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Abstract—This thesis deals with the problem of resolution
enhancement (super resolution) of thermal images using com-
pressed sensing methods. We solve the super resolution problem
in four stages. First, we seek a sparse representation of a
low-resolution image with respect to two statistically-learned
overcomplete dictionaries (for high and low resolution images
respectively) and then we use the coefficients of this representa-
tion to calculate the high resolution image. Then, we calculate
the high resolution image using methods requiring multiple low
resolution images aligned with subpixel accuracy (conventional
approach). We compare the results of each method using
broadly acclaimed metrics regarding reconstruction quality
standards.

Index Terms—super resolution, compressed sensing, thermal
imaging, sparse representations

I. INTRODUCTION
Nowadays, lots of applications require high resolution

(HR) images, since higher resolution means more detail
is included in an image. Resolution describes the level of
details contained in an image and can be a critical feature of
thermal images, as it enables us to locate energy losses of
buildings or identify tactical targets in the darkest of nights.
Thermal images are captured using special equipment that
senses the infrared range (9−14µm) of the electromagnetic
spectrum. They can be used in many applications such as
UAV surveillance for automatic target detection, rescuing op-
erations for locating people in danger in low-light conditions
and building diagnostics for detection of energy losses and
leakage.
Thermal cameras may be quite similar to optical cameras,

however they do have significant differences in the way their
sensors are built and their lenses act as natural polarization
filters, allowing the sensors to capture the emitted thermal
radiation. The materials used in manufacturing of thermal
sensors do not allow integration on a very large scale
(resulting in a small chip) while giving high resolution. This
concept may be common with CCD and CMOS sensors
but here, instead of silicon, we use elements such as InSb,
InGaAs, HgCdTe which have the ability to respond to longer
wavelengths. A common resolution for a thermal camera
may be around 320× 240 pixels, while cameras offering
slightly higher resolution have a dramatically higher cost.
The aforementioned resolution is not at all adequate for
today’s applications (some of them requiring ultra high
definition (4K) images) and is significantly lower than the

1Epameinondas Rontogiannis is currently studying at Dept. of Electrical
and Computer Engineering at University of Patras. He is with the lab-
oratory of Digital Signal and Image Processing and his main academic
interests include applications of sparse representations on signal processing,
image processing and real-time signal processing. e-mail: eparon at
outlook.com

average resolution offered by cell phone cameras manufac-
tured in the previous decade.
The concept of resolution enhancement is not something

new and is used in many cases when it is naturally impossible
to achieve better resolution through the available hardware.
Higher resolution images are estimated from available low
resolution images by aligning the low res. images with
subpixel accuracy and then combining all the details they
contain. The first methods were published around 1990 and
since then they have multiplied and evolved significantly.
More information about such methods can be found in [1],
while we can distinguish 4 major approaches: single-frame
super resolution, multiple-frame super resolution, methods
operating on spatial domain, and methods operating on
frequency domain.
The first paper about super resolution methods was pub-

lished in 1984 by Tsai and Huang [7] and the proposed
method (operating on frequency domain) exploited aliasing
and the shifting property of continuous and discrete Fourier
transform. Later, this method was altered [8] in order to deal
with noise and blurring using recursive least squares (RLS)
algorithm.
The first method operating on spatial domain used an Iter-

ative Back-Projection algorithm [2]. More advanced methods
on this domain use stochastic models [3] and the theory of
Projection Onto Convex Sets (POCS) [4].
Whilst the field of super resolution methods on optical im-

ages has been thourougly researched on, there is surprisingly
little progress made on thermal image super resolution. Most
of the available methods follow the multiple frame approach
and two notable papers using this approach are [5] and [6].
Our proposed method for super resolution on thermal

images is motivated by recent work on optical images [9],
following the single-frame super resolution approach and
exploiting the theory of compressed sensing. A significant
advantage of this method, compared to conventional ones, is
that only one low resolution image is required to generate
the high resolution output. Compressed sensing methods
require significantly fewer samples than those defined by
the sampling theorem, known as Shannon-Nyquist. To make
signal reconstruction possible, we try to express a signal in
a base using a small number of coefficients. In this thesis
we use two overcomplete and coupled dictionaries as bases.
In the next section, we describe both the theoretical

background of compressed sensing and the shift-add fusion
method. In section III, we describe our proposed method for
super resolution on thermal images. Next,in section IV, we
evalutate the results generated by the two methods which
helps us conclude (section V) and discuss the effectiveness



of each method.
In the remainder of this thesis we use the following nota-

tion:X denotes a high resolution image and x its patches, Y
denotes a low resolution image and y its patches, Yi denotes
a low resolution image set, D denotes dictionaries used for
sparse representations, lowercase bold letters denote vectors,
uppercase bold letters denote arrays and plain lowercase
letters denote scalars.

II. OVERVIEW OF THE PROBLEM
In this section we present a reconstruction method called

shift-add fusion, generating a high resolution image using a
low resolution image set of the same scene. Next, we give
an introduction to the theory of compressed sensing, and
continue with the presentation of our proposed method in
section III.

A. Shift-add fusion method/Multiple-Image SR
Multiple-image super resolution methods generate a high

resolution image using a set of low resolution images of the
same scene.
When capturing images with camera, we assume that there

is usually motion (either due to camera motion or motion
of the subject) between any pair of the observation set and
the image is blurred in some way as it passes through the
lenses of the camera system. The final recorded images are
sampled at a relatively low spatial frequency and we also
assume the pressence of additive noise, corrupting the image
observation. The aforementioned observation model can be
summarized for each observation using three linear operators
and the addition of a noise term. Supposing that a high
resolution image X (which we are going to estimate) of the
scene exists, it is typical to model the low resolution image
set as:

Yi = SiTiHiX+ni (1)

where we define for the i-th low resolution image Yi the fol-
lowing operators applied on X : Si denotes undersampling,
Ti denotes the geometric transformation relative to the 1st
image of the set, Hi denotes the effect of blurring and ni
denotes the additive noise.
For this observation model, we make the following as-

sumptions:
• the effect of blurring is spatially-invariant across the
image plane and the blurring kernel is known to the
algorithm,

• the noise is white Gaussian with the same variance for
all images in the set,

• the geometric transformation of each image (also refered
to as motion estimates) is constained to global transla-
tion

When applying the shifts suggested by Ti to X , for each
pixel shift on the high resolution grid, we get a subpixel
shift on the low resolution grid. This is happening, as we
undersample the high resolution image. To make the concept
of subpixel shifts more clear, let us consider a random pixel
on the high resolution grid, (x,y). If we try to move 1 pixel

left on the high resolution grid, like (x+1,y), the observed
shift on the low resolution grid is divided by the factor of
downsampling, giving a subpixel shift of (x+ 1

S ,y).
The theoretical basis of super resolution is best explained

in the frequency domain [7], however there are lots of meth-
ods operating on the spatial domain, featuring significantly
lower computational complexity.
The concept of Shift-add fusion relies on a simple fact:

By knowing the motion estimates for a low resolution image
set, we are able to calculate the original location on the
high resolution grid for every pixel of every low resolution
image. Motion estimates are critical to this algorithm, as
the quality of the reconstructed image depends on their
accurate estimation. The estimation procedure can be either
algorithmic, using methods (e.g. RANCAC [23]) that are
able to detect and calculate such shifts, or we may know
them a priori.
Relying on the fact that Si of (1) is invertible, and by

knowing the motion estimates Ti, we know that the combined
operator SiTi maps every pixel of each low resolution image
to one (and only) specific location on the high resolution
grid. This allows us to calculate the high resolution image by
putting all pixels of low resolution images into their correct
locations on the high resolution grid. The aforementioned
procedure is demonstated on Algorithm 1, where we assume
the following: dx, dy to be the motion estimates for every
observation,W , H to be the dimensions of the high resolution
image, Yi to be the low resolution image set, N to be the
number of available low resolution images and S to be the
scaling operator. This version of the algorithm does not take
into consideration the presence of noise or blurring.

Data: dx, dy, Yi, N, W , H , S
Output: High resolution reconstructed X
X ← 0;
for n← 1 to N do

Ỹ ← Yi;
i← 1 : W/S;
j← 1 : H/S;
px= i∗S+dxn;
py = j ∗S+dyn;
Xpx,py = Ỹi, j;

end

Algorithm 1: Shift-add fusion reconstruction
B. Compressed sensing method/Single Image SR
The main idea of compressed sensing methods suggests

that the linear relationships among high resolution signals
can be accurately recovered from their low-dimensional
projections [10], [11]. This problem is extremely ill-posed,
making accurate recovery nearly impossible. However, we
are going to examine under which constraints and conditions
we are able to efficiently solve this problem and get accurate
results.
Let D ∈ Rn×K , be an overcomplete dictionary of K

atoms (K > n) and suppose that a signal x ∈ Rn×N can be
represented as a sparse linear combination with respect toD.
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This suggests that the signal x can be expressed as x=Dα0
where α0 ∈ RK is a sparse vector, containing very few
(≪ n) non-zero entries. Practically, due to undersampling,
we observe a small set of measurments y of x

y
.
=Lx=LDα0

where L∈Rk×n,k < n, is a projection matrix. Its application
to another matrix it projects (keeps) specific elements. In this
super resolution context x denotes a high resolution image
patch, whereas y denotes its low resolution couter part. The
overcompleteness of dictionary D makes the equation x =
Dα undetermined and the equation y = LDα even more
undetermined, for the unknown coefficients of α. Under mild
conditions, however, the sparsest solution α0 will be unique.
Moreover, if D satisfies the near isometric property, then
for various matrices L any sparse representation of a high
resolution image patch x with respect to D, can be (almost)
accurately recovered from the low resolution image patch
[12].
In this paper, we are not directly computing the sparse

representation of the high resolution image patch. Instead, we
work with two coupled dictionaries – Dh for high resolution
patches and Dl for low resolution patches. The coupling
of the dictionaries implies that, their atoms are related in a
way that the first atom of the high resolution dictionary is
matched with the first atom of the low resolution dictionary
and so on. Taking this into consideration, we use the sparse
representation of the low resolution image patch in terms
of Dl to directly compute the high resolution image patch
from Dh. The coupling of the dictionaries suggests that, if
we have the sparse representation of a low resolution image
patch in terms of Dl , we can use the same coefficients from
Dh in order to recover the high resolution image patch.
The dictionaries used have been trained in a statistical

manner [15] and in order to ensure that a high resolution
patch will have the same sparse representation with its low
resolution patch, all atoms of the dictionaries have been
properly normalized.
Last but not least, we should mention that super resolution

is not the only problem solved using sparse representations.
Other well-known applications of sparse representations in
the field of image processing are for denoising [13] and
restoration [13].

III. PROPOSED METHOD
The compressed sensing reconstruction method treats dif-

ferently thermal and optical images, as it operates on the
intensity channel of an image. Raw thermal images can
be considered as grayscale images and, as a result, we
can directly work on the intensity channel. Optical images,
however, consist of three channels (R,G,B). In order to be
able to process them, we need to transform them to a suitable
color space that gives an intensity-like channel, such as
Y,Cb,Cr.
Successfull recovery of the high resolution image using

sparse representations, we have to take into consideration
the following two constraints:

1) Reconstruction constraint: The estimated high resolution
image should be consistent with the low resolution input,
with respect to the image observation model. This implies
that the low resolution image is considered to be a blurred
and downsampled version of the high resolution image X ,
as

Y = SHX (2)

2) Sparsity prior: The aforementioned constraint is not
sufficient to successfully solve the reconstruction problem, as
for every low resolution image Y , there exists an infinite set
of high resolution images X satisfying the constraint defined
by (2). In order to further regularize the problem, we demand
that the patches x of the high resolution image X can be
expressed as a sparse linear combination with respect to the
dictionary Dh:

x≈Dhα, where α ∈ RK and ∥α∥0≪ K (3)

The term α for the high resolution image patch will be re-
covered using the sparse representation of the low resolution
image patch, with respect to the low resolution dictionary
Dl , which is coupled with Dh.
The reconstruction process is divided in two steps. First,

we seek the sparse representation of all patches of the
low resolution image with respect to Dl and recover an
estimation of the high resolution image. Next, we further
refine the estimated image in order to satisfy (2). Thus, in
order to get the final result, first we work locally on image
patches and then we work globally on the entire estimated
image. This approach helps us to remove prossible artifacts
inserted from the first step, and also make the generated
image look more consistent and natural.

A. Working locally (local model)

We begin by splitting the low resolution image Y in
(3×3) patches (starting from the upper-left corner) and we
require those patches to overlap by 1 pixel in every direction.
For each patch, we subtract the mean pixel value from all
pixels in order to work on the image’s texture rather than on
absolute intensities.
For each patch, we seek a sparse representation in terms

of Dl , which we use to obtain the high resolution patch from
Dh, as the two dictionaries are coupled. Finding the sparsest
representation of y, can be expressed as:

min∥α∥0 s.t. ∥FDlα−Fy∥2
2 ≤ ε (4)

where F is a linear operator extracting features (e.g. edges)
of image patches, and we will further analyze its role later
in this text.
The problem formulated by (4), is characterized as NP-

hard. However, if vector α is sufficiently sparse, then we can
efficiently recover [17],[18] the coefficients α by minimizing
the ℓ1 norm, as:

min∥α∥1 s.t. ∥FDlα−Fy∥2
2 ≤ ε (5)
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We can also express this optimization problem using La-
grange multipliers, offering an equivalent formulation:

min
α
∥FDlα−Fy∥2

2 +λ∥α∥1 (6)

where λ is used to balance the sparsity of the solution and the
fidelity of the approximation to y. This problem is broadly
known in the literature as “the Lasso problem” [24].
By solving (6) for each patch of the low resolution

image, does not guarantee compatibility between adjacent
patches. All the patches are processed from left to right and
top to bottom [19] and in order to enforce compatibility
between adjacent patches we modify (4) in a way that each
reconstruction Dhα of a patch y should be consistent with
its neighbor patches:

min∥α∥1 s.t. ∥FDlα−Fy∥2
2 ≤ ε1

∥PDhα−w∥2
2 ≤ ε2 (7)

where, matrix P extracts the overlapping region of current
patch and previously reconstructed high resolution image,
and w contains the values of the previously reconstructed
high-resolution image on the overlap. Thus, equation (7) can
be written as

min
α
∥D̃α− ỹ∥2

2 +λ∥α∥1 (8)

where D̃ =

[
FDl

βPDh

]
and ỹ =

[
Fy
βw

]
, where β controls

the tradeoff between matching the low-resolution input and
finding a high-resolution patch that is compatible with its
neighbors. Considering β = 1 in this paper, the optimal
solution of α∗ is given as x=Dhα

∗.

B. Working globally (global model)

Equations (5) and (7) do not require exact equality be-
tween y and Dlα and, additionally, the presence of noise
in the high resolution image might result in violation of (2).
To eliminate this lack of compatibility between X0 and X ,
we project X0 onto the solution space of (2):

X∗ = argmin
X
∥SHX−Y ∥2

2 + c∥X−X0∥2
2 (9)

Equation (9) can be solved using a gradient descent method,
which formulates the following iterative method:

Xt+1 =Xt +ν [HTST (Y −SHXt)+ c(Xt−X0)] (10)

where Xt is the estimation of the high resolution image
after the t-th iteration and ν is the step used from gradient
descent method. The final result of this procedure is the high
resolution image X∗ which tries to be as close as possible
to the initially estimated high resolution image X0 while
satisfying (2). This concept can be summarized in Algorithm
2.

Data: Dh, Dl , Y
Output: High resolution reconstructed X∗

for each 3×3 patch y ∈ Y do
Compute mean pixel value of y;
Solve minα ∥D̃α− ỹ∥2

2 +λ∥α∥1;
Compute x=Dhα

∗;
Compute x+m and store it in X0;

end
Solve gradient descent problem:
Xt+1 =Xt +ν[HTST (Y −SHXt)+ c(Xt−X0)]

Algorithm 2: SR via sparse representations

C. Feature extraction of low resolution image patches
In equation (4), we use operator F to ensure that the

content of the high resolution image reflects as much as
possible the content of low resolution image. Usually, F is
chosen as a highpass filter, as high frequencies contribute
significantly to image details which are crucial to the recon-
struction procedure and its output result.
In the literature, we can find various suggestions regarding

F , among them: [20], where F is selected to be a highpass
filter to extract edge information, [21], where Gaussian
derivative filters are selected for extraction of contours and
[22], where first and second order gradients are applied in
order to extract edge information. In this paper, we also
follow the first and second order gradient approach, due
to their simplicity and effectiveness. The filters we use to
extract the derivatives are:

f1 = [−1,0,1], f2 = fT
1

f3 = [1,0,−2,0,1], f4 = fT
3

Applying these filters to each low resolution patch, we get
four vectors which are concatenated to become the feature
representation of the patch.
The results of this procedure are essential for dictionary

training and sparse representation of patces with respect to
the dictionaries used.

IV. EVALUATION OF METHODS
For the sake of completeness, we consider the dictionaries

Dh,Dl as known and given quantities in the rest of this
paper. More information about the creation and training of
these dictionaries can be fount at [16], however, in this paper,
we do not deal with the creation method nor will we compare
them with other dictionaries in terms of their features. All
comparisons will be made with respect to the results given
(high resolution images) of the reconstruction method using
each dictionary.

A. Compressed Sensing method
We run the super resolution method via compressed sens-

ing using four different dictionaries that have been built
either from thermal or from optical images, containing either
512 or 1024 atoms and are used in applications where low
resolution images have been undersampled by a factor of
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2. We also run the method of super resolution via image
registration for different levels of confidence during the cal-
culation of motion estimates using feature points (RANSAC
method) and we compare obtained results. The metrics we
are going to use for comparison are PSNR (Peak Signal-
to-Noise Ratio) and MSE (Mean Squared Error) which
constitute broadly acclaimed methods in quality measurment
for signal reconstruction methods.
We define MSE between an image I and its approximated

version K, as:

MSE =
1

m ·n

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)−K(i, j)]2 (11)

and we also define PSNR, as:

PSNR = 20 · log10(MAXI)−10 · log10(MSE) (12)

where MAXI is the maximum possible value that a pixel of
I can obtain (e.g. for grayscale images we use 255).

(a) input image (160×120) (b) output image (320×240)

Εικ. 1: Testing image. Building at University of Patras’
Campus.
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Εικ. 2: PSNR using different dictionaries for reconstruction

Bicubic Interpolation gives the following scores in MSE
and PSNR: PSNR: 42.99 dB, MSE: 3.27.
We notice that the results of compressed sensing method

are always better (in all cases). We should also consider that
realtively “small” improvements of PSNR are in fact very
significant as PSNR is measured on logarithmic scale.
When using dictinaries that have been built from optical

images, we obtain improved results which is expected, as
the dictionaries are built with respect to image edges, as

TABLE I: PSNR/MSE for dictionaries built from optical
images. Left: 512 atoms, Right: 1024 atoms.

λ PSNR dB MSE PSNR dB MSE
0.01 44.34 2.40 43.97 2.61
0.05 44.24 2.45 43.83 2.69
0.1 44.18 2.48 43.78 2.72
0.15 44.11 2.52 43.73 2.75
0.2 44.02 2.57 43.70 2.77
0.25 43.92 2.64 43.65 2.80
0.3 43.80 2.71 43.59 2.84
0.35 43.69 2.78 43.55 2.87
0.4 43.59 2.85 43.49 2.90
0.45 43.48 2.92 43.43 2.95
0.5 43.37 2.99 43.36 3.00

TABLE II: PSNR/MSE for dictionaries built from thermal
images. Left: 512 atoms, Right: 1024 atoms.

λ PSNR dB MSE PSNR dB MSE
0.01 42.90 3.34 43.01 3.19
0.05 42.89 3.34 43.09 3.20
0.1 42.84 3.38 43.08 3.22
0.15 42.80 3.42 43.06 3.23
0.2 42.74 3.46 43.04 3.25
0.25 42.70 3.49 43.01 3.25
0.3 42.65 3.53 42.97 3.28
0.35 42.61 3.56 42.91 3.32
0.4 42.58 3.59 42.86 3.36
0.45 42.54 3.62 42.80 3.41
0.5 42.50 3.55 42.74 3.46

explained at III-C. Generally speaking, optical images are
rich in edges comparing to thermal images, making them a
better source for training data.
We also notice that by increasing λ , we obtain smoother

results leading to lower PSNR scores, as the content of the
image (e.g. edges) is “smoothed” giving an image that is not
visually sharp.
Regarding the efficiency of the compressed sensing

method, we have to note that it has been implemented in
MATLAB code and no speed optimizations have been taken
into consideration. The execution time of the method is
significantly affected by the size of the dictionary used and
by the sparsity of the solution we want to achieve, which
is defined by the value of λ . In general terms, the bigger
the size of the dictionary and the lower the value of λ , will
result in large execution times (5 or more minutes).

B. Shift-add fusion method
Shift-add fusion’s efficiency depends on whether or not

the subpixel shifts are accurately estimated. If the estimation
is accurate, we can achieve a perfect high resolution image
reconstruction, as we know the exact location of each pixel of
the low resolution images on the high resolution grid. Most
of times, however, accurate calculation of motion estimates
is not an easy task, as in real world scenaria low resolution
images contain noise (altering the visual content). Also the
shifts we apply are not constrained to global translation
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as we may introduce rotation and scaling which make the
estimation process even more confusing.
As a result, when we do not get an accurate estimation, we

notice gaps in the high resolution image as the reconstruction
method puts the pixels of low resolution images in wrong
locations on the high resolution grid. This is clearly seen in
figure 3, where the estimation process used a small number
of feature points to calculate shifts. This figure gives PSNR:
11.18 dB, whereas Bicubic Interpolation gives PSNR: 38.52
dB, magnifying a random image of the low resolution image
set. Trying to “fill the gaps” by estimating their pixel values
from their neighbors slightly improves the score, giving
PSNR: 27.83 dB.

(a) input image (160×120) (b) output image (320×240)

Εικ. 3: Shift-add fusion reconstruction

V. CONCLUSION

Comparing the “conventional” approach of super resolu-
tion to the compressed sensing method, we notice that the
latter gave optimum results in all cases, achieving a maxi-
mum score of PSNR: 44.34 dB. Bicubic interpolation scored
42.99 dB and shift-add fusion’s best score was 27.83 dB (by
filling the gaps of the reconstructed image). We should also
mention that compressed sensing method requires only one
low resolution image as input, while shift-add fusion requires
a set of low resolution images.
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