεις (Εικόνα 5.15). Τελικά οι σπλήνες των Rag2KOgc/- μυών συλλέχθηκαν 2 εβδομάδες μετά την μεταμόσχευση των κυττάρων και οι CD4 και CD8 T κυτταρικοί πληθυσμοί οι οποίοι είχαν αποικίσει την περιφέρεια των μυών μετρήθηκαν με κυτταρομετρία ροής. Οι αριθμοί των CD4 και CD8 T κυττάρων που είχαν μεταμοσχευθεί από Fl/koCD2Cre μύες βρέθηκαν μειωμένοι κατά 51% και 72% αντίστοιχα σε σχέση με τα κύτταρα από τα ζώα μάρτυρες (Εικόνα 5.15). Αυτά τα αποτελέσματα προτείνουν ότι ο ομοιοστατικός πολλαπλασιασμός των T κυττάρων από τα οποία απουσιάζει η Geminin παρουσιάζει ανομαλίες και δεν ακολουθεί τον ρυθμό του ομοιοστατικού πολλαπλασιασμού των T κυττάρων μαρτύρων.
5.9. Τα ενεργοποιημένα T κύτταρα από τα οποία απουσιάζει η Geminin παρουσιάζουν αυξημένα επίπεδα έκφρασης του Cdt1 και συσσωρεύονται στην G2 φάση του κυτταρικού κύκλου

Οπως έχει αναφερθεί στην εισαγωγή η Geminin εξασκεί το ρόλο της στην ρύθμιση του κυτταρικού κύκλου διερεύνοντας και απενεργοποιούντας το Cdt1, το οποίο ρυθμίζεται αρνητικά επίσης από τις λιγάσεις ουβικουιτίνης Skp2/SCF και CUL4/DDB1 (Li et al., 2003; Nishitani et al., 2006; Takeda et al., 2005). Διερευνήσαμε αν τα θυμοκύτταρα και τα ενεργοποιημένα περιφερικά T κύτταρα διαφέρουν στην ικανότητα ρύθμισης των επιπέδων έκφρασης του Cdt1 στην φυσιολογική κατάσταση και απουσία της Geminin. Για το σκοπό αυτό, ολικά κυτταρικά εκχυλίσματα από θυμοκύτταρα και ενεργοποιημένα T κύτταρα από τα οποία απουσιάζει η Geminin και κύτταρα μάρτυρες αναλόγηκαν με Western blotting και με τη χρήση πολυκυτταρικού αντισώματος έναντι του Cdt1. Τα επίπεδα έκφρασης του Cdt1 βρέθηκαν να είναι αυξημένα σε περιφερικά, ενεργοποιημένα με CD3/CD28 για 16h T κύτταρα από Fl/koCD2Cre μύες σε σχέση με τ Τ κύτταρα από μύες μάρτυρες. Ωστόσο τα επίπεδα έκφρασης του Cdt1 βρέθηκαν να είναι παρόμοια στα θυμοκύτταρα παρουσία απουσία της Geminin (Εικόνα 5.16Β). Τα προηγούμενα αποτελέσματα προτείνουν ότι οι διαφορές στην έκφραση του Cdt1 μπορεί να εξηγούν τις ανωμαλίες που παρατηρούνται στα ενεργοποιημένα T κύτταρα απουσία της Geminin.

Η ανάλυση μας πρότεινε ότι, ο ρόλος της Geminin στην ρύθμιση του κυτταρικού πολλαπλασιασμού, μπορεί να είναι διαφορετικός κατά την ανάπτυξη των προγονικών T κυττάρων στο θύμο και κατά την ορίμανση και αύξηση των περιφερικών Τ κυττάρων. Ενώ η Geminin δεν φαίνεται να απαιτείται για την ρύθμιση των κυτταρικών διαιρέσεων των θυμοκυττάρων, τα ενεργοποιημένα περιφερικά Τ κύτταρα συσσωρεύονται στις S/G2/M φάσεις του κυτταρικού κύκλου απουσία της Geminin. Για να διερευνήσουμε περαιτέρω τις ανωμαλίες στην πρόοδο του κυτταρικού κύκλου και να εξετάσουμε μοριακούς μηχανισμούς στους οποίους οφείλεται ο παρατηρούμενος φαινότυπος, εξετάσαμε την έκφραση μορίων που ελέγχουν την μετάβαση από την G1 στην S και από την G2 στην M. Αδιά T κύτταρα, απομονωμένα από Fl/koCD2Cre και μύες μάρτυρες ενεργοποιήθηκαν με αντι-CD3/CD28 αντισώματα και ολικά προτεινικά εκχυλίσματα από τα κύτταρα αυτά συλλέχθηκαν στις 0, 16 και 44h μετά την ενεργοποίησή τους και αναλόγηκαν με Western blotting. Στις 44h, η έκφραση της κυκλίνης D3, E, του φουσφορυλισμένου Rb και του p27 είναι παρόμοια μεταξύ των διοι διαφορετικών T κυτταρικών πλήθησην (Εικόνα 5.16Α). Ωστόσο στο ίδιο χρονικό σημείο η έκφραση της κυκλίνης Α, B1 και της φουσφορυλισμένης τυροσινής 15 του Cad2 βρέθηκαν να είναι αυξημένα σε T κύτταρα από τα οποία απουσιάζει η Geminin (Εικόνα 5.16Α).
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκυττάρων

Εικόνα 5.16: Τα ενεργοποιημένα αθώα περιφερικά Τ κύτταρα από τα οποία αποσπάζει η Geminin συσσωρεύονται στην G2 φάση του κυτταρικού κύκλου και παρουσιάζουν αυξημένα επίπεδα έκφρασης του Cdt1. Α) Ανάλυση κατά Western πραγματοποιήθηκε σε ολικά πρωτεϊνικά εκχυλίσματα από αθώα περιφερικά Τ κύτταρα (0h) και ενεργοποιημένα με anti-CD3/CD28 αθώα περιφερικά Τ κύτταρα για 16h και 44h χρησιμοποιώντας αντισώματα αντισώματα έναντι των κυκλινών D3, E, A, και B1, p27, Rb (pSer807/811), Cdc2 (pTyr15), and actin. Στην εικόνα απεικονίζεται η αυξημένη εκφραση της Geminin στα Τ κύτταρα σε συγκρισιμότητα με άδεια κυττάρα (0h) και ενεργοποιημένα με anti-CD3/CD28 (10 mg/ml and 2 mg/ml) για 16h και 44h. Β) Ολικά πρωτεϊνικά εκχυλίσματα απομονώθηκαν από θυμοκύτταρα και αθώα περιφερικά Τ κύτταρα ενεργοποιημένα με anti-CD3/CD28 (10 mg/ml and 2 mg/ml) για 16h και 44h. Η ανάλυση κατά Western πραγματοποιήθηκε με τη χρήση αντισώματων έναντι του Cdt1 και της ακτίνης.

5.10. Φυσιολογική ανάπτυξη των Β κυττάρων στον σπλήνα απουσία της Geminin

Η χρήση του διαγονιδίου CD2Cre για την εκτομή των εξονίων 3&4 στο γονιδιακό τόπο της Geminin είχε ως αποτέλεσμα την απενεργοποίηση του γονιδίου της Geminin τόσο στα Τ όσο και στα Β λεμφοκύτταρα (de Boer et al., 2003). Έχοντας αρχικά παρατηρήσει ότι η απενεργοποίηση της Geminin στα Τ κύτταρα...
οδηγεί σε σημαντικές βλάβες του κυτταρικού πολλαπλασιασμού και της ομοιότατης των περιφερικών T κυττάρων. αποφασίσαμε να διερευνήσουμε πως επιδρά η απενεργοποίηση του γονίου της Geminin στην ανάπτυξη και διαφοροποίηση των B κυττάρων του ανοσοποιητικού συστήματος. Επιπλέον θεωρήθηκε σημαντική η εξέταση του αν οι παρατηρούμενες ανωμαλίες στον πολλαπλασιασμό των T κυττάρων μπορεί να οφείλονται σε ανωμαλίες της ανάπτυξης των B κυττάρων απουσία της Geminin.

Για την διερεύνηση των γεγονότων ανασυνδυασμού στον γονιδιακό τόπο της Geminin σε B κύτταρα από Fl/koCD2Cre και μύες μάρτυρες χρησιμοποιήθηκε η στρατηγική PCR (βλ. Υλικά και Μέθοδοι, Ενότητα 4.2) που αναγνωρίζει τα floxed, knockout και WT αλληλόμορφα. Η ανάλυση με PCR σε γενομεταλλά RNA απομονωμένο από σπλήνα ή B κύτταρα σπλήνα από Fl/koCD2Cre μύες, έδειξε ικανοποιητική απαλοιφή των εξανάσιων 3&4 του floxed αλληλόμορφου (Εικόνα 5.17A). Ωστόσο επελεύθη το floxed αλληλόμορφο αναγνωρίστηκε σε χαμηλά επίπεδα σε DNA από B κύτταρα από Fl/koCD2Cre μύες κρίθηκε σκόπιμο να διερευνηθεί εν συνεχεία της επιδότησης της Geminin.

Για την ποσοτικοποίηση των επιπέδων έκφρασης της Geminin σε ηρεμούντα B κύτταρα και σε B κύτταρα που βρίσκονται σε κυτταρικό πολλαπλασιασμό με σταδιακή ποσοτικοποίηση της απότομης της Geminin ύστερα από απομόνωση ολικών κυτταρικών κυτταρικών εκχυλισμών από ηρεμούντα και ενεργοποιημένα B κύτταρα με διαλυτό anti-IgM (10µg/ml) για 60h. Η ανάλυση με Western έδειξε ότι η ποσοτική Geminin εκφράζεται σε μια αναγεννήσιμη επίπεδα σε ηρεμούντα B κύτταρα ενώ παρουσιάζει ισχυρή έκφραση σε ενεργοποιημένα κύτταρα ύστερα από την ένατη ώρα στον κυτταρικό κύκλο (Εικόνα 5.17Β). Η έκφραση της Geminin στα B κύτταρα είναι παρόμοια με την έκφραση της στα T κύτταρα όταν παρατηρήθηκε υψηλά επίπεδα της πρωτεΐνης μόνο στα T κύτταρα που βρίσκονταν σε κυτταρικό πολλαπλασιασμό. Η Geminin δεν αναγνωρίστηκε στα ολικά πρωτεϊνικά εκχυλίσματα ηρεμούντα ή ενεργοποιημένων B κύτταρων από Fl/koCD2Cre μύες (Εικόνα 5.17Β). Τα παραπάνω αποτελέσματα προτείνουν ότι η έκφραση της Cre υπό τον έλεγχο των ρυθμιστικών στοιχείων του ανθρώπινου CD2 γονίδιου οδηγεί στην αποτελεσματική απενεργοποίηση του γονίδιου της Geminin εκτός από τα T και στα B κύτταρα. Συνεπώς, στοιχείων Fl/koCD2Cre το γονίδιο της Geminin απενεργοποιείται συνολικά από τα λεμφοκύτταρα.

5.11. Μικρές μείωσεις των B κυττάρων στο σπλήνα απουσία της Geminin

Παρατηρήθηκε με το ρόλο της Geminin στα T κύτταρα εξετάσαμε το ρόλο της πρωτείνης επίδημια της δημιουργία των πρώιμων B κυττάρων στο σπλήνα καθώς και τον πολλαπλασιασμό των κυττάρων αυτών. Τα B κύτταρα διέρχονται σε διάφορα στάδια διαφοροποίησης στην μικρή των οστών όπου μετά την συγκρότηση και έκφραση του BCR (B Cell Receptor, B κυτταρικό υποδοχέα) μεταναστεύουν στους περιφερειακούς λεμφικούς ιστούς, ως ανώριμα B κύτταρα. Στον σπλήνα τα ανώριμα B κύτταρα ολοκληρώνουν διάφορα στάδια διαφοροποίησης μέχρι την πλήρη ορίσμαζας τους. Πρόσφατες έρευνες
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκυττάρων

Εικόνα 5.17: Η Geminin εκφράζεται σε ενεργοποιημένα B κύτταρα, ενώ η δράση της CD2Cre ρεκομπινάσης οδηγεί σε ανενεργοποίηση του γονίδιου της Geminin στα B κύτταρα. DNA από ουρά, σπλήνα, λεμφαδένες και B κύτταρα χρησιμοποιήθηκε για την ανάλυση της αποτελεσματικότητας εκτομής των εξών 3&4 από τον γονιδιακό τόπο της Geminin στους B κυτταρικούς πληθυσμούς. Β) Ανάλυση κατά Western των ολικών κυτταρικών εκτροχιασμάτων από αδρανή και ενεργοποιημένα με anti-IgM B κύτταρα. Χρησιμοποιήθηκαν αντισώματα έναντι των Geminin και actin.

προτείνουν ότι κατά την διαφοροποίηση τους στον σπλήνα τα B κύτταρα υπόκεινται σε θετική και αρνητική επιλογή. Έχουν αναγνωριστεί 3 κύρια στάδια διαφοροποίησης των ανώριμων B στάδια (transitional stages) και αναφέρονται ως T1, T2 και T3 (Allman et al., 2001). Οι ανώριμοι B κυτταρικοί πληθυσμοί μπορούν να διακριθούν στα 3 αυτά στάδια με βάση την έκφραση των εξών 19, sIgM, CD23, και του τύπου 1 διαμεμβρανικού υποδοχέα AA4 και διαχωρίζονται ως AA4+sIgM_{high}CD23⁻ (T1), AA4<sIgM_{high}CD23⁺ (T2), and AA4<sIgM_{low}CD23⁺ (T3). Όσον αφορά την χωρική κατανομή των ανώριμων B κυτταρικών εκτροχιασμών και διαχωρίζονται στην MZ (marginal zone) ζώνη του σπλήνα, ενώ τα T2 B κύτταρα τα οποία διατηρούν υψηλά επίπεδα έκφρασης IgM αλλά εκφράζουν και IgD (IgM⁺IgD+) βρίσκονται στην FZ (Follicular Zone) ζώνη του σπλήνα (Allman et al., 2001). Μια
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκυττάρων

Εικόνα 5.18: Αντιπροσωπευτικό προφίλ των B κυττάρων του σπλήνα ύστερα από ανάλυση με κυτταρομετρία ροής. Α) Ο μέσος όρος του αριθμού των CD19+IgM+ και CD19+IgD+ (μάρτυρες N=12 και Fl/koCD2Cre, N=10) B κυττάρων του σπλήνα απεικονίζεται στα ραβδογράμματα. Β) Ο μέσος όρος του αριθμού των μεταβατικών T1, T2 και T3 (μάρτυρες N=12 και Fl/koCD2Cre, N=10) B κυττάρων του σπλήνα απεικονίζεται στα ραβδογράμματα.

εναλλακτική ανάλυση από τους Allman et al. πρότεινε ότι τα τα B κύτταρα που παρουσιάζουν χαρακτηριστικά B κυττάρων MZ ζώνης μπορούν να διακρίνονται ως AA4-IgM'-CD23+ ενώ τα πιο όριμα B κύτταρα που μεταναστεύουν στην FZ ζώνη διακρίνονται ως AA4-IgM'CD23- (Lindsley et al., 2007; Rolink et al., 2004). Η ανάλυση των B κυτταρικών πληθυσμών του σπλήνα από Fl/koCD2Cre και μύες μάρτυρες δεν αποκάλυψαν σημαντικές ανομαλίες στην ανάπτυξη και διαφοροποίηση των Β κυττάρων του σπλήνα απουσία της Geminin. Πιο συγκεκριμένα η ποσοτικοποίηση των πιο ανώριμων CD19+IgM+ και όριμων CD19+IgD+ B κυττάρων (Εικόνα 5.18Α) έδειξε μόνο μικρή μείωση (0,62 x 10^7, n = 12 έναντι 0,67 x 10^7, n = 8; t test, p = 0,56 και 1,2 x 10^7, n = 12 έναντι 1,4 x 10^7, n = 8; ttest, p = 0.23 άντιστοιχα) και των 2 προηγούμενων κυτταρικών πληθυσμών στους Fl/koCD2Cre μύες σε σχέση με τους μύες
5.12. Ομαλός κυτταρικός πολλαπλασιασμός των B κυττάρων αποστίωση της Geminin

Αν και δεν παρατηρήθηκαν στατιστικά σημαντικές μειώσεις κατά τη διαφοροποίηση των B κυτταρικών υποδηλών στην ανάπτυξη και διαφοροποίηση των κυτταρικού πολλαπλασιασμού τους, αρκετά σημαντικές μειώσεις υποδηλών οι κυτταρικές διαφορές των μειώθηκαν και στην αποστίωση της Geminin με μια ειδική και ευαίσθητη τεχνική. Για την ανάπτυξη και διαφορές αποτελέσεων απορροή ΜΖ
Αποτελέσματα: Ο ρόλος της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκυττάρων

κύτταρα από σπλήνα Fl/koCD2Cre μυών και μυών μαρτύρων σημάδεψαν με CFSE και καλλιεργήθηκαν παρουσία LPS ή διαλυτού anti-IgM (10µg/ml) μονοκλωνικού αντισώματος. Στις 72h μετά την ενεργοποίησή τους, τα B κύτταρα μονομοποιήθηκαν και η μείωση της έντασης φθορίσμος της χρωστικής CFSE αναλύθηκε με κυτταρομετρία ροής. Δεν παρατηρήθηκαν σημαντικές διαφορές στις διαιρέσεις των B κυττάρων από τα οποία αποστράζει η Geminin σε σχέση με τα B κύτταρα μάρτυρες ύστερα από διέγερση με LPS ή anti-IgM (Εικόνα 5.20). Συμπερασματικά αντίθετα με το τι συμβαίνει στα T κύτταρα, τα B κύτταρα δεν επηρεάζονται σημαντικά από την απουσία της Geminin, διατηρώντας την ικανότητα τους να διαιρούνται χωρίς σημαντικές ανωμαλίες.

Εικόνα 5.20: Η απενεργοποίηση της Geminin στα B κύτταρα δεν οδηγεί σε ανωμαλίες του κυτταρικού πολλαπλασιασμού. B κύτταρα από ζώα μάρτυρες ή Fl/koCD2Cre ζώα σημάδεψαν με CFSE και καλλιεργήθηκαν in vitro σε θεραπευτικό μέσο παρουσία LPS ή anti-IgM. Τα ιστογράμματα αναπαριστούν τις διαιρέσεις του πληθυσμού αδρανών (άνω σειρά) και ενεργοποιημένων με LPS (μέση σειρά) ή με Ig-M, B κυττάρων.
ΚΕΦΑΛΑΙΟ 6: ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΡΟΛΟΥ ΤΗΣ GEMININ ΣΤΗΝ ΑΥΤΟ-ΑΝΑΝΕΩΣΗ ΚΑΙ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΤΩΝ ΒΛΑΣΤΙΚΩΝ ΚΑΙ ΠΡΟΓΟΝΙΚΩΝ ΚΥΤΤΑΡΩΝ ΤΟΥ ΛΙΜΟΠΟΙΗΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ
6.1. Αδρανοποίηση του γονιδίου της Geminin στην αυτό-ανανέωση και διαφοροποίηση των HSPCs

Οπως έχει αναφερθεί στην παράγραφο 5.1 χρησιμοποιήθηκε το Cre/LoxP σύστημα για την δημιουργία μικρής του γονοτύπου Geminin^{lox/lox} στους οποίους τα εξώνια 3&4 στον γονιδιακό τόπο της Geminin περιβάλλονται από 2 LoxP θέσεις και μικρή Geminin^{WT} αποφεύγονταν ένα WT και ένα KO αλληλόμορφο. Για να επεκτείνουμε την ανάλυση μας σχετικά με τον in vivo ρόλο της Geminin στην ανάπτυξη και διαφοροποίηση του αιμοποιητικού συστήματος, χρησιμοποίησαμε ένα σχήμα διασταυρώσεων το οποίο επιτρέπει την απενεργοποίηση του γονιδίου της Geminin στα βλαστικά κύτταρα του αιμοποιητικού. Πιο συγκεκριμένα μύες Geminin^{lox/lox}, διασταυρώθηκαν με μύες Geminin^{WT/KO} οι οποίοι έφεραν ταυτόχρονα το διαγονίδιο VavCre (Εικόνα 6.1). Έχει δειχθεί ότι η Cre υπό τον έλεγχο των ρυθμιστικών στοιχείων του Vav-γονιδίου εκφράζεται από την 12^η εμβρυική ημέρα στα βλαστικά κύτταρα. Οι µύες του γονοτύπου Geminin^{WT/KO} διασταυρώθηκαν εκ νέου με µύες του γονοτύπου Geminin^{WT}. Η τελευταία διασταύρωση οδήγησε στην γέννηση µύων τους γονοτύπους Geminin^{WT/WT}, Geminin^{WT/KO} και Geminin^{WT/ko} τα οποία χρησιμοποιούνται ως ζώα µάρτυρες και Geminin^{FL/FL}VavCre οι οποίοι είναι µύες στους οποίους απενεργοποιείται το παραπάνω γονίδιο της Geminin στα βλαστικά κύτταρα του αιμοποιητικού. Εικόνα 6.1: Σχήμα διασταυρώσεων για τη δημιουργία μικρής στους οποίους αδρανοποιείται το γονιδίο της Geminin στα βλαστικά κύτταρα του αιμοποιητικού Οι µύες του γονοτύπου Geminin^{WT/KO} διασταυρώθηκαν µε διαγονιδιακά µύες στους οποίους η έκφραση του γονιδίου της Cre ελέγχεται από τον εμβρυοποιετικό ρυθμιστικό στοιχείο του γονιδίου Vav. Τα ζώα απόγονοι του γονοτύπου Geminin^{WT/ko}VavCre από την προηγούμενη διασταύρωση επιλέχθηκαν και διασταυρώθηκαν εκ νέου µε µύες του γονοτύπου Geminin^{WT}. Η τελευταία διασταύρωση οδήγησε στην γέννηση µύων τους γονοτύπους Geminin^{WT/WT}, Geminin^{WT/KO} και Geminin^{WT/ko} τα οποία χρησιμοποιούνται ως ζώα µάρτυρες και Geminin^{FL/FL}VavCre οι οποίοι είναι µύες στους οποίους απενεργοποιείται το γονίδιο της Geminin στα βλαστικά κύτταρα του αιμοποιητικού. Το αιμοποιητικό (HSCs haemopoietic stem cells). Στα αποτελέσματα που παρουσιάζονται ακολούθως οι Fl/koVavCre µύες χρησιμοποιήθηκαν για την μελέτη της ανάπτυξης του αιμοποιητικού συστήματος αποσαφένεια της Geminin, ενώ οι Fl/wt, Fl/wtVavCre και Fl/ko µύες από την ιδία γέννα χρησιμοποιήθηκαν ως ζώα µάρτυρες.
6.2. Η αδρανοποίηση της Geminin στα βλαστικά κύτταρα του αιμοποιητικού επιφέρει πρόωρο εμβρυικό θάνατο

Η PCR ανάλυση σε γενομικό DNA από τις ουρές νεογέννητων μυών έδειξε ότι κανένας μιας του γονοτύπου Fl/koCD2Cre δεν γεννήθηκε στο σύνολο των 29 μυών οι οποίοι εξετάστηκαν (Εικόνα 6.2Δ). Τα αποτελέσματα αυτά προτείνουν ότι η απενεργοποίηση της Geminin στα βλαστικά κύτταρα του αιμοποιητικού μπορεί να προκαλεί πρόωρο εμβρυικό θάνατο και για το λόγο αυτό η ανάλυση συνεχίστηκε με την εξέταση εμβρύων μυών από διάφορες ημέρες κατά την κύηση. Κατά την 15η εμβρυϊκή ημέρα τα Fl/koVavCre έμβρυα ήταν ανανεωμένα ενώ παρουσίαζαν καθυστέρηση στον σχηματισμό και ανάπτυξη του ήπατος. Κατά την 15η εμβρυϊκή ημέρα το εμβρυικό ήπαρ, το οποίο είναι το κύριο αιμοποιητικό όργανο σε αυτό το στάδιο, ήταν σημαντικά μικρότερο στα Fl/koVavCre έμβρυα σε σχέση με τα έμβρυα μάρτυρες (Εικόνα 6.2Γ). Επιπλέον το ήπαρ των Fl/koVavCre μυών παρουσίασε ανεµαλλίες στον σχηματισμό ερυθροκυττάρων. Η γενική μορφολογική εξέταση των εμβρύων Fl/koVavCre δεν αποκάλυψε άλλες σοβαρές ανεµαλλίες (Εικόνα 6.2Α). Τέλος κατά την 17η εμβρυϊκή ημέρα τα έμβρυα στα οποία είχε απενεργοποιηθεί το γονίδιο της Geminin στα βλαστικά κύτταρα του αιμοποιητικού έφεραν νεκροτικό ιστό σε μεγάλη έκταση, γεγονός το οποίο υποδεικνύει τον θάνατο τους γύρω από αυτό το στάδιο. Τα ευρήματα αυτά προτείνουν ότι ο πρόωρος εμβρυϊκός θάνατος των Fl/koVavCre εμβρύων μπορεί να προέρχεται από την μειωμένη παρουσία ερυθροκυττάρων και την ελλιπή οξυγόνοση των ιστών του εμβρύου.

Αποτελέσματα: Ο ρόλος της Geminin στην αυτό-ανανέωση και διαφοροποίηση των HSPCs

Εικόνα 6.2: Η αδρανοποίηση του γονιδίου της Geminin στις βλαστικά κύτταρα του αιμοποιητικού οδηγεί σε πρόωρο εμβρυικό θάνατο. Α) Fl/koVavCre και μάρτυρες έμβρυα 15ης ημέρας. Τα Fl/koVavCre έμβρυα είναι αναμικά με εμφανός μειωμένο μέγεθος ήπατος. Β) Ανάλυση με PCR πραγματικού χρόνου (RT-PCR) της παρουσίας του µηνύµατος της Geminin σε δείγµατα cDNA από διαχωρισµένα µε κυτταροµετρία ροής βλαστικά (HSCs Lin- c-Kit^{hi}Sca-1⁺) και προγονικά (Lin- c-Kit^{hi}Sca-1-, HPCs) κύτταρα του αιμοποιητικού από Fl/koVavCre και ζώα μάρτυρες. Το ραβδόγραµµα αναπαριστά την έκφραση της Geminin σε σχέση µε την έκφραση του ενδογενούς µάρτυρα HPRT. Γ) Εµβρυικό ήπαρ από Fl/koVavCre και μάρτυρες έµβρυα 15ης ηµέρας. Το εµβρυικό ήπαρ από τα Fl/koVavCre έµβρυα παρουσιάζει δραµατική µείωση σε µέγεθος και στον συνολικό αριθµό αιµοποιητικών κυττάρων. Δ) Η γονοτύπηση 29 νεογέννων από διαφορετικές γέννες υποδεικνύει ότι µύες του γονοτύπου Fl/koVavCre δεν επιβιώνουν έως την γέννηση.

6.3. Η απουσία της Geminin οδηγεί σε ανώδυνη ανάπτυξη του αιμοποιητικού συστήματος του εµβρυικού ήπατος

Τα κύτταρα του αιμοποιητικού στο εµβρυικό ήπαρ του µυός κατά το ήµισυ της κυήσεως πολλαπλασιάζονται εκτενώς για την ικανοποίηση των φυσιολογικών αναγκών του οργανισµού (Ema and Nakauchi, 2000). Ο συνολικός αριθµός κυττάρων του εµβρυικού ήπατος αυξάνει λογαριθµικά ξεκινώντας από περίπου 5x10⁶ κύτταρα στην 11^η εµβρυική ηµέρα και φθάνει τα 6-7x10⁷ στην 15^η ηµέρα, ενώ στην συνέχεια παραµένει σχετικά σταθερός έως την γέννηση. Ο αριθµός των προγονικών κυττάρων του αιμοποιητικού, έχει εκτιµηθεί ότι επίσης αυξάνεται από 4.5x10³ σε ~3x10⁵ κατά την ίδια περίοδο (Ema and Nakauchi, 2000). Κατά την 15^η εµβρυική ηµέρα το αιμοποιητικό τµήµα του εµβρυικού ήπατος αποτελείται από περίπου 95% κύτταρα τα οποία είναι θετικά για κύτταρα διαφοροποίησης η πλειονότητα των οποίων είναι Ter119⁺ θετικά κύτταρα με χαµηλότερη συχνότητα (Morrison et al., 1995).
Αποτελέσματα: Ο ρόλος της Geminin στην αυτό-ανανέωση και διαφοροποίηση των HSPCs

Εικόνα 6.3: Η απουσία της Geminin οδηγεί σε δραματική μείωση των ερυθροκυττάρων. Α) Μέσος όρος του αριθμού των Ter119+ κυττάρων στο εμβρυκό ήπαρ Fl/koVavCre (N=11) και μαρτύρων (Fl/wt, Fl/wtVavCre or Fl/ko N=16) μωρών. Αντιπροσωπευτική ανάλυση των ερυθροκυττάρων του εμβρυκού ήπατος με κυτταρομετριακός ροής δίδεται με τη μορφή ιστογράμματος.

Λόγω της παρατήρησης σοβαρών ανωμαλιών κατά την ανάπτυξη του εμβρυκού ήπατος, κρίθηκε σκόπιμη η ανάλυση της κυτταρικής σύστασης του αιμοποιητικού συστήματος των Fl/koVavCre εμβρύων της 15ης ημέρας. Παρατηρήθηκε μια σημαντική μείωση στα ερυθροκυττάρα Ter119+ μεταξύ των Fl/koVavCre (μάρτυρες; 3,54x10^7 N=16) και των Fl/koVavCre (μάρτυρες; 0,34x10^7 N=11 p<0,001) (Εικόνα 6.3). Σημαντικές μειώσεις παρατηρήθηκαν και στα μυελοκυττάρα και λεμφοκύτταρα του ήπατος. Πιο συγκεκριμένα, τα GR1+ και Mac-1+ εμβρυκού ήπατου κύτταρα μειώθηκαν κατά 85% (μάρτυρες; 3,92x10^5 N=16) και 89% (μάρτυρες; 2,59x10^5 N=11) αντίστοιχα στα Fl/koVavCre (μάρτυρες; 0,566x10^5 N=11 p<0,001) και Fl/koVavCre (μάρτυρες; 0,275x10^5 N=11 p<0,001) (Εικόνα 6.4). Επίσης, τα B220+ λεμφοκύτταρα παρουσίασαν μια σημαντική μείωση της ταξής του 70% (μάρτυρες; 6,7x10^6 N=16) και του B220+ (μάρτυρες; 1,88x10^5 N=11) (Εικόνα 6.4). Τέλος, μία μη στατιστικά σημαντική μείωση παρατηρήθηκε και στον βασικό κύτταρα ήπατου από τα οποία απενεργοποιείται η Geminin σε σχέση με τα κύτταρα μάρτυρες (μάρτυρες; 5,83x10^5 N=16) (Εικόνα 6.4). Συνοψίζοντας την απενεργοποίηση της Geminin στην αυτό-ανανέωση και διαφοροποίηση των HSPCs.
Αποτελέσματα: Ο ρόλος της Geminin στην αυτό-ανανέωση και διαφοροποίηση των HSPCs

Εικόνα 6.4: Η απουσία της Geminin οδηγεί σε σημαντικές μειώσεις των κυττάρων της μυελοειδούς και λεμφοειδούς κυτταρικής σειράς. Ο μέσος όρος του αριθμού των κυττάρων της μυελοειδούς και λεμφοειδούς κυτταρικής σειράς από το εμβρύο ήπαρ Fl/koVavCre (N=11) και κατάρτησαν εμβρύων με 15^ο ημέρας. Αντιπροσωπευτική ανάλυση FACS με τη χρήση αντισώματων έναντι Mac-1, GR-1, Cd11c και B220 δίδεται στα διαγράμματα. Τα CD11b, Gr-1 and CD11c αντισώματα χαρακτηρίζουν κύτταρα της μυελοειδούς σειράς και B220 προγονικά κύτταρα των Β κυττάρων.

6.4. Αύξηση του αριθμού των βλαστικών κυττάρων του αιμοποιητικού στο ήπαρ των εμβρύων από τα οποία απουσιάζει η Geminin.

Η διαδικασία της αιμοποίησης στηρίζεται στην παραγωγή διαφοροποιημένων κυτταρικών απογόνων από βλαστικά κύτταρα του αιμοποιητικού (Morrison et al., 1995). Οι παρατηρούμενες μειώσεις στα όρια κύτταρα του αιμοποιητικού στο ήπαρ των εμβρύων στα οποία απενεργοποιείται η Geminin, μπορεί να οφείλονται στην διαλογή μικρής και μεγάλης διάρκειας κυττάρων του αιμοποιητικού μικρής και μεγάλης διάρκειας, ενώ ο Lin⁻-Kit^{hi}-Sca-1⁻ (LSK) κυτταρικός πληθυσμός του εμβρύο ήπαρ περιέχει βλαστικά κύτταρα του αιμοποιητικού μικρής διάρκειας και μακράς διάρκειας, ενώ ο Lin⁺-Kit⁻-Sca-1⁺ (LK) κυτταρικός πληθυσμός αποτελείται από ερυθροειδή και μυελοειδή προγονικά.
κύτταρα. Η ανάλυση των βλαστικών και προγονικών κυττάρων στο ήπαρ των Fl/koVavCre εμβρύων έδειξε μια αύξηση του LSK κυτταρικού πληθυσμού, συνοδευόμενη από μια σημαντική μείωση των LK κυττάρων. Συγκεκριμένα βρέθηκε ότι το ποσοστό των LSK βλαστικών κυττάρων του αιμοποιητικού των Fl/koVavCre εμβρύων είναι αυξημένο κατά 13 φορές σε σχέση με τα εμβρύνα μάρτυρες. Λόγω της παρατηρούμενης μείωσης στον συνολικό αριθμό κυττάρων του εμβρυνικού ήπατος των Fl/koVavCre εμβρύων, η αύξηση στο ποσοστό των LSK κυττάρων μεταφράζεται τελικά σε μείωση κατά 3 φορές στον απόλυτο αριθμό των LSK κυττάρων σε σχέση με τα εμβρύνα μάρτυρες (μάρτυρες 1,76x10⁴ N=11 έναντι Fl/koVavCre; 4,61x10⁴ N=9 p<0,05, Εικόνα 6.5B). Επίσης ο πληθυσμός των LSK κυττάρων στο ήπαρ των Fl/koVavCre εμβρύων, παρουσιάζει ένα αυξημένο ποσοστό κυτταρομετρίας ροής με χαμηλότερα

Εικόνα 6.5: Το εμβρυικό ήπαρ των μωρών από τους οποίους απουσιάζει η Geminin παρουσιάζει αυξημένο αριθμό βλαστικών κυττάρων του αιμοποιητικού. Παρουσιάζεται ανάλυση μέσω κυτταρομετρίας ροής με τη χρήση αντισωμάτων συζευγμένων με φθειροχρώματα των βλαστικών και προγονικών κυττάρων του αιμοποιητικού από Fl/koVavCre και εμβρύνα μάρτυρες. Τα κύτταρα του εμβρυνικού ήπατος σημαντικά μείωσαν με ύψη συζευγμένων αντισωμάτων έναντι μορίων διαφοροποίησης. Αποκαλύπτεται αντισωματικό τον Lin-c-Kit^{high}Sca-1⁺ προγονικών κυττάρων του αιμοποιητικού (HPCs), Lin-c-Kit^{high}Sca-1⁺ και Lin-c-Kit^{high}Sca-1⁺CD150⁻CD48⁻ βλαστικών κυττάρων του αιμοποιητικού (HSCs) από έμβρυα 15^η ημέρας διέπε την διάγραμμα. Τα νούμερα δείχνουν το ποσοστό των κυτταρικού πληθυσμού που βρίσκεται εντός της πύλης. Η πλειονότητα των Lineage⁻ κυττάρων από το ήπαρ των Fl/koVavCre εμβρύων παρουσιάζουν έναν ιδιότυπο φαινότυπο όπως αυτό την εκφάνθηση του cKit και Sca1. A) Αντισωματική ανάλυση των Lin-c-Kit^{high}Sca-1⁺ προγονικών κυττάρων του αιμοποιητικού (HPCs), Lin-c-Kit^{high}Sca-1⁺ και Lin-c-Kit^{high}Sca-1⁺CD150⁻CD48⁻ βλαστικών κυττάρων του αιμοποιητικού (HSCs) από έμβρυα 15^η ημέρας διέπε την διάγραμμα. Τα νούμερα δείχνουν το ποσοστό των κυτταρικού πληθυσμού που βρίσκεται εντός της πύλης. Η πλειονότητα των Lineage⁻ κυττάρων από το ήπαρ των Fl/koVavCre εμβρύων παρουσιάζουν έναν ιδιότυπο φαινότυπο όπως αυτό την εκφάνθηση του cKit και Sca1. B) Η ποσοτικοποίηση του μέσου ύψους των κυττάρων των Lin-c-Kit^{high}Sca-1⁺ , Lin-c-Kit^{high}Sca-1⁺ και Lin-c-Kit^{high}Sca-1⁺CD150⁻CD48⁻ κυτταρικών πλήθυσμων από Fl/koVavCre (N=10) και εμβρύνα μάρτυρες (N=14) 15^η ημέρας. Τα αποτελέσματα παρουσιάζουν σημαντική αύξηση στον αριθμό των Lin-c-Kit^{high}Sca-1⁺ βλαστικών κυττάρων του αιμοποιητικού ενώ αντιθέτως παραμετρήθηκε σημαντική μείωση στα Lin-c-Kit^{high}Sca-1⁺ προγονικά κύτταρα του αιμοποιητικού. Οι τιμές εκφράζουν τον μέσο όρο των κυττάρων από την ανάλυση N εμβρύων (± SE) *p<0.05, **p<0.01, ***p<0.001.
6.5. Σημαντικές μειώσεις του αριθμού των προγονικών κυττάρων του αιμοποιητικού στο εμβρυοκότονο
αποτελείσματα της Geminin στην αυτό-ανανέωση και διαφοροποίηση των HSPCs

Η αιμοποίηση στο εμβρυοκότονο ήπαρ προοδεύει μέσω της ειραγχητικής παραγωγής προγονικών κυττάρων
tα οποία είναι δεσμευμένα για διαφοροποίηση σε συγκεκριμένες κυτταρικές σειρές με παρόμοιο τρόπο
όπως και στο μυελό των οστών (Mebius et al., 2001; Traver et al., 2001). Η απομόνωση και ο
χαρακτηρισμός των προγονικών κυττάρων της μυελοειδούς σειράς στο εμβρυοκότονο ήπαρ προτείνει ότι
συνιστούν τις προγονικές κύτταρα των μεγακαρυοκυττάρων, ερυθροκυττάρων, κοκκιοκυττάρων και
μονοκυττάρων, αν και διατηρούν ένα δυναμικό διαφοροποίησης προς Β κύτταρα (Lu et al., 2002; Traver et
al., 2001). Παρατηρήθηκε ότι οι κυττάροι των λεμφοκυττάρων στο εμβρυοκότονο ήπαρ είναι διατηρούν
τις συνιστούσεις των HSCs και διατηρούν την φυσιολογική διαφοροποίηση τους σε προγονικά κύτταρα
Εικόνα 6.6: Αποτελέσματα της Genea in situ ανιχνευτήσαμε και διαφοροποίηση των HSPCs.

του αιμοποιητικού. Για την διερεύνηση του αν η απενεργοποίηση της Genea διατηράσει την
dιαφοροποίηση των βλαστικών κυττάρων του αιμοποιητικού προς συγκεκριμένους κυτταρικούς τύπους
tου αιμοποιητικού, χρησιμοποιήσαμε FACs για να αναλύσουμε την κυτταρική σύσταση των προγονικών
cυττάρων του αιμοποιητικού. Η έκφραση του FcgRI/III και του CD34 στα ΚΚ κύτταρα χρησιμοποίησε για την ποσοτικοποίηση των CMPs (common myeloid progenitor, κοινός πρόγονος της
συμφωνίας κυττάρων Sca-1 FcgRII/III+) GMPs (πρόγονος του κοκκινοκυττάρου και
πρόγονος του κοκκινοκυττάρου και κυτταρικός μεγακαρυκυττάρος και
ερυθροκυττάρος Sca-1 FcgRII/III+CD34). Το όπαρ των Fl/kovavCre εμβρύων παρουσίασε ανομαλίες στην παραγωγή των HPC και ο αριθμός των CMP κυττάρων ήταν εξαιρετικά χαμηλός σε σχέση με την υσιολογική κατάσταση (μάρτυρες: 7.04x10^4 N=13 έναντι Fl/kovavCre; 0.21x10^4 N=5 p<0.001, Εικόνα 6.6). Παρομοία οι απευθείας απόγονοι των CMP κυττάρων, τα GMPs και CMPs

κύτταρα βρέθηκαν πολύ σημαντικά μειωμένοι στο ήπαρ των Fl/kovavCre εμβρύων σε σχέση με τα
έμβρυα μάρτυρες (μάρτυρες: 3.76x10^5 N=13 έναντι Fl/kovavCre; 0.29x10^5 N=5 p<0.001, μάρτυρες: 8.90x10^4 N=13 έναντι Fl/kovavCre; 0.02x10^4 N=5 p<0.005 αντίστοιχα Εικόνα 6.6). Επιπλέον
παρατηρήθηκε μείωση 60% των CMP κυττάρων στο ήπαρ των Fl/kovavCre εμβρύων (μάρτυρες: 7x10^3 N=15 έναντι Fl/kovavCre; 2.77x10^3 N=8 p<0.01, Εικόνα 6.7). Τα προηγούμενα αποτελέσματα έρχονται
σε συμφωνία με τα ευρήματα από την ανάλυση των όρμων κυτταρικών τύπων στα έμβρυα 15νεο
κυτταρικής ημέρας στα οποία απενεργοποιείται η Genea και επιβεβαιώνουν ότι η αποστασία της Genea
όδηγει σε σημαντικές ανωμαλίες στην παραγωγή των προγονικών κυττάρων της λεμφοειδούς, μυελοειδούς και ερυθροειδούς κυτταρικής σειράς.

Είναι γνωστό από την βιβλιογραφία ότι η Geminin ρυθμίζει τον κυτταρικό πολλαπλασιασμό και διαφοροποίηση των προγονικών κυττάρων σε διάφορους οργανισμούς μοντέλα (Karamitros et al., 2011; Kroll, 2007; Luo and Kessel, 2004). Για να επιβεβαιώσουμε τις σημαντικές μειώσεις στον αριθμό των προγονικών κυττάρων του αιμοποιητικού και να διερευνήσουμε το δυναμικό διαφοροποιήσις των προγονικών κυττάρων του αιμοποιητικού από τα οποία απουσιάζει η Geminin, χρησιμοποιήθηκαν in vitro τεχνικές δημιουργίας αποικιών σε ημ-ρευστό θρεπτικό μέσο. Για το σκοπό αυτό, κύτταρα εμβρυικού ήπατος από Fl/koVavCre και έμβρυα μάρτυρες, στρώθηκαν σε μέσο μεθυλοκυτταρίνη το οποίο περιείχε ένα κοκτέιλ κυτταροκινών και οι αποικίες που δημιουργήθηκαν μετρήθηκαν στις 10 ημέρες. Η καλλιέργεια παρουσίαζε SCF, IL-3, IL-6, Flt3L, GM-CSF, TPO, και EPO των κυττάρων από ήπαρ εμβρύων μετρότητα είχε ως αποτέλεσμα την παραγωγή διαφόρων τύπων αποικιών συμπεριλαμβανομένων CFU-GEMM, CFU-G, CFU-M, CFU-GM and BFU-E. Αντίθετα τα κύτταρα που προέρχονταν από ήπαρ Fl/koVavCre εμβρύων έδωσαν σημαντικά μειωμένο αριθμό και μέγεθος αποικιών (Εικόνα 6.8). Για να διερευνηθεί πιο ειδικά ο κυτταρικός πολλαπλασιασμός και το δυναμικό

Εικόνα 6.7: Η απενεργοποίηση της Geminin οδηγεί σε μείωση των προγονικών κυττάρων της λεμφοειδούς σειράς. Ποσοτικοποίηση του αριθμού των Lin-Flt3+IL7Ra- κυττάρων από το ήπαρ Fl/koVavCre (N=8) και εμβρύων μαρτύρων (N=15) 15ης ημέρας. Αντιπροσωπευτική ανάλυση κυτταρομετρίας ροής με τη χρήση αντισωμάτων αντί-Lineage, αντί-cKit, αντί-Sca1, αντί-Flt3 και αντί-IL7Ra δίδεται στα διαγράμματα.}

διαφοροποίηση των κυττάρων από ήπαρ εμβρύων από τα οποία απουσιάζει η Geminin χρησιμοποιήθηκαν 2 διαφορετικά μίγματα κυτταροκινών, ένα το οποίο κατευθύνει την διαφοροποίηση προς την μυελοειδή σειρά και ένα το οποίο «ευνοεί» την διαφοροποίηση προς την ερυθροειδή σειρά. Τα αποτελέσματα από αυτά τα πειράματα προέκυψαν ότι τα προγονικά κύτταρα του αιμοποιητικού παρουσιάζουν σημαντικές ανωμαλίες στην παραγωγή CFU-G, CFU-M, CFU-GM και BFU-E αποικιών.
Αποτελέσματα: Ο ρόλος της Geminin στην αυτό-ανανέωση και διαφοροποίηση των HSPCs

(Εικόνα 6.8). Ο σημαντικά μειωμένος αριθμός αποικιών που παρατηρήθηκε σε αυτά τα πειράματα επιβεβαιώνει τον σημαντικά μειωμένο αριθμό αιμοποιητικών προγονικών κυττάρων στο ήπαρ των Fl/koVavCre εμβρύων, ενώ η ανώμαλη κατανομή του τύπου των αποικιών που σχημάτισαν προτείνει ανωμαλίες στην διαφοροποίηση των προγονικών κυττάρων του αιμοποιητικού από τα οποία απουσιάζει η Geminin. Στο σύνολο τους αυτά τα αποτελέσματα καταδεικνύουν ότι η Geminin είναι απαραίτητη για την σωστή ρύθμιση της δημιουργίας των προγονικών κυττάρων του αιμοποιητικού.

Η Geminin έχει εγκαθιδρυθεί στην βιβλιογραφία σαν ένας αρνητικός αναστολέας της αδειοδότησης της αντιγραφής του DNA, υπεύθυνος για τη διατήρηση της γενωμικής ακεραιότητας του κυττάρου (Eward et al., 2004; Nishitani and Lygerou, 2004). Ωστόσο τα αποτελέσματα από την ανάλυση της ανάπτυξης των θυμοκυττάρων απουσίας της Geminin προτείνουν ότι η Geminin δεν είναι απαραίτητη για την σωστή διαχωρισμό των αιμοποιητικών κυττάρων. Η ανάλυση των αιμοποιητικών κυττάρων του ήπαρ των Fl/koVavCre αποκάλυψε μια συσσώρευση των LSK βλαστικών κυττάρων του αιμοποιητικού και μια δραματική μείωση στον αριθμό των LK προγονικών κυττάρων του αιμοποιητικού. Για να διαχωρίσουμε εάν η συσσώρευση των βλαστικών κυττάρων του αιμοποιητικού μπορεί να οφείλεται

Εικόνα 6.8: Τα προγονικά κύτταρα του αιμοποιητικού παρουσιάζουν μειωμένη ικανότητα διαφοροποίησης απουσία της Geminin. Με τη συγκεκριμένη μεθοδολογία εξετάστηκε η ικανότητα των προγονικών κυττάρων του αιμοποιητικού να παράγουν διαφοροποιημένες αποικίες παρουσία ειδικού ημι-ρευστού θρεπτικού μέσου και κυτταροκινών. Α) CFU-GM: Μέτρηση ικανότητας σχηματισμού αποικιών από προγονικά κύτταρα κοκκιοκυττάρων και μονοκυττάρων. Β) Μέτρηση ικανότητας σχηματισμού αποικιών από προγονικά κύτταρα κοκκιοκυττάρων, ερυθροκυττάρων, μακροφάγων, και μεγακαρυοκυττάρων. Γ) Μέτρηση ικανότητας σχηματισμού αποικιών από προγονικά κύτταρα ερυθροκυττάρων.
στον ενισχυμένο πολλαπλασιασμό των HSC ή στην αδυναμία διαφοροποίησης των HSCs προς HPCs, ο ρυθμός του κυτταρικού πολλαπλασιασμού βλαστικών και προγονικών κυττάρων του αιμοποιητικού από Fl/koVavCre και έμβρια μάρτυρες μετρήθηκε in vivo μέσω ένθεσης BrdU. Για αυτό το σκοπό μια ένση με BrdU χαρτηγήθηκε στο περίπτωςο έγκυο θηλυκού μι, ο οποίος υπέστη ευθανασία 2 ώρες αργότερα και απομονώθηκε το ήπαρ των Fl/koVavCre και εμβρέων μαρτύρων. Στην συνέχεια τα κύτταρα του ήπαρος υπέστησαν ανοσοφθορισμό με ένα κοκτέιλ αντισωμάτων έναντι των μαρτύρων Lineage, c-Kit, Sca-1 και BrdU. Δεν ανιχνεύθηκε στατιστικά σημαντική διαφορά στην ένθεση BrdU μεταξύ των LSK κυττάρων από Fl/koVavCre και έμβρια μάρτυρες, το οποίο υποδεικνύει ότι οι αυξημένοι αριθμοί των LSK κυττάρων δεν οφείλονται στον αυξημένο κυτταρικό πολλαπλασιασμό.

Εικόνα 6.9: Ανωμαλίες του κυτταρικού κύκλου των βλαστικών και προγονικών κυττάρων του αιμοποιητικού από τα οποία απουσιάζει η Geminin. Τα προγονικά κύτταρα του αιμοποιητικού από τα οποία απουσιάζει η Geminin παρουσιάζουν μειωμένη ενσωμάτωση BrdU σε σχέση με τα κύτταρα αγρίου τύπου. In vivo σήμανση με BrdU των βλαστικών (πάνω σειρά) και προγονικών (κάτω σειρά) κυττάρων του αιμοποιητικού από το ήπαρ Fl/koVavCre (N=3) και εμβρέων μαρτύρων (N=10) 15η ημέρας. Οι τιμές εκφράζουν το ποσοστό των BrdU+ κυττάρων. **p < 0.001.

Σε αντίθεση τα LK κύτταρα από τα οποία απουσιάζει η Geminin παρουσιάζουν μείωση στην ενσωμάτωση BrdU κατά 80% σε σχέση με τα κύτταρα μάρτυρες, γεγονός το οποίο προτείνει μια ανωμαλία στον πολλαπλασιασμό των προγονικών κυττάρων in vivo (Εικόνα 6.9). Στο σύνολο τους αυτά τα αποτελέσματα επιβεβαιώνουν τις παρατηρούμενες ανωμαλίες στην ομοιότητα των HSCs των
Φλ/κοVαvCre εμβρύων. Επίσης συμπεράνουμε ότι οι παραπεριγραμένες μεγάλες μειώσεις στον αριθμό των προγονικών κυττάρων του αιμοποιητικού είναι πιο πιθανόν να προέρχονται λόγω ανομαλιών στην διαφοροποίηση των LSK HSCs από τα οποία απουσιάζει η Geminin και είναι σύμφωνες με την μειωμένη ικανότητα κυτταρικού πολλαπλασιασμού των HPCs από τα Fl/κοVαvCre έµπρων.

6.6. Τα βλαστικά κύτταρα του αιμοποιητικού από τα οποία απουσιάζει η Geminin μπορούν να συναγωνιστούν τα βλαστικά αιμοποιητικά κύτταρα αγρίου τύπου στην ανασύσταση του αιμοποιητικού συστήματος σε μίσες που έχουν υποστεί ακτινοβόληση.

Συνολικά τα προηγούμενα αποτελέσματα προτείνουν σημαντικές ανομαλίες κατά την αιμοποίηση στο εμβρύο ήπαρ με σημαντικές μειώσεις στον αριθμό των λεμφοειδών, μυελοειδών και ερυθροειδών προγονικών κυττάρων απουσία της Geminin. Επιπλέον τα προγονικά κύτταρα του αιμοποιητικού παρουσίαζαν ανομαλίες στον κυτταρικό πολλαπλασιασμό τόσο in vivo όσο και in vitro και αδύνατον να παράγουν διαφοροποιημένους απογόνους. Η λειτουργία των βλαστικών κυττάρων του αιμοποιητικού έγκειται στην ικανότητά τους να παράγουν διαφοροποιημένα κύτταρα του αιμοποιητικού για όλη την διάρκεια της ζωής ενός οργανισμού. Για να διερευνήσουμε εάν η γενετική απαλοιμία της Geminin επηρεάζει την βασική λειτουργία των βλαστικών κυττάρων του αιμοποιητικού in vivo, πραγματοποιήθηκαν πειράματα κατά τα οποία έγινε ανταγωνιστική μεταμόσχευση εμβρύων ηπατικών προηγούμενων κυττάρων από Fl/κοVαvCre και αγρίου τύπου μίσες. Για να εξετάσουμε την ικανότητα των HSCs από τα οποία απουσιάζει η Geminin για μακράς διαρκείας ανασύσταση του αιμοποιητικού συστήματος και να καθορίσουμε αν η Geminin είναι απαραίτητη για την φυσιολογική διαφοροποίηση των HSCs, πραγματοποιήθηκαν πειράματα στα οποία έγινε μεταμόσχευση Fl/κοVαvCre και WT κυττάρων εμβρύου της ήπατος. Οι ισομορφές του μάρτυρα κυτταρικής επιφάνειας CD45 (Ly5), χρησιμοποιήθηκαν για την διάκριση των WT (CD45.1) από τα κύτταρα δότες από τα οποία απουσιάζει η Geminin. Συγκεκριμένα εμβρύων κύτταρα ήπατος (5x10⁵ cells) απομονώθηκαν από CD45.2°Fl/κοVαvCre (KO) και CD45.1° WT έµπρων 15⁰ημέρας και μεταμοσχεύθηκαν σε αναλογία 9:1 (WT:KO), 1:1 (WT:KO) ή 1:9 (WT:KO) σε μίσες δέκτες του γονοτύπου Rag2−/−B6.JCD45.1 που είχαν υποστεί ακτινοβόληση (Εικόνα 6.10Α). Το πρωτόκολλο ακτινοβόλησης εξασφάλισε την απαλοιμία των αιμοποιητικών κυττάρων του δέκτη για να εξεταστεί η ανασύσταση του αιμοποιητικού συστήματος από τα κύτταρα δότες. Συνολικά μεταμοσχεύθηκαν κύτταρα εμβρύου της ήπατος σε 30 μίσες (5x10⁵ κύτταρα/μύς. 5 μίσες σε κάθε ομάδα) και το περιφερικό αίμα αναλύθηκε στις 4 και στις 10 εβδομάδες (Εικόνα 6.10Β). Στις 4 εβδομάδες μετά την μεταμόσχευση η πλειονότητα των κύτταρων η οποία έδειξε η ανασύσταση του αιμοποιητικού συστήματος ήταν CD45.1+ κύτταρα. Στις 10 εβδομάδες μετά την μεταμόσχευση η πλειονότητα των κύτταρων που συμμετείχε στην ανασύσταση του αιμοποιητικού συστήματος ήταν CD45.2+ κύτταρα (1:1 WT:KO μεταμόσχευση; CD45.1° WT: 24.41% and CD45.2°Fl/κοVαvCre: 60%, Εικόνα 6.10Β) το οποίο πρότεινε ότι τα HSCs κύτταρα από τα οποία απουσιάζει η Geminin μπορούν να
συναγωνιστούν τα HSCs κύτταρα αγρίου τύπου. Ωστόσο η ανάλυση της συμμετοχής των CD45.2⁺Fl/koVavCre κυττάρων του περιφερειακού αίματος στην ανασύσταση των διαφόρων αιμοποιητικών σειρών έδειξε ότι τα HSCs από αυτά απουσιάζει η Geminin, διαφοροποιούνται κατά προτίμηση σε προγονικά κύτταρα της λεμφοειδούς σειράς με μειωμένη ικανότητα διαφοροποίησης προς προγονικά κύτταρα της μυελοειδούς σειράς σε σχέση με τα HSCs αγρίου τύπου (Εικόνα 6.10B, δεξιά

![Image](image.png)

Εικόνα 6.10: Τα βλαστικά κύτταρα του αιμοποιητικού διατηρούν την ικανότητα ανασύστασης του αιμοποιητικού συστήματος ακτινοβολημένων μυών απουσία της Geminin. A) Ηπατοκύτταρα από WT B6.JCD45.1 και B6.CD45.2 Fl/koVavCre κυττάροι του περιφερειακού αίματος δεν μεταφέρουν την Geminin. Β) Ανάλυση δειγμάτων αιμοποιητικού στο κύτταρο CD45.1 WT και CD45.2 κύτταρα απουσία της Geminin. Εικόνα 6.10A για να εξετάσουμε εάν απουσία της Geminin στα HSCs μπορούν να μεταβούν αποτελεσματικά στον μυελό των οστών όπως λαμβάνουν σε προγονικά κύτταρα την ικανότητα ανασύστασης του αιμοποιητικού συστήματος τους. Οι αριθμοί εκφράζουν το ποσοστό των μυελοειδών κύτταρων που προέρχονται από CD45.1 WT και CD45.2 κύτταρα απουσία της Geminin στα HSCs από τα οποία απουσιάζει η Geminin στα δεκτά δοτών.
στον μυελό των οστών παρατηρήθηκε παρόμοια συνεισφορά CD45.2⁺Fl⁺koVavCre και CD45.1⁺ WT κυττάρων στην ανασύσταση του αιμοποιητικού συστήματος (1:1 WT:KO μεταμόσχευση; CD45.1⁺ WT: 23.9% και CD45.2⁺Fl⁺koVavCre: 19.6%, Εικόνα 6.11B). Είναι πιθανό ότι το μικροπαραβιβάλλον του μυελού των οστών λειτουργεί µειώνοντας τις ανομαλίες διαφοροποίησης των HSCs που παρατηρήθηκαν in vivo. Στον πείραμα τα CD45.2⁺Fl⁺koVavCre κύτταρα συνεισέφεραν στην ανασύσταση των B και T κυττάρων αλλά η ανασύσταση των µυελοειδών κυττάρων ήταν πολύ µειωμένη σε σχέση με την αντίστοιχη από τα HSCs µάρτυρες. Παραπομπώς στον μυελό των οστών, τα CD45.2⁺Fl⁺koVavCre HSC

![Graph](image1.png)

Εικόνα 6.11: Τα βλαστικά κύτταρα του αιμοποιητικού παρουσιάζουν µειωμένη ικανότητα ανασύστασης των κυττάρων της µυελοειδούς σειράς ακτινοβοληµένων µυών A) Ανάλυση σπλήν κυττάρων των µυών-δεκτών της 11^η εβδοµάδα µετά την µεταµόσχευση για την εξέταση του ποσοστού των κυττάρων του αιµατού µε µεταφορά από CD45.1 WT ή CD45.2 κύτταρα από τα οποία αποσπάζεται η Geminin. Η ανασύσταση των λεµφοειδών και µυελοειδών κυτταρικών σειρών από CD45.1 WT ή CD45.2 κύτταρα (µεταµόσχευση 1:1) από τα οποία αποσπάζεται η Geminin (αριστερή στήλη) παρουσιάζεται στα µυελοειδή. Οι αριθµοί εκφράζουν το ποσοστό των µυελοειδών, B, CD4 και CD8 κυττάρων που προέρχονται από CD45.1 (µαύρες ράβδου) ή CD45.2 (λευκες ράβδου) κύτταρα. B) Ανάλυση λεµφοειδών κυττάρων των οστών των µυών-δεκτών της 11^η εβδοµάδα µετά την µεταµόσχευση για την εξέταση του ποσοστού των λεµφοειδών κυττάρων του αιµατού µε µεταφορά από CD45.1 WT ή CD45.2 κύτταρα από τα οποία αποσπάζεται η Geminin. Η ανασύσταση των λεµφοειδών και µυελοειδών κυτταρικών σειρών από CD45.1 WT ή CD45.2 κύτταρα (µεταµόσχευση 1:1) από τα οποία αποσπάζεται η Geminin (αριστερή στήλη) παρουσιάζεται στα µυελοειδή. Οι αριθµοί εκφράζουν το ποσοστό των λεµφοειδών, B, CD4 και CD8 κυττάρων που προέρχονται από CD45.1 (µαύρες ράβδου) ή CD45.2 (λευκες ράβδου) κύτταρα.

παρουσίασαν µειωµένη ανασύσταση των µυελοειδών κυττάρων σε σχέση µε τα CD45.1⁺ HSCs (Εικόνα 6.11A, δεξιά στήλη). Τα προηγούµενα αποτελέσµατα υποδεικνύουν ανομαλίες κατά την διαφοροποίηση των HSCs προς την µυελοειδή σειρά. Επιπλέον σύµφωνα µε τα αποτελέσµατα της προηγούµενης ενότητας που δείχνουν ότι η Geminin δεν είναι απαραίτητη για την ψυχολογική ανάπτυξη των T κυττάρων , σε αυτά τα περάματα παρατηρήθηκε ότι τα HSCs από τα οποία αποσπάζεται η Geminin παρουσιάζουν ψυχολογική διαφοροποίηση προς την T κυτταρική σειρά. Τέλος σηµαντική είναι και η παρατήρηση ότι οι µύες στους οποιους µεταµοσχεύθηκαν κυρίως CD45.2⁺Fl⁺koVavCre κύτταρα (1:9}
Αποτελέσματα: Ο ρόλος της Geminin στην αυτό-ανανέωση και διαφοροποίηση των HSPCs

WT:KO μεταμόσχευση) επιβίωσαν εως τις 12 εβδομάδες. Συνοπτικά, αυτά τα πειράματα προτείνουν ότι τα HSCs από τα οποία απουσιάζει η Geminin μπορούν να δόσουν μακράς διάρκειας ανασύσταση του αιμοποιητικού συστήματος, αλλά παρουσιάζουν μειωμένο δυναμικό διαφοροποίησης προς την μυελοειδή σειρά. Αυτά τα ευρήματα ομοιάζουν σε μεγάλο βαθμό του παρατηρούμενου in vivo φαινοτύπου της αιμοποίησης στο ήπαρ των Fl/koVavCre εμβρύων 15ης ημέρας.
ΣΥΖΗΤΗΣΗ
7.1. Η έκφραση της Geminin στα βλαστικά κύτταρα του αιμοποιητικού και στα λεμφοκύτταρα

Τα επίπεδα της Geminin ρυθμίζονται κατά την διάρκεια του κυτταρικού κύκλου. H Geminin ανιχνεύεται σε υψηλά επίπεδα στις S, G2 και M φάσεις ενώ προς το τέλος της M η προτεινέ θορύβου θετικό από το APC προς αποκομιδήμηση (McGarry and Kirschner, 1998; Xouri et al., 2004). Συρροήσεις μελέτες έχουν προτείνει ότι η προτεινέ βρίσκεται σε αυξημένα επίπεδα σε κύτταρα τα οποία πολλαπλασιάζονται με μεγάλο ρυθμό όπως τα λεμφοκύτταρα και τα επιθηλιακά κύτταρα ενώ αντιθέτως δεν έχει ανιχνευθεί η έκφρασή της σε τελικά υπονόμευσε κύτταρα (Spella et al., 2007; Wohlschlegel et al., 2002). Τα αποτελέσματα μας δείχνουν ότι το mRNA της Geminin ανιχνεύεται στα βλαστικά και προγονικά κύτταρα του αιμοποιητικού του εμβρύου μωρός, παρατηρήσεις σύμφωνες με άλλες μελέτες που έχουν ανιχνεύσει το μήνυμα της Geminin στα βλαστικά κύτταρα του αιμοποιητικού του ενήλικου μωρός (Ohtsubo et al., 2008; Shinnick et al.) Το mRNA της Geminin ανιχνεύεται στα θυμοκύτταρα και στα όρμια περιφερικά κύτταρα, σε χαμηλότερα επίπεδα, ενώ παρατηρήθηκε θετική συσχέτιση των επιπέδων του mRNA της Geminin με τον κυτταρικό πολλαπλασιασμό. Πιο συγκεκριμένα τα επίπεδα του mRNA της Geminin αυξάνονται σημαντικά στα DN4 κύτταρα κατά το στάδιο ύστερα από την β-επιλογή και την έναρξη του πολλαπλασιασμού τους για την παραγωγή μεγάλου αριθμού DP κυττάρων. Επιπλέον δείχνουν ότι τα πρωτεϊνικά επίπεδα της Geminin είναι πολύ χαμηλά σε περιφερικά Τ κύτταρα τα οποία βρίσκονται εκτός κυτταρικού κύκλου ενώ τα πρωτεϊνικά επίπεδα αυξάνονται σημαντικά ύστερα από την ενεργοποίηση των περιφερεικών Τ κυττάρων.

Τα αποτελέσματα από την ανάλυση της έκφρασης της Geminin στα Β λεμφοκύτταρα προτείνουν παρόμοιο πρότυπο έκφρασης με τα Τ κύτταρα. Είναι ενδιαφέρον ότι τόσο στο νεογενές αλλά και στο αιμοποιητικό η έκφραση της Geminin είναι υψηλή στα βλαστικά και προγονικά πολυδύναμα κύτταρα και χαμηλή στα διαφοροποιμένα κύτταρα (Karamitos et al., 2010a; Spella et al., 2007). Στο σύνολο τους τα παραπάνω αποτελέσματα προτείνουν ότι η προτεινέ εκφράζεται στα βλαστικά και προγονικά κύτταρα του αιμοποιητικού καθώς και του ανοσοποιητικού και πιθανόν έχει χαμηλές λειτουργίες στην ρύθμιση του κυτταρικού πολλαπλασιασμού και διαφοροποίησης.

7.2. Ανάπτυξη των προγονικών Τ λεμφοκύτταρων στο θύμο αποστίκη της Geminin

Για την δειγμάτωση του ρόλου της Geminin στην ανάπτυξη και διαφοροποίηση των λεμφοκύτταρων, δημιουργήσαμε μυές στους οποίους το γονίδιο της Geminin απενεργοποιείται ειδικά στα λεμφοκύτταρα (Karamitos et al., 2010a). Η απενεργοποίηση του γονίδιο της Geminin στα λεμφοκύτταρα δεν επηρέασε σημαντικά το πρόγραμμα διαφοροποίησης των Τ κυττάρων στο θύμο αφού όλοι οι Τ κυτταροί πλήθους του θύμου ανιχνεύθηκαν σε φυσιολογικό αριθμό με εξαίρεση μικρές μειώσεις στους πληθυσμούς των πρόδρομων Τ κυττάρων DN1, DN4 και DP, που δεν εκφράζουν την Geminin (Εικόνα 7.2).
Συζήτηση

7.2.1. Η δράση της Geminin στην ρύθμιση του Cdt1 μπορεί να αναπληρωθεί από άλλα μοριακά μονοπάτια

Ένας από τους καλύτερα τεκμηριωμένους ρόλους της Geminin είναι η ρύθμιση της ομαλής προώθησης του κυτταρικού κόκλου και της διατήρησής της γονιδιοματικής σταθερότητας μέσω του αρνητικού ελέγχου του Cdt1 (Karamitros et al., 2010b; Petropoulou et al., 2008). Αρκετές μελέτες έχουν δείξει ότι αυτή η δράση της Geminin είναι σημαντική στην διατήρηση της γονιδιοματικής σταθερότητας. Για παράδειγμα η έκτοπη έκφραση του Cdt1 στον Xenopus και σε ανθρώπινες κυτταρικές σειρές έχει ως αποτέλεσμα την ανάπτυξη γενομονικών βλαβών που συχνά συνοδεύονται από υπερδιπλασιασμό του γενετικού τους υλικού (Davidson et al., 2006; Maiorano et al., 2005). Η δράση της Geminin έχει δείχτει ότι μπορεί να περιορίσει τον υπερδιπλασιασμό του γενετικού υλικού που προέρχεται από την έκτοπη δράση του Cdt1 (Li and Blow, 2005; Lygerou and Nurse, 2000). Ωστόσο δεν είναι μόνο η δράση της Geminin που εμπλέκεται στην αυστηρή ρύθμιση της ενεργότητάς του Cdt1. Για παράδειγμα οι Zhu et al. προτείνουν ότι ο υπερδιπλασιασμός του γενετικού υλικού σε φυσιολογικές ανθρώπινες κυτταρικές σειρές παρατηρήθηκε μόνο ύστερα από την ταινία-χορήγηση αποσιώπησης της Geminin και της κυκλίνης της Cdk1 (Zheng and Depamphilis, 2009). Επιπλέον πειράματα σε ανθρώπινες κυτταρικές σειρές έχουν προτείνει ότι πολλά μονοπάτια με αλληλεπικαλυπτόμενη δράση εμπλέκονται στην αυστηρή ρύθμιση της ενεργότητάς του Cdt1 και στην αποτροπή των γενομονικών βλαβών (Sugimoto et al., 2009). Ενδεικτικά έχει δείχθει ότι η φωσφορυλίωση του Cdt1 από τις Cdk, έχει ως αποτέλεσμα την αναγώριση και ουβικουτινίλιωση του Cdt1 από το Skp2 και την αποκατάστασή του (Nishitani et al., 2006). Το σύμπλεκτο Cul4-DDB1 με ενεργότητα E3 λιγάσης της ουβικουτινίνης, στοχεύει στο Cdt1 για πρωτεόλυση ύστερα από την δέσμυνση του Cdt1 στο PCNA πάνω στην χρωματίνη (Hu et al., 2004). Τα αποτελέσματα μας δείχνουν ότι ύστερα από την απενεργοποίηση της Geminin στο θύμο, τα προγονικά λεμφοκύτταρα συνεχίζουν φυσιολογικά τις κυτταρικές διαφέρεσες χωρίς παρατηρήσεις διαταραχές στην αντιγραφή του DNA. Η παρατήρηση αυτή είναι σύμφωνη με την υπόθεση ότι η δράση της Geminin στον αυστηρό ύλεγχο του Cdt1 και την διατήρηση της γονιδιοματικής σταθερότητας αναπληρώνεται και από άλλα μονοπάτια στα θυμοκύτταρα (Εικόνα 7.1).

Στα περιφερικά Τ κόκταρα παρατηρήθηκαν σημαντικές διαταραχές του κυτταρικού πολλαπλασιασμού. Ποιος μπορεί να εξηγηθεί ο διαφορετικός φαινότυπος σε σχέση με τον κυτταρικό πολλαπλασιασμό ύστερα από την απενεργοποίηση της Geminin στα θυμοκύτταρα και λεμφοκύτταρα; Η διαφορική απαίτηση της Geminin για τη ρύθμιση των επαναλαμβανόμενων διαρέξεων από τα θυμοκύτταρα και τα περιφερικά Τ κόκταρα μπορεί να εξηγηθεί από τις εγγενείς διαφορές του κυτταρικού τους κόκλου και της ρύθμισης του στα διάφορα στάδια ανάπτυξης των Τ κότταρων. Για παράδειγμα τα σχετικά επίπεδα έκφρασης του Cdt1 ή της Geminin μπορεί να μεταβάλλονται σε διαφορετικούς κυτταρικούς τύπους και να καθιστούν αυτά τα κόκταρα πιο ευαίσθητα σε τυχόν αλλαγές της έκφρασης μιας ή των δυο πρωτεινών. Πράγματι παρατηρήσαμε ότι τα πρωτεϊνικά επίπεδα έκφρασης του Cdt1 σε
ενεργοποιούμενα περιφερικά T κύτταρα από τα οποία απουσιάζει η Geminin, είναι υψηλότερα σε σχέση με τα αντίστοιχα κύτταρα αγρίου τύπου. Αντίθετα στα θυμοκύτταρα αγρίου τύπου ή κατά την απουσία της Geminin δεν παρατηρήθηκαν διαφορές στα επίπεδα έκφρασης του Cdt1. Τα προηγούμενα αποτελέσματα προτείνουν ότι υπάρχουν σημαντικές διαφορές στην ρύθμιση του κυτταρικού κύκλου των θυμοκυττάρων και περιφερικών T κυττάρων.

Εικόνα 7.1: Η Geminin είναι ένας από τους παράγοντες που ρυθμίζουν την ενεργότητα του Cdt1. Ο σχηματισμός στις αφετηρίες έναρξης της αντιγραφής ενός πολυπρωτεϊνικού προαντιγραφικού συμπλόκου αποτελείται από τις πρωτεινές ORC, Cdc6, Cdt1 και MCM αδειοδοτεί την έναρξη της αντιγραφής. Ο Cdt1 είναι ένας βασικός παράγοντας του προαντιγραφικού συμπλόκου που ρυθμίζεται από άλλους παράγοντες. Η φωσφορυλίωση του Cdt1 από τις Cdk ή η ουβικουιτιλίωση του Cdt1 από τον Skp2/SCF είναι διαδικασίες που οδηγούν στην πρωτεόλυση του Cdt1. Οι πρωτεϊνικές επίπεδα του Cdt1 ελέγχονται επίσης από το σύμπλοκο Cul4/Ddb1/PCNA. Η Geminin δεσμεύει και αναστέλλει τη δράση του Cdt1. Οι προηγούμενοι μοριακοί μηχανισμοί μπορούν να ελεγχθούν από εξωκυττάρια σηματοδότηση και λειτουργούν συμπληρωματικά στην ρύθμιση της δράσης του Cdt1 (Karamitros et al., 2010b).

7.2.2. Η Geminin είναι απαραίτητη για την αυστηρή ρύθμιση του κυτταρικού πολλαπλασιασμού σε συγκεκριμένους κυτταρικούς τύπους

Κεντρικοί ρυθμιστές του κυτταρικού κύκλου έχει δειχθεί ότι δεν είναι απαραίτητοι για τον πολλαπλασιασμό των θυμοκυττάρων, αφού οι λειτουργίες τους μπορούν να συμπληρωθούν από μέλη της ίδιας οικογένειας. Για παράδειγμα η γενετική απαλουρία των κυκλινών D1, D2 και E στον μυό δεν επηρέασε σημαντικά την ανάπτυξη των T λεμφοκυττάρων (Geng et al., 2003; Sicinski et al., 1996; Sicinski et al., 1995). Η χρήση διαφορετικών μοντέλων μυών αποκάλυψε ότι η απώλεια ενός μέλους της
οικογένειας των κυκλινών D μπορεί να αντικατασταθεί από την λειτουργία ενός διαφορετικού μέλους της ίδιας οικογένειας και να εμποδίσει την εμφάνιση ανομαλιών του κυτταρικού κύκλου (Lam et al., 2000). Επίσης κάποια μέλη των οικογενειών των κυκλινών A και B μπορούν μερικώς να συμπληρώσουν για την λειτουργία μελών της ίδιας οικογένειας τα οποία έχουν απενεργοποιηθεί (Brandeis et al., 1998; Liu et al., 1998). Επιπλέον η κυκλινή A είναι απαραίτητη για την φυσιολογική πρόοδο του κυτταρικού κύκλου σε κύτταρα όποια οι ινοβλάστες αλλά δεν απαιτείται για τον φυσιολογικό πολλαπλασιασμό διαφορετικών κυττάρων όπως τα αιμοποιητικά και εμβρυονικά βλαστικά κύτταρα (Kalaszczynska et al., 2009). Η απενεργοποίηση της Geminin δεν επηρεάσει τον κυτταρικό πολλαπλασιασμό των θυμοκύτταρων. Αντίθετα, βρέθηκε ότι η Geminin είναι απαραίτητη για την αυστηρή ρύθμιση του πολλαπλασιασμού των προγονικών κυττάρων και αυξάνει την απομονωτικότητα των διαφοροποιημένων κυττάρων του αιμοποιητικού αποστολή της Geminin πιθανά συσχετίζονταν με ανομαλίες κατά την πρόοδο του κυτταρικού κύκλου αυτών των κυττάρων είτε με την αδυναμία τους να δεσμευτούν προς διαφοροποίηση όπος πρόσφατα προσπάθηκε στο υγιεινό (Yellajoshyula et al., 2011). Τα αποτελέσματα μας δείχνουν ότι παρόμοια με άλλους ρυθμιστικά του κυτταρικού κύκλου, η λειτουργία της Geminin μπορεί να είναι απαραίτητη για ορισμένους κυτταρικούς τύπους αλλά όχι για άλλους.

7.2.3. H Geminin δεν διαμεσολαβεί την δράση κεντρικών μονοπατιών-ρυθμιστών της διαφοροποίησης των θυμοκύτταρων

Ο ήπιος φαινότυπος που παρουσιάζουν οι θυμοκύτταρα από τα οποία απενεργοποιήθηκε η Geminin δεν ήταν αναμενόμενος δεδομένης της υψηλής έκφρασης της πρωτεΐνης στο θύμο και των λειτουργιών που έχουν περιγραφεί για την πρωτεΐνη νορίς κατά την εμμηνοποίηση του μυός (Gonzalez et al., 2006; Hara et al., 2006). Τα δεδομένα αυτά επιπλέον προτείνουν ότι η ρυθμιστική δράση των Hox μεταγραφικών παραγόντων και polycomb συμπλέκονται στην διαφοροποίηση των T κυττάρων δεν συνδέεται απαραίτητα με την Geminin όπως έχει περιγραφεί ότι συμβαίνει κατά την διαφοροποίηση των ESC (embryonic stem cells) και των προγονικών κυττάρων του υγιεινού (Lim et al., 2011; Luo et al., 2004). Επιπλέον τα παραπάνω αποτελέσματα προτείνουν ότι σε αυτό το στάδιο η Geminin δεν αποτελεί έναν από τους κύριους διαμεσολαβητές των Notch και Wnt/β-κατενάνης, μονοπατιών τα οποία ρυθμίζουν τον κυτταρικό πολλαπλασιασμό των T κυττάρων και κατευθύνουν τις αποφάσεις διαφοροποίησης τους.

7.3. H Geminin ρυθμίζει την δημιουργία των περιφερικών T κυττάρων

7.3.1 H απενεργοποίηση της Geminin έχει οι αποτέλεσμα την σημαντική μείωση του αριθμού των αδόκων T κυττάρων και T κυττάρων μνήμης

Σε αντίθεση με τα θυμοκύτταρα, τα περιφερικά T κύτταρα όπως τα αθόα, κύτταρα μνήμης και ρυθμιστικά T κύτταρα παρουσιάζουν σημαντικές μείωσες του αριθμού τους απουσία της Geminin.
(Karamitros et al., 2010a). Οι κυτταρικοί πληθυσμοί των περιφερικών Τ κυττάρων παρουσιάζουν μεγάλες διαφορές στην διάρκεια ζωής τους, τον πολλαπλασιασμό τους και την λειτουργική εξειδίκευσή τους. Για παράδειγμα τα αθώα Τ κύτταρα (naïve T cells) είναι κύτταρα που εξέρχονται απευθείας από τον θόμο στην περιφέρεια χωρίς να έχουν έλθει σε επαφή με κάποιο αντιγόνο και για αυτό το λόγο βρίσκονται εκτός κυτταρικού κόκλου, ενώ έχουν σχετικά μικρή διάρκεια ζωής (Tanchot et al., 1997; Tough and Sprent, 1994). Η σημαντική μείωση των αθώων, περιφερικών Τ κυττάρων στους Fl/koCD2Cre μύες, δεν μπορεί να εξηγηθεί από ανομαλίες του κυτταρικού πολλαπλασιασμού αυτών των κυττάρων, αφού προέρχονται απευθείας από το θόμο χωρίς να έχει προηγηθεί πολλαπλασιασμός τους στην περιφέρεια. Ωστόσο η παρατηρούμενη μείωση μπορεί να συνδέεται με ένα πιθανό ρυθμιστικό ρόλο της Geminin κατά την μετανάστευσή τους και έξοδο τους από τον θόμο. Περαιτέρω πειράματα κρίνονται απαραίτητα για να διερευνηθεί ένα τέτοιο ενδεχόμενο.

Αντίθετα τα Τ κύτταρα μνήμης έχουν διέλθει αρκετών κυτταρικών διαφορέσεων και έχουν χαμηλό κατώφλι ενεργοποίησης (activation threshold) ύστερα από την συνάντησή τους με κάποιο αντιγόνο στο οποίο έχουν εκτεθεί (Kalia et al., 2008; Zhang and Bevan, 2011). Επιπλέον έχουν μεγάλη διάρκεια ζωής για την επιτέλεση των λειτουργιών της ανασκολογικής μνήμης (Slifka, 2004). Ως εκ τούτου οι μειώσεις που παρατηρήθηκαν στα Τ κύτταρα μνήμης είναι πιο πιθανό να συνδέονται με την ανώμαλη πρόοδο των κυτταρικών διαφορέσεων και του κυτταρικού πολλαπλασιασμού απουσία της Geminin.

7.3.2. Η Geminin πιθανά επηρεάζει προγράμματα διαφοροποίησης των ρυθμιστικών και Τ κυττάρων μνήμης

Έχει προταθεί ότι η διαφοροποίηση των αθώων Τ κυττάρων (naïve T cells) σε άμεσα δραστικά κύτταρα (effector T cells) και Τ κύτταρα μνήμης εξαρτάται από την εισαγωγή επιγενετικών τροποποιήσεων που ευνοούν ανοικτή χρωματική δομή στη γονιδιακή υπεύθυνη για την διαφοροποίηση των αθώων Τ κυττάρων (Cuddapah et al., 2010). Πιο συγκεκριμένα αυξημένο επίπεδο της τριμεθυλομενίτης λυσίνης 4 της H3 ιστόνης (H3K4me3) σε συνώνυμο με υψηλά επίπεδα ακτινικής τους της H3 και H4 ιστονόν αντιδιεύθυναν στα γονίδια των IFN-γ, IL-4 και IL-17 των κυτταρικών που ευθύνονται για την διαφοροποίηση των Τ κυττάρων στη Th1, Th2 και Th17 άμεσα δραστικά κύτταρα αντίστοιχα (Agarwal and Rao, 1998; Wei et al., 2009). Επιπλέον έχει βρεθεί ότι η αναδιάταξη των ιστονόν από το Brg1 εμπλέκεται στην ρύθμιση της διαφοροποίησης των Th1 κυττάρων (Zhang and Boothby, 2006). Επιπλέον υψηλά επίπεδα ακτινικής τους αυξημένες σε γονίδια τα οποία αυξάνονται στην διαφοροποίηση των αθώων CD8 Τ κύτταρων προς κύτταρα μνήμης (Dispirito and Shen, 2010). Στο σύνολό τους αυτά τα αποτελέσματα προτείνουν ότι η ρύθμιση της χρωματικής μέσω επιγενετικών τροποποιήσεων είναι απαραίτητη για την δημιουργία των άμεσα δραστικών και Τ κυττάρων μνήμης. Οι αλληλεπιδράσεις της Geminin με σύμπλοκα αναδιάταξης της χρωματικής και επιγενετικούς ρυθμιστικές όπως το SWI/SNF και
το polycomb, είναι σημαντικός στον καθορισμό της κυτταρικής μοίρας κατά την εμβρυογένεση και στην νευρική διαφοροποίηση (Kroll, 2007). Αν και δεν είναι ακόμη πλήρως κατανοητό πώς αυτές οι αλληλεπιδράσεις επηρεάζουν τις αποφάσεις κυτταρικής διαφοροποίησης, είναι πιθανό ότι η Geminin δρα σαν οργανοτήτης μεταγραφικών προγραμμάτων. Αυτή η θεωρία υποστηρίζεται από ευρήματα τα οποία προέδρον ότι η αποσιωπήση της Geminin στα εμβρυωικά βλαστικά κύτταρα (embryonic stem cells ESCs) επηρεάζει την ικανότητά τους για διαφοροποίηση προς νευρικά κύτταρα λόγω διαταραχών στην έκφραση νευρο-ειδικών γονιδίων (Yellajoshuya et al., 2011). Επιπλέον η υπερέκφραση του γονίδιου της Geminin στα ESCs συσχετίζεται με την υπερακετυλίωση νευρο-ειδικών γονιδίων όπως τα NeuroD1 και Ebf2 (Yellajoshuya et al., 2011). Οι σημαντικά μειωμένοι αριθμοί των T κυττάρων μνήμης στους μόσο Fl/koCD2Cre μπορεί να συνδέονται με βλάβες στην επιγενετική ρύθμιση των γονιδίων που ρυθμίζουν την διαφοροποίηση των αθώων T κυττάρων από τα οποία αποσιωπά η Geminin σε T κύτταρα μνήμης.

Τέλος όσον αφορά τα ρυθμιστικά T κύτταρα (Regulatory T cells), έχει δειχθεί ότι η διαφοροποίησή τους κατευθύνεται από την δράση συγκεκριμένων γονιδίων όπως του CD25 και του FoxP3, η μεταγραφική ρύθμιση των οποίων εξαρτάται και από την δράση του Brg1 (Jani et al., 2009; Kasprowicz et al., 2003). Επιπλέον σήμα από τον TCR υποδοχή έχει προταθεί ότι ρυθμίζουν την ενεργοποίηση του FoxP3 γονίδιου αφού παρατηρήθηκε ότι η ενεργοποίηση του TCR υποδοχή έχει ως αποτέλεσμα την διεκδικοποίηση της H3K4(Sauer et al., 2008). Ακόμα πιο ενδιαφέρουσα είναι η παρατήρηση ότι η διατήρηση της έκφρασης του FoxP3 και συνεπώς των ρυθμιστικών T κυττάρων εξαρτάται από την διατήρηση των επιγενετικών τροποποιήσεων κατά τις επαναλαμβανόμενες διαφάνειες των κυττάρων (Lal and Bromberg, 2009). Ενδεικτικά έχει δειχθεί ότι ένα ποσοστό των FoxP3+ κυττάρων που μεταμορφωθήκαν σε μύες από τους οποίους απουσιάζουν τα λεμφοκύτταρα μετατράπηκαν σε FoxP3-κύτταρα (Komatsu et al., 2009). Επιπλέον υπό την παρουσία φλεγμονής τα FoxP3+ ρυθμιστικά T κύτταρα χάνουν την έκφραση του FoxP3 και την κατασταλτική ικανότητά τους (Pasare and Medzhitov, 2003). Συνεπώς η διατήρηση των ρυθμιστικών T κυττάρων φαίνεται ότι στηρίζεται στην αστερήρικη ρύθμιση της κληρονόμησης και διατήρησης των επιγενετικών τροποποιήσεων του FoxP3+ και άλλων ειδικών για τα ρυθμιστικά T κύτταρα γονιδίων κατά τις επαναλαμβανόμενες κυτταρικές διαφάνειες αυτών των κυττάρων. Είναι πολύ πιθανό ότι η Geminin λειτουργεί σαν συνδετικός κρίκος επιτρέποντας την επικοινωνία μεταξύ ρυθμιστών του κυτταρικού κόκλου και συμπλέκοντας τον ελέγχο της επιγενετικής ρύθμισης ειδικών για τα ρυθμιστικά T κύτταρα γονιδίων και συμβάλλοντας στην διατήρηση του φυσιολογικού αριθμού των ρυθμιστικών T κυττάρων.

Συμπερασματικά η Geminin δρα στα περιφερικά T λεμφοκύτταρα σαν ένας ρυθμιστής του κυτταρικού κόκλου ενώ ταυτόχρονα είναι πιθανό ότι επηρεάζει αμφιβολίες κυτταρικής διαφοροποίησης των αθώων T κυττάρων προς άμεσα δραστικά και Τ κύτταρα μνήμης μέσω της οργάνωσης της μεταγραφής του ελέγχου των επιγενετικών τροποποιήσεων και της χρωματικής δομής. Περαιτέρω διερεύνηση του ρόλου της Geminin στην ρύθμιση της γονιδιακής μεταγραφής των περιφερικών T
κυττάρων κρίνεται απαραίτητη για την ταινιοποίηση πιθανών γονιδιακών στόχων και μοριακών μηχανισμών μέσω των οποίων η Geminin κατευθύνει κυτταρικές αποφάσεις διαφοροποίησης.

7.4. Τα περιφερικά Τ λεμφοκύτταρα παρουσιάζουν σαβαρές διαταραχές στις κυτταρικές διαμόρφωσης και στην πρόοδο του κυτταρικού κύκλου αποσιά της Geminin

Οι σημαντικές μειώσεις του αριθμού των περιφερικών Τ κυττάρων στους Fl/koCD2Cre μύες προτείνουν ότι είναι πιθανό να διαπιστώσεται ο φυσιολογικός πολλαπλασιασμός κατά την ανάπτυξη των περιφερικών Τ κυττάρων. In vivo και in vitro πειράματα απέδειξαν ότι αποσιά της Geminin, τα Τ κύτταρα παρουσιάζουν σημαντικά μετωμένο κυτταρικό πολλαπλασιασμό. Για την περετάρω διερεύνηση και κατανόηση των μοριακών βλαβών που έχουν ως αποτέλεσμα αυτο τον φαινότυπο, έγιναν πειράματα για την εξέταση της ενεργοποίησης και πρόοδου του κυτταρικού κύκλου των Τ κυττάρων από τα οποία αποσιάζει η Geminin.

7.4.1 Η ενδοκυτταρική σηματοδότηση των περιφερικών Τ κυττάρων αποσιά της Geminin

Τα Τ κύτταρα ενεργοποιούνται, πολλαπλασιάζονται και διαφοροποιούνται προς άμεσα δραστικά κύτταρα (effector T cells) ύστερα από αλληλεπιδράσεις του TCR υποδοχέα με ξενα-αντιγόνα/MHC μόρια (Tancho et al., 1997). Διερευνήθηκε η ικανότητα των περιφερικών Τ κυττάρων στα οποία δεν εκφράζεται η Geminin να ανταποκρίνονται σε ενδοκυτταρικά σήματα ύστερα από την ενεργοποίηση του TCR υποδοχέα. Οι αλληλεπιδράσεις αυτές επάγουν την μεταγωγή σημάτων από τον TCR υποδοχέα και από συνυποδοχέας και έχουν ως αποτέλεσμα την μεταβολή της έκφρασης αντιγόνων επιφανείας (Kopf et al., 1999; Shahinian et al., 1993). Η έκφραση αντιγόνων όπως του CD44 και CD69 ως απόκριση ύστερα από ενεργοποίηση του TCR δεν παρουσιάστηκε σημαντικές διαφορές μεταξύ των Τ κυττάρων αγρίου τύπου και των Τ κυττάρων από τα οποία αποσιάζει η Geminin. Επομένως αν και η Geminin δεν διαιρεσολαβεί σημάτων από τον TCR υποδοχέα κατά την ενεργοποίηση των Τ κυττάρων για πολλαπλασιασμό θα ήταν σκόπιμο να διερευνηθεί ποιος αλληλεπιδρά με το δίκτυο των κυτταρικών οι οποίες κατευθύνουν την διαφοροποίηση των αδιόν Τ κυττάρων προς άμεσα δραστικά και Τ κύτταρα μνήμης.

7.4.2 Αναστολή της προόδου του κυτταρικού κύκλου στην G2 φάση και διαταραχές έκφρασης των ρυθμιστών του κυτταρικού κύκλου

Η Geminin είναι ένας κεντρικός ρυθμιστής του κυτταρικού πολλαπλασιασμού σε διάφορα κύτταρα και για αυτό θεωρήθηκε σκόπιμο να εξεταστεί λεπτομερειακά η πρόοδος του κυτταρικού κύκλου των
περιφερικών Τ κυττάρων από τα οποία απουσιάζει η Geminin. Δείχνει ότι τα ενεργοποιημένα Τ κύτταρα από τα οποία απουσιάζει η Geminin εξέρχονται φυσιολογικά στην S φάση, οισότο παρουσιάζουν μειωμένη ικανότητα να ολοκληρώσουν επαναλαμβανόμενες κυτταρικές διαφάνειες (Karamitos et al., 2010a). Τα Τ κύτταρα από τα οποία απουσιάζει η Geminin παρουσιάζουν ανώμαλο προφίλ κυτταρικού κύκλου με ανεξήγητη ποσοστά κυττάρων στις G2/M. Η εξέταση της έκφρασης των κυκλινών και κυκλίνο-εξαρτώμενων κινασών στα Τ κύτταρα από τα οποία απουσιάζει η Geminin επιβεβαιώνει την προηγούμενη παρατήρηση. Πιο συγκεκριμένα βρέχαμε ότι τα Τ κύτταρα από τα οποία απουσιάζει η Geminin παρουσιάζουν ανεξήγητη επίπεδα έκφρασης της κυκλινής B1 και της φωσφορυλωμένης τυροσίνης 15 της cdc2, αποτελεόματα τα οποία υποδεικνύουν ότι τα ενεργοποιημένα Τ κύτταρα απουσία της Geminin συσσωρεύονται στην G2 φάση του κυτταρικού κύκλου.

Η αναστολή της προόδου του κυτταρικού κύκλου στην G2 λόγω της αποσιώπησης της Geminin έχει συνδεθεί με ανομαλίες κατά την αντιγραφή του DNA λόγω ανεπαρκούς ελέγχου του Cdt1 και επαγωγής βλαβών του DNA (Melixetian et al., 2004; Zhu et al., 2004). Πειράματα αποσιώπησης της Geminin στα οικότταρα του βατράχου Xenopus laevis, τα οποία παρουσιάζουν αναστολή της προόδου του κυτταρικού κύκλου στην G2 (McGarry, 2002), συμφωνούν με τις παρατηρήσεις μας από τη μελέτη ενεργοποιημένων περιφερικών T λεμφοκυττάρων. Στην Δροσόσφιλα, σε ανθρώπινες κυτταρικές σειρές, και στα εμβρυκά κύτταρα του μισός η αποσιώπηση της Geminin οδηγεί σε υπερδιαπλασιασμό του γονιδίωματος επιβεβαιώνοντας τον ρόλο της Geminin ως αρνητικού ρυθμιστή του παράγοντα αδειοδότησης της αντιγραφής Cdt1 (Ding and MacAlpine, 2010; Gonzalez et al., 2006; Zhu and Depamphilis, 2009). Πειράματα ανάλυσης της ποσότητας του DNA σε ενεργοποιημένα περιφερικά Τ κύτταρα τα οποία δεν εκφράζουν την Geminin και κύτταρα μάρτυρες έδειξαν ότι δεν συνέβη υπερδιαπλασιασμός του γονιδίωματος. Αυτό μπορεί να οφείλεται στην ενεργοποίηση εναλλακτικών μονοπατιών τα οποία περιορίζουν τις βλάβες του γενετικού υλικού ύστερα από απορύθμιση της γενομηγείας Geminin/Cdt1. Ενδεικτικά αναφέρεται ότι η υπέρμετρη αντιγραφή (re-replication) του γενετικού υλικού ύστερα από αποσιώπηση της Geminin παρατηρείται μόνο απουσία ενεργού p53 (Vaziri et al., 2003), ενώ έχει δειχθεί ότι το p53 περιορίζει και την επαναντιγραφή του DNA που έχει προκληθεί μη ελεγχόμενη δράση του Cdt1 (Li and Blow, 2005). Επιπλέον η δράση μονοπατιών όπως των ATM/Chk2 και ATR/Chk1 που αναστέλλουν την πρόοδο του κυτταρικού κύκλου σε περίπτωση γενομηγείας μπλαβών έχει δειχθεί ότι ενεργοποιούνται ύστερα από την αποσιώπηση της Geminin (Lin and Dutta, 2007). Είναι λοιπόν πιθανό ότι ο εκτεταμένος υπερδιαπλασιασμός (rereplication) του γονιδίωματος περιορίζεται στην περίπτωση των T λεμφοκυττάρων από τα οποία απουσιάζει η Geminin, από μονοπάτια επιδιόρθωσης βλαβών του γενετικού υλικού που εξασφαλίζουν τη διατήρηση της γενομηγής σταθερότητας.

Επιπλέον ένα ανεξέχομενο ποσοστό των ενεργοποιημένων Τ κυττάρων από τα οποία απουσιάζει η Geminin εξέρχονται του ενεργού κυτταρικού πολλαπλασιασμού όπως δείχθηκε από την καταμέτρηση των Ki67+ κυττάρων. Ένα ενδεχόμενο είναι ότι τα περιφερικά Τ κύτταρα απουσία της Geminin αναπτύσσουν φαινότυπο κυτταρικής γήρανσης ή αποπίπτων τους στα κύτταρα τα οποία έχουν αναπτύξει.
Εικόνα 7.2: Διαδικασίες οι οποίες εξαρτώνται ή είναι ανεξάρτητες από την Geminin κατά την ανάπτυξη και διαφοροποίηση των Τ κυττάρων (Karamitros et al., 2011).
φαινότυπο γήρανσης δεν ανταποκρίνονται σε μιτογονικά σήματα και παρουσιάζουν μη αντιστρεπτή έξοδο από τον κυτταρικό κύκλο με ταυτόχρονη υψηλή εκφραση αναιμοποιητών του κυτταρικού κύκλου (Campisi and d'Adda di Fagagna, 2007). Έχει δειχθεί ότι Τ κύτταρα με φαινότυπο γήρανσης παρουσιάζονται σε άτομα προσβεβλημένα από HIV και σχετίζονται με μειωμένη απόκριση σε αντικυττηρικές θεραπείες και παθολογίες σχετιζόμενες με την ηλικία (Effros et al., 2005). Περαιτέρω έρευνες των περιφερικών Τ κυττάρων των μυών από τα οποία απουσίαζε η Geminin κρίνονται απαραίτητες για την κατανόηση της πιθανής εμπλοκής της Geminin στην ανάπτυξη Τ κυττάρων με φαινότυπο γήρανσης και την πιθανή εμπλοκή της στην ανάπτυξη παθολογιών του αυξητικοποιητικού σχετιζόμενων με την ηλικία (Εικόνα 7.2).

7.5. Η απενεργοποίηση της Geminin στο αυξητικοποιητικό σύστημα προκαλεί πρόωρο εμβρυϊκό θάνατο

Τα υψηλά επίπεδα έκφρασης της πρωτεΐνης στα βλαστικά και προγονικά κύτταρα του αυξητικοποιητικού πρότειναν τον ουσιαστικό ρόλο της πρωτεΐνης κατά την ανάπτυξη του αυξητικοποιητικού συστήματος. Για την μελέτη του ρόλου της Geminin κατά την απενεργοποίηση δημιουργήθηκαν μύες στους οποίους η Geminin απενεργοποιήθηκε στα εμβρυϊκά βλαστικά κύτταρα του αυξητικοποιητικού με την χρήση του διαγωνιδίου VanCre. Η έκφραση της Cre υπό τον έλεγχο των ρυθμιστικών στοιχείων του γονιδίου Van αρχίζει από την 12η εμβρυϊκή ημέρα και κατανέμεται ειδικά στα βλαστικά κύτταρα του αυξητικοποιητικού και στους απογόνους τους (de Boer et al., 2003). Η εξέταση των απογόνων από τις διασπαρόκες FL/FL με WT/KOvanCre μύες έδειξε ότι δεν προκύπτουν ζωντανοί FL/koVanCre από αυτούς. Παρατήρηση η οποία προέκυψε από την θνησιμότητα των προηγούμενων μυών κατά το εμβρυϊκό στάδιο. Η μορφολογική εξετάση εμβρύων από την προηγούμενη διασπαρόκες απέδειξε ότι η απολυτική του γονιδίου εμβρύου προκαλεί πρόωρο εμβρυϊκό θάνατο περίπου κατά την 17η εμβρυϊκή ημέρα. Τα FL/koVanCre έμβρυα της 15ης εμβρυϊκής ημέρας παρουσίαζαν σημαντικά μειωμένο μέγεθος εμβρυϊκού ήπατος το οποίο είναι το κυρίως αυξητικοποιητικό όργανο σε αυτό το στάδιο, ενώ ήταν αναμενόμενο σε σχέση με τα έμβρυα μάρτυρες του ίδιου σταδίου. Παρόμοιος φαινότυπος έχει παρουσιαστεί σε έμβρυα μυών άστερα από την γενετική απενεργοποίηση των GATA-1, GATA-2 και Scl/Tal μεταγραφικών παραγόντων της μετάλλαξη του Brg1 γονιδίου, όπου παρατηρήθηκε αναπηρία των εμβρύων του μυών, διαταραχές της ευθροποίησης και εμβρυϊκού θάνατος στα σπάδια από την 10η μέχρι την 15η εμβρυϊκή ημέρα (Bultman et al., 2005; Ling et al., 2004; Ogilvy et al., 2007; Shimizu et al., 2007).

7.6 Απουσία της Geminin παρατηρούνται διαταραχές στην ευθροποίηση, μυελοποίηση και λεμφοποίηση

Εξετάσαμε πιο συγκεκριμένα, ποιοι κυτταρικοί τύποι επηρεάστηκαν από την απουσία της Geminin και σε ποιο βαθμό. Η απενεργοποίηση της Geminin στο αυξητικοποιητικό σύστημα επηρεάσει πιο σημαντικά
την παραγωγή ερυθροκυττάρων. Απουσία της Geminin παρατηρήθηκε μεγάλη μείωση των Ter119+ πρόδρομων ερυθροκυττάρων εύρημα το οποίο εξηγεί την αναιμία των Fl/koVavCre εμβρύων και προτείνει ότι η Geminin είναι απαραίτητης παράγοντας της ερυθροποίησης. Η ερυθροποίηση στο έμβρυο του μο γράφει σε ποιά πρόμα στάδια κατά την 7η ημέρα στον αμυντικό σάκο και έχει βρεθεί ότι τα κύτταρα αυτά έχουν μεσοδερμική προέλευση και αποτελούν εξαφανίστη κυτταρική σειρά από τα κύτταρα που παράγονται στο εμβρυονικό ήπαρ σε μετέπειτα στάδια (Palis et al., 2010). Η διαφοροποίηση και εξειδίκευση τους στηρίζεται σε μεγάλο βαθμό στην δράση των μεταγραφικών παραγόντων GATA1, GATA2 και Scl. Τα οποία εμπλέκονται και στην εξειδίκευση των βιαστικών και προγονικών κυττάρων του εμβρυονικού ήπατος προς τα ερυθροκύτταρα (Kim and Bresnick, 2007). Τα ευρήματα μας προτείνουν ότι η Geminin εμπλέκεται στην ρύθμιση της ερυθροποίησης και θα ήταν ενδιαφέρον να εξεταστεί περαιτέρω εάν επηρεάζει την πρώιμη ερυθροποίηση στον αμυντικό σάκο κατά την 7η ημέρα, εάν συμμετέχει στην εξειδίκευση των μεσοδερμικών κυττάρων προς τα ερυθροκύτταρα καθώς επίσης και ποιοι είναι οι πιθανοί μεταγραφικοί παράγοντες που αλληλεπιδρούν με τη Geminin σε όλα τα στάδια της ερυθροποίησης.

Η απαλοιφή της Geminin στα βιαστικά κύτταρα του αμυντικού επηρεάσει σε αρκετά σημαντικό βαθμό και την μυελοποίηση στο εμβρυονικό ήπαρ. Πιο συγκεκριμένα παρατηρήθηκε περίπου 85% μείωση στα GR1+ και CD11b+ κύτταρα και μικρότερη μείωση στα Cd11c+ κύτταρα στο εμβρυονικό ήπαρ των Fl/koVavCre μυών σε σχέση με τους μύες μάρτυρες. Τα προγονικά κύτταρα των μελοκυττάρων είναι γνωστά ότι διέρχονται από συγκεκριμένα στάδια διαφοροποίησης για να παράγουν όριμα συνδέσμους, ημικύτταρα, βατικά και μακροφάγα. Η διάδοση συμμετέχει στην εξειδίκευση των μελοκυττάρων περιλαμβάνει την έξοδο από τον κυτταρικό κύκλο και την διακοπή των κυτταρικών διαφορετικών (Friedman, 2002; Rosmarin et al., 2005). Η διαφοροποίηση των προγονικών μελοκυττάρων προς όριμα μυελοκύτταρα στηρίζεται στην αυστηρή ρύθμιση του κυτταρικού κόμβου και την δράση ενός πολύπλοκου δικτύου μεταγραφικών παραγόντων συμπεριλαμβανομένων των C/EBPα, C/EBPβ, PU.1, CBF, Sp1 και HOXA10 (Rosmarin et al., 2005). Οι δραματικές μείωσες των GR1+ και Mac1+ κυττάρων απουσία της Geminin στο εμβρυονικό ήπαρ προτείνουν ότι η Geminin είναι απαραίτητη για την μυελοποίηση στο εμβρυονικό ήπαρ και δεν έχουν περιγραφεί μέχρι σήμερα αλληλεπιδράσεις της Geminin με τους μυελοειδικούς μεταγραφικούς παράγοντες. Είναι πιο πιθανόν ωστόσο ότι ο ρυθμιστικός ρόλος της Geminin έγκειται στην εξειδίκευση και διαφοροποίηση των μελοκυττάρων στο στάδιο όπου απαιτείται η δράση των μυελοειδικών μεταγραφικών παραγόντων και πριν από την έξοδο από τον κυτταρικό κόμβο και τελική διαφοροποίηση των μελοκυττάρων.

Επίσης παρατηρήθηκε σημαντική μείωση στα προγονικά Β κύτταρα (B220+) στο εμβρυονικό ήπαρ των εμβρύων από τα οποία είχε απενεργοποιηθεί η Geminin. Οι σημαντικές μείωσες που παρατηρήθηκαν στα προγονικά Β κύτταρα σε συνδυασμό με την φυσιολογική διαφοροποίηση των Β κύτταρων ύστερα από την απενεργοποίηση της Geminin με τη χρήση της CD2Cre υποστηρίζουν ότι ο απαραίτητος ρόλος της Geminin στην ρύθμιση της εξειδίκευσης στα Β λευκοκύτταρα παρατηρείται στα πρώτα στάδια
δέσμευσης προς την Β κυτταρική σειρά. Εναλλακτικά η μείωση αυτή μπορεί να συνδέεται με έναν γενικότερο ρόλο της Geminin στη ρύθμιση της διαφοροποίησης των προγονικών λεμφοκυττάρων. Για να αποσαφηνιστεί η ακρίβης λειτουργία της προτείνεται στη ρύθμιση της δέσμευσης των προγονικών κυττάρων του αμιποτικού προς την λεμφοειδή σειρά κρίνεται απαραίτητη η μελέτη της ανάπτυξης των Τ λεμφοκυττάρων στον εμβρύο θύμων. Έχει υποστηθεί ότι τα προγονικά λεμφοκύτταρα του εμβρύου ήπατος έχουν κοινή προέλευση και η απόφαση τους για διαφοροποίηση σε Β ή Τ κύτταρα συμβάλλει κατά τη μετανάστευσή τους στο μυελό των οστών και θύμο αντίστοιχα. Η διερεύνηση της ανάπτυξης των Τ κυττάρων στο θύμο Fl/koCD2Cre μυών πρότεινε ότι η Geminin δεν είναι απαραίτητη για την διαφοροποίηση των προγονικών θυμοκυττάρων του ενηλίκου μυός. Η μελέτη της ανάπτυξης των εμβρυικών θυμοκυττάρων αποσπία της Geminin μπορεί να προσφέρει καλύτερη κατανόηση των αποφάσεων κυτταρικής μοίρας των λεμφοκυττάρων στο έμβρυο του μυός. Επιπλέον θα συντελέσει στην συνολική περιγραφή του ρόλου της Geminin σε όλα τα στάδια κατά την παραγωγή λεμφοκυττάρων και θα αποσαφηνίσει γιατί η Geminin είναι απαραίτητη για την διαφοροποίηση των λεμφοκυττάρων στο εμβρύο ήπαρ και όχι στον ενηλίκο θύμο και μυελό των οστών.

7.7. Η ρύθμιση της αυτοανανέωσης των βλαστικών και πρόδρομων κυττάρων του αμιποτικού από την Geminin

Προηγούμενες μελέτες σε διάφορα βιολογικά συστήματα έχουν προτείνει ρυθμιστικούς ρόλους της Geminin κατά την αυτό-ανανέωση και διαφοροποίηση των εμβρυικών και νευρικών βλαστικών κυττάρων. Έχει δειχθεί ότι η Geminin εμπλέκεται στην διατήρηση της πολυδονυμαίας των εμβρυικών βλαστικών κυττάρων του μυός αφού η γενετική απαλοιφή της έχει ως αποτέλεσμα την προώθηση διαφοροποίησης των κυττάρων προς τροφοβλάστες και οδηγεί σε πρόωρο εμβρύκιο θάνατο (Gonzalez et al., 2006). Επιπλέον η αποσπώμενη της Geminin μέσω siRNA παρεμπόδισε τα εμβρυικά βλαστικά κύτταρα να διαφοροποιηθούν προς νευρικά κύτταρα λόγω της αναστολής της μεταφρασικής απαραίτητης για την διαφοροποίηση γονιδίων (Yellajoshyula et al., 2011). Οι προηγούμενες μελέτες έχουν προτείνει πιθανούς μηχανισμούς μέσω των οποίων η Geminin εμπλέκεται στην ρύθμιση της αυτό-ανανέωσης και εγκαθίδρυσης μεταγραφικών προγραμμάτων που έχουν ως αποτέλεσμα της διαφοροποίησης των βλαστικών και προγονικών κυττάρων.

Τα βλαστικά κύτταρα του αμιποτικού χαρακτηρίζονται από την έκφραση των Sca1 και c-kit αντιγόνων επιφανείας (Lin-c-Kit^{high}Sca-1⁺ LSK) ενώ o Lin-c-kit^{high}sca-1 (LK, προγονικά κύτταρα του αμιποτικού) κυτταρικός πληθυσμός αποτελείται από ερυθροειδή και μυελοειδή προγονικά κύτταρα (Kondo et al., 2003). Η ανάλυση των αμιποτικών κυττάρων του εμβρυικού ήπατος των Fl/koVavCre εμβρύων μέσω κυτταρομετρίας ροής και χρήση μονοκληνικών αντισωμάτων έναντι Lineage, c-kit και sca-1 μαρτύρων, αποκάλυψε την ύπαρξη ενός ιδιότυπου πληθυσμού LSK κυττάρων με χαμηλότερα

Η παρατηρούμενη αύξηση του αριθμού των LSK κυττάρων του αιμοποιητικού σε συνδυασμό με την σημαντική μείωση του αριθμού των ΛΚ και το ιδιότυπο προφίλ έκφρασης του c-kit στα κύτταρα αυτά προτείνει διαταραχές του κυταρικού πολλαπλασιασμού και λειτουργικά ανωμαλίες των κυττάρων αυτών. Για τον λόγο αυτό εξετάσαμε αρχικά τον πολλαπλασιασμό των βλαστικών και προγονικών κυττάρων του αιμοποιητικού από τα οποία είχε απενεργοποιηθεί η Geminin και πιο συγκεκριμένα το ρυθμό ενσωμάτωσης BrdU σε σχέση με τα αντίστοιχα κύτταρα μάρτυρες. Εφόσον δεν παρατηρήθηκε σημαντική διαφορά στην ενσωμάτωση BrdU μεταξύ των LSK κυττάρων του αιμοποιητικού εμβρύων από τα οποία είχε απενεργοποιηθεί η Geminin και των αντίστοιχων κυττάρων των εμβρύων μπόρεσε να πιστάνει ότι ο ανωμαλούς αριθμός των βλαστικών κυττάρων του αιμοποιητικού στο ήπαρ των Fl/koVavCre εμβρύων οφείλεται στην συσσώρευση αυτών των κυττάρων λόγω ανωμαλών κατά την διαφοροποίησή τους.

Η απαλυφή της Geminin αντιθέτα επηρεάζει πολύ πιο σημαντικά τα προγονικά κύτταρα του αιμοποιητικού. Απουσία της Geminin, τα προγονικά κύτταρα του αιμοποιητικού παρουσιάζουν πολύ μειωμένο κυταρικό πολλαπλασιασμό όπως δείχθηκε από το σημαντικό μειωμένο ποσοστό ενσωμάτωσης BrdU των Lin[−]ckit^{hi}sca1[−] κυττάρων από έμβρυα Fl/koVavCre σε σχέση με τα αντίστοιχα κύτταρα από έμβρυα αγριού τύπου. Επιπλέον περάματα παραγωγής αποικιών έδειξαν ότι τα προγονικά κύτταρα του αιμοποιητικού δεν είναι ικανά να παράγουν αποικίες in vitro σε συνθήκες που ενδούν τον πολλαπλασιασμό και ανάπτυξη των CFU-GM (colony froming unit granulocyte monocyte) ή CFU-GEMM (colony forming unit granulocyte erythroid monocyte megakaryocyte) ή BFU-E (burst forming unit erythroid). Τα προηγούμενα αποτελέσματα επιβεβαιώνουν τον μειωμένο κυταρικό πολλαπλασιασμό των προγονικών κυττάρων του αιμοποιητικού.
Πως μπορεί να εξηγηθεί ότι η απαλοιφή της Geminin επηρεάζει σημαντικά τις διαιρέσεις των προγονικών κυττάρων του αιμοποιητικού ενώ δεν επηρέαζε σημαντικά στην αυτό-ανανέωση των βλαστικών κυττάρων του αιμοποιητικού; Έχει δειχθεί ότι τα βλαστικά κύτταρα του αιμοποιητικού από το εμβρυο κήπο μικόν της 14th εμβρυονωτής ημέρας παρουσιάζουν πολύ εκτεταμένο κυτταρικό κύκλο σε σχέση με τα προγονικά κύτταρα του αιμοποιητικού. Πιο συγκεκριμένα η διάρκεια του κυτταρικού κύκλου των βλαστικών κυττάρων του αιμοποιητικού είναι διπλάσια (10.6h) από την αντίστοιχη των προγονικών κυττάρων και οφείλεται στην μεγαλύτερη χρονική διάρκεια που βρίσκονται στην G0 και στην εκτεταμένη διάρκεια της G1 φάσης (Ngren et al., 2006). Σε αντίθεση τα προγονικά κύτταρα του αιμοποιητικού διαιρούνται πολύ πιο συχνά με συνέπεια να παρουσιάζουν πολύ μικρότερη διάρκεια του κυτταρικού κύκλου και πολύ συντομότερη χρονική φάση G1. Η διάρκεια του κυτταρικού κύκλου συνδέεται άμεσα με την διαδικασία αντιγραφής του DNA. Η αδιαιρότητη της αντιγραφής λαμβάνει χώρα κατά την G1 φάση με την συγκρότηση του προ-αντιγραφικού συμπλόκου και το φόρτομα των MCMs στην χροματίνη. Οι γρήγορες κυτταρικές διαιρέσεις απαιτούν ένα αντιδεδομένο της αντιγραφής να γίνει σε μικρότερο χρονικό διάστημα λόγω της μικρότερης διάρκειας της G1 φάσης. Τα ταχέως διαιρούμενα κύτταρα μπορεί να είναι αναγκαία να εαντιδιαδοθούν περισσότερα σημεία έναρξης της αντιγραφής. Είναι δυνατόν λοιπόν ότι η Geminin γίνεται περισσότερο αναγκαία για την ρύθμιση της αντιγραφής του DNA σε κύτταρα με εντονότερο ρυθμό πολλαπλασιασμού, όπως τα προγονικά κύτταρα του αιμοποιητικού.

Μια διαφορετική ερμηνεία των αποτελεσμάτων που παρατηρήσαμε στηρίζεται από την υπόθεση ότι η Geminin δεν επηρεάζει τον ρυθμό αυτό-ανανέωσης των βλαστικών κυττάρων του αιμοποιητικού αλλά την απόφαση τους για την διεξαγωγή συμμετρικών έναντι ασύμμετρων διαιρέσεων. Η υπόθεση αυτή υποστηρίζεται από μια πρόσφατη μελέτη του εργαστηρίου μας η οποία έδειξε ότι απουσία της Geminin ο αριθμός των νέων νευρόνων των πρώην σταδίων της φλοικής νευρογένεσης είναι σημαντικά μειωμένος λόγω της προτίμησης των προγονικών κυττάρων για την διεξαγωγή συμμετρικών διαιρέσεων απουσία της Geminin (Spella et al., 2011).

7.8. Ανώμαλη διαφοροποίηση των βλαστικών κυττάρων του αιμοποιητικού απουσία της Geminin

Στο σύνολο τους τα προηγούμενα αποτελέσματα προτείνουν ότι ο καίριος ρόλος της Geminin κατά την εμβρυονική αμφισβήτηση έγκειται στην ρύθμιση της διαφοροποίησης κατά την μετάβαση από τα βλαστικά κύτταρα του αιμοποιητικού προς τα προγονικά κύτταρα του αιμοποιητικού. Πρόσφατες μελέτες έχουν αναγνωρίσει μοριακούς μηχανισμούς μέσω των οποίων η Geminin ρυθμίζει τη διαφοροποίηση βλαστικών και προγονικών κυττάρων. Έχει δειχθεί ότι η Geminin ανταγωνίζεται τη δράση του Brg1 στα εμβρυονικά βλαστικά κύτταρα για να διατηρήσει το ολόδυνομο δυναμικό διαφοροποίησης τους ενώ οι ανταγωνιστικές αλληλεπιδράσεις της Geminin με το Brg1 ελέγχουν την διαφοροποίηση των προγονικών κυττάρων του νευρικού (Seo et al., 2005; Yang et al., 2011). Η απαλοιφή του γονίδιου Brg1 με τη χρήση
της Tie2-Cre έχει ως αποτέλεσμα τον πρόορο εμβρυοκτόνο θάνατο, λόγω σοβαρών ανωμαλιών στην ερυθροποίηση (Griffin et al., 2008). Οι ομοιότητες που παρατηρήθηκαν μεταξύ του φαινοτύπου ύστερα από την απαλοιφή του Brg1 ή ύστερα από απαλοιφή της Geminin στο αιμοποιητικό σύστημα υποστηρίζουν την υπόθεση ότι αλληλεπιδράσεις μεταξύ των δυο πρωτεϊνών μπορεί να καθορίζουν την διαφοροποίηση των βλαστικών και προγονικών κυττάρων του αιμοποιητικού προς τα ερυθροκύτταρα.

Επίσης έχει εγκαθιστηθεί από την βιβλιογραφία ότι η παροδική αλληλεπίδραση της Geminin με το σύμπλοκο Polycomb ή απευθείας αλληλεπιδράσεις της Geminin με Hox ελέγχουν την αποσίωπηση γονιδίων στόχων των Hox πρωτεϊνών (Luo et al., 2004). Επιπρόσθετα μια μελέτη στο έμβρυο του Xenopus πρότεινε ότι η Geminin περιορίζει την έκφραση γονιδίων που καθορίζουν το μεσόδερμα πιθανά μέσω της αλληλεπιδράσεώς της με το Polycomb (Lim et al., 2011). Παρόμοιοι μηχανισμοί και αλληλεπιδράσεις της Geminin είναι πιθανό ότι ρυθμίζουν την διαφοροποίηση των βλαστικών κυττάρων του αιμοποιητικού. Είναι γνωστό από πολλές μελέτες της τελευταίας δεκαετίας ότι τα ομοιοτικά γονίδια διαδραματίζουν καιρίο ρόλο στην ρύθμιση της διαφοροποίησης των αιμοποιητικών βλαστικών κυττάρων (Abramovich et al., 2005). Για παράδειγμα, η υπερέκφραση των γονιδίων HoxA5 και HoxB6 έχει δειχθεί ότι εμποδίζει την ερυθροποίηση και επάγει υπέρμετρο πολλαπλασιασμό των μυελοκυττάρων (Crooks et al., 1999; Fischbach et al., 2005). Επιπλέον, η υπερέκφραση του HoxA9 παρεμποδίζει την μελετοποίηση ενώ ή υπερέκφραση του HoxA10 εμποδίζει την παραγωγή μεγακάρυοκυττάρων και ερυθροκυττάρων (Thorsteinsdottir et al., 2002). Η απώλεια της Geminin είναι δυνατόν ότι απορρυθμίζει την έκφραση των Hox γονιδίων με έναν μηχανισμό συνδεδεμένο με το Polycomb και επομένως μια τέτοια απορρύθμιση θα μπορούσε να εξηγήσει τις παρατηρούμενες ανωμαλίες στην διαφοροποίηση των βλαστικών κυττάρων του αιμοποιητικού από τα οποία αποσιώπησε η Geminin. Η μελέτη της έκφρασης συγκεκριμένων Hox γονιδίων σε βλαστικά αλλά και προγονικά κύτταρα του αιμοποιητικού από αυτά τα οποία αποσιώπησε η Geminin θα μπορούσε να επιβεβαιώσει την προηγούμενη υπόθεση και να προσφέρει καλύτερη κατανόηση του ρόλου των Geminin και Polycomb στην ρύθμιση της μεταγραφής γονιδιακών στόχων όπως οι Hox και στον έλεγχο της κυτταρικής διαφοροποίησης των βλαστικών κυττάρων του αιμοποιητικού.

Συνεπώς η διερεύνηση και η κατανόηση των βασικών μοριακών αλληλεπιδράσεων και συνεργατών της Geminin στην ρύθμιση της διαφοροποίησης κατά την μετάβαση από τα βλαστικά προς τα προγονικά κύτταρα του αιμοποιητικού είναι ένας από τους βασικούς μελλοντικούς στόχους μας.

7.9. Τα βλαστικά κύτταρα του αιμοποιητικού από τα οποία αποσιώπαζε η Geminin είναι ικανά για μακρά διάρκειας ανασύσταση του αιμοποιητικού ακτινοβολημένων μυών.

Η λειτουργία των βλαστικών κυττάρων του αιμοποιητικού έγινει στην ικανότητά τους να παράγουν διαφοροποιημένα κύτταρα του αιμοποιητικού για όλη την διάρκεια της ζωής ενός οργανισμού. Για να διερευνήσουμε εάν η γενετική απαλοιφή της Geminin επηρεάζει την βασική λειτουργία των
βλαστικών κυττάρων του αιμοποιητικού in vivo, πραγματοποιήθηκαν πειράματα κατά τα οποία έγινε ανταγωνιστική μεταμόσχευση εμβρυϊκών πρατηκτών κυττάρων από Fl/koVavCre και αγρίου τύπου μύους. Τα πειράματα έδειξαν ότι τα βλαστικά κύτταρα του αιμοποιητικού από τα οποία αποσπάζει η Geminin παρήγαγαν διαφοροποιημένα κύτταρα του αιμοποιητικού εώς και 3 μήνες μετά την μεταφορά τους στους ακτινοβολημένους μύους ξενιστές. Επιπλέον, απαντήθηκε ότι τα βλαστικά κύτταρα του αιμοποιητικού από τα οποία αποσπάζει η Geminin κατάφεραν να συναγερμόστοιστοι επαρκώς τα βλαστικά κύτταρα του αιμοποιητικού από ζώα μάρτυρες. Η πειραματική αυτή παρατήρηση έρχεται φαινομενικά σε αντίθεση με τον φαινότυπο των Fl/koVavCre εμβρύων όπου παρατηρήθηκαν μεγάλες ανωμαλίες στην διαφοροποίηση των βλαστικών κυττάρων του αιμοποιητικού προς τα προγονικά κύτταρα αποσπασμάτως της Geminin. Οι παρατηρούμενες διαφορές μεταξύ των in vivo φαινοτύπων κατά την αιμοποίηση στο εμβρύιο ήπαινε αποσπασμάτως της Geminin και της ανασύστασης του αιμοποιητικού συστήματος ύστερα από την μεταφορά ηπατοκυττάρων από Fl/koVavCre και ζώα μάρτυρες, μπορεί να εξηγηθεί από ανωμαλίες κατά την αλληλεπίδραση των βλαστικών κυττάρων του αιμοποιητικού και των κυττάρων του στρώματος του εμβρυϊκού ήπατος, ανωμαλίες άνωματα κάπως κυτταροκινούν ή από ανωμαλίες κατά την μετανάστευση των βλαστικών κυττάρων του αιμοποιητικού στα Fl/koVavCre εμβρύα. Η διατήρηση των εμβρυϊκών βλαστικών κυττάρων του αιμοποιητικού στηρίζεται στις αλληλεπιδράσεις τους με την εξωκυττάρια μήτρα των μικρών αγγείων του εμβρυϊκού ήπατος ενώ η μετανάστευσή τους προς τον μελών των οστών και τον σπλήνα και η επακόλουθη διαφοροποίησή τους καθοδηγείται από παράγοντες όπως ο SDF-1a και ο SCF (Glass et al., 2011; Ji et al., 2009). Αποσπασμάτως της Geminin η αρχικοτονική του εμβρύϊκου ήπατος αλλοιώνεται αρχό πολλοί κυτταρικοί τύποι του αιμοποιητικού δεν παράγονται και είναι πιθανό να παρατηρούνται και αλλοιώσεις στην έκκριση κυτταροκινούν, Ως εκ τούτου το αλλοιωμένο μικροπεριβάλλον του ήπατος των Fl/koVAVCre εμβρύων μπορεί να συνδράμει στην παρατηρούμενη ανωμαλία διαφοροποίησης των βλαστικών κυττάρων του αιμοποιητικού. Εντός του μεταμορφώμενου βλαστικού κύτταρο του αιμοποιητικού από τα οποία αποσπάζει η Geminin μεταμορφώνονται σε ακτινοβολημένους μύους, ο παρατηρούμενος φαινότυπος της ελαττωματικής διαφοροποίησης τους αναστρέφεται μερικώς, το οποίο υποδεικνύει ότι το μικροπεριβάλλον του μύου δέκτη συμβάλλει στην αναστροφή της ανώμαλης διαφοροποίησης.

Ωστόσο, οι μεταμορφώμενες βλαστικές κύτταρες του αιμοποιητικού από τα οποία αποσπάζει η Geminin παρουσιάζουν ελαττωματική διαφοροποίηση προς τα μικροκύτταρα ενώ παράγουν ελαφρός αυξήμενα ποσοστά B και T κυττάρων σε σχέση με τα αντίστοιχα κύτταρα αγρίου τύπου. Είναι ενδιαφέρον ότι η ανταγωνιστική μεταμόσχευση C/EBPα−/− και αγρίου τύπου βλαστικών κυττάρων του αιμοποιητικού (HSCs) σε ακτινοβολημένους μύους, είναι πιθανό να καταλαμβάνει την κανονική παραγωγή B και T κυττάρων από T C/EBPα−/− HSCs ήταν την αδυνατία διαφοροποίησης τους σε μικροκύτταρα στα ζώα δέκτες (Zhang et al., 2004). Ο φαινότυπος αυτός είναι πολύ παράγοντας με τα πειράματα μεταμόσχευσης των Geminin−/− HSCs και μπορεί να προτείνει την λειτουργική αλληλεπίδραση των δυο πρωτεινών κατά
Συζήτηση

Εικόνα 7.3: Το προτεινόμενο μοντέλο για το ρόλο της Geminin κατά την εμβρυνική αιμοποίηση. Α. Όλα τα διαφοροποιημένα κύτταρα του αιμοποιητικού συστήματος προέρχονται από βλαστικά κύτταρα του αιμοποιητικού (HSC) τα οποία διατηρούν την ικανότητα τους για αυτό-ανανέωση ενώ παράγουν προγονικά κύτταρα του αιμοποιητικού (HPC) με περιορισμένο δυναμικό διαφοροποίησης. Τα HPC δεσμεύονται προς διαφοροποίηση μέσω της εγκαθίδρυσης των κατάλληλων μεταγραφικών προγραμμάτων. Β. Η απενεργοποίηση της Geminin στα HSC έχει ως αποτέλεσμα σημαντικές ανομαλίες στην παραγωγή όριμων ερυθροκυττάρων, μυελοκυττάρων και λεµφοκυττάρων. Απουσία της Geminin επίσης παρατηρείται σε επιπλέον πολλαπλασιασμό και ικανότητα διαφοροποίησης.

Συμπεράσματα τα αποτελέσματα μας προτείνουν ότι η Geminin είναι ένας απαραίτητος ρυθμιστής της διαφοροποίησης των βλαστικών κυττάρων του αιμοποιητικού (Εικόνα 7.3). Τα έως τώρα δεδομένα δείχνουν ότι η Geminin κατά την εμβρυνική αιμοποίηση επιτελείται κατά την μετάβαση από τα βλαστικά προς τα προγονικά κύτταρα του αιμοποιητικού ενώ η Geminin είναι απαραίτητη για την παραγωγή και πολλαπλασιασμό των προγονικών κυττάρων του αιμοποιητικού. Η μελλοντική αναγνώριση τού τού τού γενετικών αλληλεπιδράσεων της Geminin με άλλους ρυθμιστές του κυτταρικού κύκλου, της χρωματικής δομής και μεταγραφικών προγραμμάτων που έρχονται στα εμβρυνικά βλαστικά και προγονικά κύτταρα της μυώος μετρά την καλύτερη περιγραφή και κατανόηση του ρόλου της κατά την αιμοποίηση.

growth of hematopoietic cells through accumulation of p21(WAF1) and p27(Kip1) proteins. Blood 100, 3512-3520.

Piatti, S., Lengauer, C., and Nasmyth, K. (1995). Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a 'reductional' anaphase in the budding yeast Saccharomyces cerevisiae. The EMBO journal 14, 3788-3799.

170

Βιβλιογραφία

Βιβλία:

Κλινική Ανοσοβιολογία, Janeway, Travers, 2ο Έκδοση, ΙατρικέςΕκδόσεις Πασχαλίδη, 1999

Molecular Cloning: A laboratory Manual (3 volume set), Maniatis, Sambrook, Fritch, 1989

Διδακτορικές Διατριβές:

«Δημιουργία χώρων μοντέλων για τη διερεύνηση του in vivo ρόλου της Geminin: Αδρανοποίηση του γονιδίου σε μύες με τη χρήση ολοδύναμων εμβρυονικών κυττάρων (knockout) και ιστοειδική υπερέκφραση σε διαγονιδιακούς μύες», Πανυποτέχνη Καταντάκτη, 2010

«Μελέτη του ρόλου της Geminin στην δημιουργία και διαφοροποίηση των πολυδύναμων κυττάρων του εγκεφαλικού φλοιού», Σπέλλα Μάγδα, 2010

172
Δημοσιεύσεις

Οι παρακάτω σχετικές με την παρούσα διδακτορική διατριβή δημοσιεύσεις προέκυψαν:

