Ο ΥΠΟΔΟΧΕΑΣ ΡΡΤΡΒ˙Ζ ΕΠΗΡΕΑΖΕΙ ΤΟΝ ΚΥΤΤΑΡΙΚΟ ΚΥΚΛΟ ΚΑΙ ΤΗΝ ΑΠΟΠΤΩΣΗ ΚΥΤΤΑΡΩΝ ΚΑΡΚΙΝΟΥ ΤΟΥ ΠΡΟΣΤΑΤΗ in vitro

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕΤΑΠΤΥΧΙΑΚΟΥ

Φωτόπουλος Μιλτιάδης ΑΜ 529

Πάτρα, Ιούλιος 2015
Ο Επιβλέπων Καθηγητής \\Επιστημονικός Υπεύθυνος

Κατσώρης Παναγιώτης
Καθηγητής Τμήματος Βιολογίας
Πανεπιστήμιο Πατρών

Τα μέλη της
Τριμελούς Εξεταστικής Επιτροπής

Κατσώρης Παναγιώτης  Δημητριάδης Γεώργιος  Μαργιωλίκη Ειρήνη
Καθηγητής  Καθηγητής  Επικ. Καθηγήτρια
Τμήματος Βιολογίας  Τμήματος Βιολογίας  Τμήματος Βιολογίας
ΠΕΡΙΕΧΟΜΕΝΑ

ΠΕΡΙΕΧΟΜΕΝΑ .......................................................................................... 3
ΠΕΡΙΛΗΨΗ .................................................................................................. 5
ABSTRACT ..................................................................................................... 6
Α. ΕΙΣΑΓΩΓΗ .................................................................................................. 7
  Α1. Κυτταρικός Κύκλος .............................................................................. 7
    Α1.1. Φάσεις του κυτταρικού κύκλου ....................................................... 7
    Α1.2. Μίτωση ............................................................................................ 7
    Α1.3. Έλεγχος του κυτταρικού κύκλου ..................................................... 9
  Α2. ΑΠΟΠΤΩΣΗ .......................................................................................... 21
    Α2.1. Γενικά ........................................................................................... 21
    Α2.2. Μορφολογία της απόπτωσης ............................................................ 22
    Α2.3. Μηχανισμοί απόπτωσης ................................................................. 24
Α3. ΚΑΡΚΙΝΟΣ ΤΟΥ ΠΡΟΣΤΑΤΗ ................................................................ 32
  Α3.1 Δομή του ανθρώπινου προστάτη ....................................................... 32
  Α3.2. Λειτουργία του προστάτη ............................................................... 34
  Α3.3. Ρύθμιση της αύξησης του προστάτη ................................................ 35
  Α3.4. Καλοήθης υπερπλασία του προστάτη ............................................... 37
  Α3.5. Καρκίνος του προστάτη ................................................................. 37
  Α3.6. Βιολογικοί δείκτες του καρκίνου του προστάτη ................................ 38
  Α3.7. Μοντέλα μελέτης του καρκίνου του προστάτη ............................... 38
  Α3.8. RPTPβ/ζ (Receptor-like Protein-Tyrosine Phosphatase) .................. 40
Β ΥΛΙΚΑ ΚΑΙ ΜΕΘΟΔΟΙ ......................................................................... 42
  Β1. Ανακαλλιέργεια κυττάρων .................................................................. 42
  Β2. Μέτρηση κυττάρων σε αμικτουραμέτρο Neubauer ............................. 44
  Β3. Εκχύλιση πρωτεϊνών από κύτταρα σε καλλιέργεια .............................. 45
  Β4. SDS ηλεκτροφόρηση σε πίκτωμα πολυακρυλαμίδιου (SDS-PAGE) ........ 46
  Β5. Ανοσοστύπωμα (Western blot) ......................................................... 50
  Β6. Αποδέσμευση αντισωμάτων και επαναχρησιμοποίηση αποτυπωμάτων .......... 53
  Β7. Προσδιορισμός νεκρών και αποπτωτικών κυττάρων με κυτταρομετρία ροής .......... 54
  Β8 Ανοσοφθορισμός με BrdU για τον προσδιορισμό του ποσοστού κυττάρων στη φάση S του κυτταρικού κύκλου ................................................................. 55
Γ. ΑΠΟΤΕΛΕΣΜΑΤΑ ......................................................................................................................... 56
  Γ1. Προσδιορισμός νεκρών και αποπτωτικών κυττάρων με κυτταρομετρία ροής ........... 56
  Γ2. Προσδιορισμός των σχετικών επιπέδων της ενεργοποιημένης κασπάσης 3 και κασπάσης 8 με ανάλυση κατά Western ................................................................................. 60
  Γ3. Προσδιορισμός του ποσοτικού των κυττάρων στη φάση S του κυτταρικού κύκλου με χρήση ανοσοφθορισμού ........................................................................................................................................ 64
  Γ4. Προσδιορισμός των σχετικών επιπέδων της ενεργοποιημένης με φωσφορυλίωσή Cdt1 .............................................................................................................................................. 74

Δ. ΣΥΜΠΕΡΑΣΜΑΤΑ-ΣΥΖΗΤΗΣΗ ................................................................................................ 76

Ε. ΒΙΒΛΙΟΓΡΑΦΙΑ ....................................................................................................................... 77
ΠΕΡΙΛΗΨΗ

Για την εργασία αυτή χρησιμοποιούμε ως δείγματα καρκινικά κύτταρα PC3 και DU145, καθώς και πληθυσμούς των ιδίων κυττάρων, οι οποίοι έχουν διαμολυνθεί με ένα πλασμίδιο που μειορρυθμίζει την έκφραση ενός υποδοχέα, του RPTPβζ. Η διαμόλυνση έγινε από τη Ζωή Διαμαντοπούλου (μια προηγούμενη υποψήφια διδάκτρα), ως μέρος της διπλωματικής της εργασίας, και είναι προφανές ότι, κατά την καλλιέργειά τους, πολλαπλασιάζονται πολύ πιο αργά από τα αντίστοιχα φυσιολογικά κύτταρα.

Ο σκοπός αυτής της εργασίας είναι να διερευνήσει εάν αυτό συμβαίνει λόγω μειωμένου ρυθμού εξέλιξης του κυτταρικού κύκλου ή αυξημένου ρυθμού απόπτωσης, καθώς επίσης και να εξετάσει έμμεσα τις επιπτώσεις της έλλειψης του υποδοχέα, εφόσο αυτό αποτελεί και τη μόνη διαφορά μεταξύ των φυσιολογικών και μετασχηματισμένων κυττάρων.

Με σκοπό να διερευνήσουμε το ρυθμό απόπτωσης των τεσσάρων αυτών πληθυσμών, διενεργήσαμε πειράματα κυτταρομετρίας ροής με Annexin και PI, ώστε να υπολογίσουμε των αριθμό των βιώσιμων και νεκρωτικών κυττάρων, καθώς και τον αριθμό των κυττάρων που βρίσκονταν σε πρώιμη και προχωρημένη απόπτωση. Επιπλέον, κάναμε πειράματα με ανάλυση κατά Western, με σκοπό να εκτιμήσουμε τα επίπεδα των ενεργοποιημένων κασπασών 8 και 3 στα διάφορα κύτταρα. Προκειμένου να μελετήσουμε την ταχύτητα εξέλιξης του κυτταρικού κύκλου, διενεργήσαμε πειράματα ανοσοφθορισμού με επώαση με BrdU για 4h και 24h, για να υπολογίσουμε το ποσοστό των κυττάρων που είχαν νεοσυντιθεμένο DNA. Τέλος, χρησιμοποιώντας και πάλι την ανάλυση κατά Western, μελετήσαμε τα επίπεδα της πρωτεΐνης Cdt1, η οποία παίζει σημαντικό ρόλο στην αδειοδότηση της αντιγραφής του DNA.
ABSTRACT

For this essay, we are using as samples, PC3 and DU145 prostate cancer cells, as well as populations of the same cells, which had been permanently transfected with a plasmid that, through RNA interference, drastically downregulates the expression of a receptor, RPTPβ/ζ. The transfected cell lines have been made by Zoe Diamantopoulou (a previous PhD student), as part of her thesis, and it is clear to anyone cultivating them, that they proliferate much more slowly than their normal counterparts.

The aim of this project is to determine whether this is due to increased rate of apoptosis or decreased speed in cell cycle progression, and is also meant to indirectly test the effects of the absence of the RPTPβ/ζ receptor, since this is the only difference between the normal and transfected cells.

To examine the rate of apoptosis in the four cell lines, we conducted flow cytometry experiments with Annexin and PI, to determine the percentage of viable and necrotic cells, as well as cells in early or late stages of apoptosis. We also performed Western blots to assess the levels of activated Caspase 8 and Caspase 3 in the various cell lines. With the aim of examining the speed by which cells progress through the cell cycle, we performed immunofluorescence experiments after incubation with BrdU for 4h and 24h, in order to determine the percentage of cells that had newly-synthesized DNA. Finally, we also did Western blots to determine the relative levels of the Cdt1 protein, a key molecule that licences DNA replication.
A. ΕΙΣΑΓΩΓΗ

A1. Κυτταρικός Κύκλος

A1.1. Φάσεις του κυτταρικού κύκλου

Ο κυτταρικός κύκλος είναι η διαδικασία που οδηγεί στην κυτταρική διαίρεση και αποτελείται από τέσσερις φάσεις:

1. Φάση G1: Φάση αύξησης

2. Φάση S: Κατά τη διάρκεια της φάσης S λαμβάνει χώρα ο διπλασιασμός του DNA

3. Φάση G2: Φάση αύξησης

4. Φάση M: Το τελευταίο στάδιο του κυτταρικού κύκλου των σωματικών κυττάρων είναι η φάση της κυτταρικής διαίρεσης, δηλαδή της μίτωσης (M, Mitosis).

5. Φάση G0: Τα σωματικά κύτταρα που δεν διαιρούνται, βρίσκονται σε ένα στάδιο ηρεμίας, που ονομάζεται «φάση G0». Κάποια έχουν την ικανότητα να εκκινήσουν ξανά τον κυτταρικό κύκλο αν δεχθούν τα κατάλληλα περιβαλλοντικά ερεθισμάτα (π.χ. αυξητικοί παράγοντες) και να εισέλθουν ξανά στη φάση G1. (Pardee, 1974; Blagosklonny, Pardee, 2002)

A1.2. Μίτωση

Η πιστότητα της μίτωσης καθορίζει την ισότιμη κατανομή των διπλασιασμένων χρωμοσωμάτων στα δύο θυγατρικά κύτταρα. Η πρώτη φάση της μίτωσης είναι η πυρηνική διαίρεση και διαιρείται σε τέσσερις επιμέρους φάσεις:

1. Πρόφαση: Σηματοδοτεί την έναρξη της μίτωσης επιφέροντας συμπύκνωση των χρωμοσωμάτων, διαχωρισμό των διπλασιασμένων κεντροσωματών και στρατολόγηση κάποιων πρωτεΐνων-ελέγχου στους κινητοχώρους.

2. Μετάφαση: Η έναρξη της μετάφασης (προμετάφαση) σηματοδοτείται από αποσυναρμολόγηση του πυρηνικού φακέλου (Nuclear Envelope, NE). Στη συνέχεια, η απελευθέρωση των χρωμοσωμάτων στο κυτταρόπλασμα ενεργοποιεί το «σημείο ελέγχου συναρμολόγησης της ατράκτου» (Spindle Assembly Checkpoint, SAC) σε κάθε ελεύθερο κινητοχώρο.
3. Ανάφαση: Αφού οι μικροσωληνύσκοι προσδεθούν στους κινητοχώρους κάθε χρωματιδικού ζεύγους, αποσιωπάται το SAC και το κύτταρο ξεπερνά το σήμα "αναμονής της ανάφασης". Κατά τη διάρκεια της ανάφασης, οι αδελφές χρωματίδες αποχωρίζονται πλήρως προς τους δύο πόλους του κυττάρου και η εγκόλπωση της πλασματικής μεμβράνης γύρω από τον ισημερινό της ατράκτου γίνεται ορατή.

4. Τελόφαση: Η τελόφαση τελειώνει με την αποσυμπόκνωση των χρωμοσωμάτων και την επανασυναρμολόγηση της πυρηνικής μεμβράνης γύρω από τα χρωμοσώματα.

Πολύ σύντομα μετά από αυτά ακολουθεί η κυτταροκίνηση ή κυτταροπλασματική διαίρεση, η οποία δίνει γένεση σε δύο θυγατρικά κύτταρα. Κάθε ένα από τα στάδια της μίτωσης είναι έτσι οργανωμένο, ώστε να ελαχιστοποιείται η πιθανότητα λαθών διαχωρισμού. Ελαττωματική λειτουργία οποιουδήποτε μιτωτικού γεγονότος μπορεί να οδηγήσει σε χρωμοσωματική αστάθεια, η οποία προκαλεί καρκίνο (Jallepalli & Lengauer, 2001; Chi & Jeang, 2007; Holland & Cleveland, 2009; Holland & Cleveland, 2012; Pfau & Amon, 2012)

Επομένως, η ακρίβεια και αποτελεσματικότητα της μιτωτικής κυτταρικής διαίρεσης εξαρτάται από την κατάλληλη ρύθμιση της έκφρασης και της λειτουργίας των πρωτεϊνών της μίτωσης. Μάλιστα, πολλές από αυτές τις πρωτεϊνές επιδεικνύουν ειδική για τη μίτωση λειτουργία, η οποία ρυθμίζεται κυρίως από μετα-μεταφραστικές τροποποιήσεις, δηλαδή φωσφορυλίωση, υβριδιτινυλίωση και κάποιους ακόμα μηχανισμούς. (De Castro et al, 2007)

Πρόκειται, εκτός από τις μετα-μεταφραστικές τροποποιήσεις, και η μεταγραφή διαδραματίζει πολύ σημαντικό ρόλο στη συντήρηση των πρωτεϊνών του κυτταρικού κύκλου. (Whitfield et al, 2002)
Α1.3. Έλεγχος του κυτταρικού κύκλου

Α1.3.1. Ρύθμιση μέσω κυκλοοξαρτώμενων κινασών (CDK)


Παράλληλα με την πρόσδεση κυκλίνων, η ενεργότητα των CDK ρυθμίζεται επίσης από φωσφορυλίωση σε συντηρημένα κατάλοιπα θρεονύνης και τυροσύνης. Πλήρης ενεργοποίηση της CDK1 προαπαίτει φωσφορυλίωση στη θρεονύνη 161 (172 για τη CDK4 και 160 για τη CDK2), που γίνεται από το σύμπλοκο CDK7-κυκλίνης H, επίσης γνωστό ως CAK. Αυτές οι φωσφορυλίωσεις επάγουν αλλαγές στη στερεοδιάταξή τους και ισχυροποιούν την πρόσδεση κυκλίνων (Jeffrey et al 1995; Paulovich & Hartwell 1995). Οι κινάσεις Wee1 και Myt1 φωσφορυλίωνουν την CDK1 στην τυροσύνη-15 και/ή τη θρεονύνη-14, απενεργοποιώντας την. Η αποφωσφορυλίωση στις θέσεις αυτές από το ένζυμο Cdc25 είναι αναγκαία για την ενεργοποίηση της CDK1 και την περαιτέρω εξέλιξη του κυτταρικού κύκλου (Lew & Kornbluth, 1996).

**Εικόνα A1.2.** Η περιοδική έκφραση των κυκλίνων (ibworld.me)

**A1.3.2. Υποστρώματα CDK**

Εφ’ όσον οι CDK προωθούν την κυτταρική διαίρεση, το να ταυτοποιήσουμε τα υποστρώματά τους είναι κρίσιμης σημασίας για την κατανόηση της μηχανισμικής βάσης της δράσης τους. Παρά το γεγονός ότι πολλά υποστρώματα CDK έχουν περιγραφεί στη βιβλιογραφία μέχρι σήμερα, δεν έχει επιτυχθεί λεπτομερής κατανόηση για το πώς η CDK-διαμεσολαβούμενη φωσφορυλίωση ελέγχει τη λειτουργία και την εξέλιξη του κυτταρικού κύκλου σε μηχανισμικό επίπεδο μόνο για μερικά από αυτά. Ένας κύριος μηχανισμός για τη ρύθμιση της εξειδίκευσης των υποστρωμάτων των CDK είναι μέσω της δεσμευμένης

Αν και τα σύμπλοκα CDK2-κυκλίνη E και CDK2-κυκλίνη Α έχουν αλληλοεπικαλυπτόμενα υποστρώματα, καθένα από αυτά τα σύμπλοκα μπορεί επίσης να στοχεύει μοναδικά υποστρώματα, υποδεικνύοντας ότι και άλλα διαφορετικά χαρακτηριστικά των κυκλινών E και Α μπορούν να ελέγχουν την ειδικότητα του υποστρώματος (Sarcevic et al, 1997). Εκτός από τη ρύθμιση της φωσφορυλίωσης διαφόρων υποστρωμάτων, διαφορετικές CDK μπορεί να φωσφορυλιώσουν το ίδιο υπόστρωμα σε διαφορετικές τοποθεσίες για να ρυθμίζουν διάφορες πλευρές της λειτουργίας του υποστρώματος. Για παράδειγμα, η CDK4-κυκλίνη D1 και CDK2-κυκλίνη E φωσφορυλιώνουν διαφορετικές θέσεις στην pRb (πρωτεϊνη του ρετινοβλαστώματος) για τη ρύθμιση διαφόρων πτυχών της μεταγραφικής ανασταλτικής δράσης της (Harbour et al, 1999).

Α1.3.3. Ποιοτικός έλεγχος του κυτταρικού κύκλου: σημείο περιορισμού και σημεία ελέγχου

Το σημείο περιορισμού (R) ορίζεται ως ένα σημείο χωρίς επιστροφή στην G1, μετά το οποίο το κύτταρο έχει δεσμευθεί να εισέλθει στον κυτταρικό κύκλο. Πειραματα δείχνουν ότι κύτταρα που τους στερείται ορός πριν από το σημείο περιορισμού εισέρχονται σε μια κατάσταση που μοιάζει με τη φάση G0, ενώ τα κύτταρα που τους στερείται ορός μετά το σημείο R, παραμένουν ανεπηρέαστα και προχωρούν στη μίτωση (Pardee, 1974). Υπάρχουν επιπρόσθετα σημεία ελέγχου αργότερα στον κυτταρικό κύκλο, εξασφαλίζοντας την ομαλή διαδικασία των γεγονότων του κυτταρικού κύκλου (Hartwell & Weinert, 1989). Μέχρι τώρα, τα σημεία ελέγχου βλάβης του DNA και σημεία ελέγχου της ατράκτου έχουν (εν μέρει) διευκρινιστεί. Σε απόκριση σε βλάβη του DNA, τα σημεία ελέγχου σταματούν τον κυτταρικό κύκλο προκειμένου να δοθεί χρόνος για την επιδιόρθωση του DNA. Τα σημεία ελέγχου βλάβης του DNA τοποθετούνται πριν το κύτταρο εισέλθει στη φάση S (σημείο ελέγχου G1-S) ή μετά από την αντιγραφή του DNA (σημείο ελέγχου G2-M) και φαίνεται να υπάρχει και σημείο ελέγχου βλάβης του DNA κατά τη διάρκεια των S και M φάσεων.


Οι μηχανισμοί του σημείου ελέγχου στη φάση $S$ λόγω βλάβης του DNA είναι ανεπαρκώς κατανοητοί, αλλά μερικές μελέτες έδειξαν καταστολή τόσο των φάσεων έναρξης όσο και επιμήκυνσης της αντιγραφής του DNA (Painter, 1986, Paulovich & Hartwell, 1995). Υπάρχουν επίσης ενδείξεις ότι η ATM διαμεσολαβούμενη φωσφορύλωση του NBS1 (Nijmegen breakage syndrome 1) απαιτείται για να προκαλέσει τη διακοπή στην $S$ φάση κατά τη διάρκεια του σημείου ελέγχου $S$ (Lim et al, 2000).

Εικόνα A1.4. Σημεία ελέγχου του κυτταρικού κύκλου (hixonparvo.info)

Όταν σημειώνεται βλάβη του DNA κατά τη διάρκεια της $G_2$, τα κύτταρα είναι σε θέση να ξεκινήσουν μια διακοπή του κυτταρικού κύκλου παρουσία ή απουσία του $p53$. Η έναρξη της μέτωσης εμποδίζεται διατηρώντας την $CDK1$ στην ανενεργή μορφή της μέσω ανασταλτικής φωσφορύλωσης ή με παγιδεύση των συστατικών του συμπλόκου CDK1-κυκλίνης $B$ έξω από τον πυρήνα. Αυτό επιτυγχάνεται με τις πρωτεϊνικές κινάσεις Chk1 και Chk2, οι οποίες ενεργοποιούνται κατά τη διάρκεια της βλάβης του DNA με ATM-εξαρτώμενο τρόπο και οι οποίες φωσφοριζούν την $Cdc25$. Η φωσφορύλωση της $Cdc25$ αναστέλλει τη δράση της και προωθεί τη συνδέση της με πρωτεϊνές 14-3-3, παγιδεύοντάς την έξω από τον πυρήνα και εμποδίζοντας την ενεργοποίηση του συμπλόκου CDK1-κυκλίνης $B$, και την εύςοδο στη μέτωση (Sanchez et al, 1997, Zeng et al, 1998). Εκτός από την επαγωγή της ανασταλτικής φωσφορύλωσης των $CDK$, το $p53$ μπορεί επίσης να παίξει ρόλο στη ρύθμιση του σημείου ελέγχου $G2/M$. Η εξαρτώμενη από βλάβη του DNA αύξηση των επιπέδων του $p53$ οδηγεί, όπως και κατά τη διάρκεια του σημείου ελέγχου $G1/S$, σε αυξημένη μεταγραφή των $p21$ και $14-3-3$ σίγμα (14-3-3 s). Η αυξημένη δέσμευση της κυκλίνης $B$ με την 14-3-3 s την αποκλείει ενεργά από τον πυρήνα. Το $p53$ διαμεσολαβεί και τον διαχωρισμό των συμπλόκων CDK1-

Εικόνα A1.5. Ενεργοποίηση του p53 (cellsignal.com)
1.3.4. Κυτταρικός κύκλος και καρκίνος

Στον καρκίνο, υπάρχουν θεμελιώδεις μεταβολές στο γενετικό έλεγχο της κυτταρικής διαίρεσης, με αποτέλεσμα τον ανεξέλεγκτο πολλαπλασιασμό των κυττάρων. Μεταλλάξεις συμβαίνουν κυρίως σε δύο κατηγορίες γονιδίων: τα πρωτο-ογκογονίδια και τα ογκοκατασταλτικά γονίδια. Στα φυσιολογικά κύτταρα, τα προϊόντα των πρωτο-ογκογονίδιων δρουν σε διάφορα επίπεδα στα μονοπάτια μεταγωγής σήματος που διεγέρουν τον πολλαπλασιασμό των κυττάρων. Μεταλλαγμένες μορφές πρωτο-ογκογονίδιων ή ογκογονίδιων μπορεί να προωθήσουν την ανάπτυξη του όγκου. Η αδρανοποίηση ογκοκατασταλτικών γονιδίων, όπως τα pRb και p53, οδηγούν σε δυσλειτουργία των πρωτεϊνών που κανονικά αναστέλλουν την πρόοδο του κυτταρικού κύκλου. Απορρήτουση του κυτταρικού κύκλου που συνδέεται με τον καρκίνο συμβαίνει μέσω μετάλλαξης των πρωτεϊνών που παίζουν σημαντικό ρόλο σε διάφορα επίπεδα του κυτταρικού κύκλου. Στον καρκίνο, οι μεταλλάξεις έχουν παρατηρηθεί σε γονίδια που κωδικοποιούν CDK, κυκλίνες, CDK-ενεργοποιώντα ένζυμα, CKI, υποστρώματα CDK και πρωτεΐνες σημείων ελέγχου (review από Sherr 1996, McDonald & el Deiry, 2000).

1.3.5. CDK

Έχουν αναφερθεί μεταβολές των CDK μορίων στον καρκίνο, αν και με χαμηλό συχνότητα. Υπερέκφραση της CDK4, που εμφανίζεται ως αποτέλεσμα ενίσχυσης, έχει ταυτοποιηθεί σε κυτταρικές σειρές. (Wolfel et al. 1995). Μεταλλάξεις των CDK4 και CDK6 γονιδίων με αποτέλεσμα την απώλεια ικανότητας της δυσλειτουργίας CKI έχουν επίσης παρατηρηθεί (Easton et al. 1998).

1.3.6. Κυκλίνες

κυκλίνησ Α, αλλά όχι της κυκλίνησ Ε, συσχετίζεται με χαμηλότερα ποσοστά επιβύωσης (Dobashi et al, 1998).

Α1.3.7. Ένζυμα ενεργοποίησης CDK


A1.3.8. Cdt1 (Chromatin licensing and DNA replication factor 1)


Αρχικά είχε προταθεί ότι η Geminin διαδραματίζει έναν κρίσιμο ρόλο στην καταστολή της λειτουργίας της Cdt1 μετά τη φάση S σε κύτταρα σπονδυλώτων (McGarry & Kirschner, 1998,

Εχει αναφερθεί ότι η υπερέκφραση της Cdt1 προκαλεί κύτταρα ποντικού NIH3T3 να σχηματίζουν όγκους σε nude ποντίκια (Arentson et al., 2002). Ωστόσο, στην Rat-1, μια άλλη κυτταρική σειρά που χρησιμοποιείται συνήθως για την εκτίμηση της δραστικότητας κλασικών ογκογονίδων, δεν παρατηρήθηκε μετασχηματισμός φαινότυπος, με σταθερή υπερέκφραση του Cdt1 (Tatsumi et al., 2006). Η διαφορά αυτή μπορεί απλώς να οφείλεται στις διαφορές των κυττάρων. Ωστόσο, υπάρχουν άφθονα στοιχεία ότι η απορρύθμιση του Cdt1 επιδρά στα κύτταρα επάγοντας την επανα-αντιγραφή, η οποία προκαλεί χρωμοσωμικές βλάβες και γονιδιωματική αστάθεια (Vaziri et al., 2003, Tatsumi et al., 2006). Μπορεί οπότε να εισωθεί ότι δεν είναι η απορρυθμισμένη Cdt1 που οδηγεί σε οξύ ογκογόνο μετασχηματισμό, αλλά μάλλον οι χρόνιες χρωμοσωμικές βλάβες και αστάθεια του γονιδιώματος που τελικά καταλήγουν σε σχηματισμό όγκου. Πράγματι, η υπερέκφραση της Cdt1 σε διαγονιδιακά θυμοκύτταρα δεν οδηγεί από μόνη της σε σχηματισμό όγκου, αλλά διαμορφώνει και ενισχύει το σχηματισμό όγκου που προκαλείται από ανεπάρκεια του p53 (Seo et al., 2005).

Θα πρέπει να σημειωθεί ότι η πρωτεύουσα Cdt1 όντως υπερεκφράζεται σε ανθρώπινα καρκινικά κύτταρα (Karakaidos et al., 2004, Xouri et al., 2004, Tatsumi et al., 2006). Η μεταγραφή του Cdt1 προκαλείται από τον παράγοντα μεταγραφής E2F (Yoshida & Inoue, 2004), ο οποίος είναι συχνά απορρυθμισμένος σε καρκινικά κύτταρα. Έτσι, η απορρύθμιση της Cdt1 θα μπορούσε να είναι ένας νεοανακυκλωθείς μοριακός μηχανισμός που οδηγεί τελικά σε καρκινογένεση.
Εικόνα A1.6. Η αδειοδότηση της αντιγραφής από την Cdt1 και η ρύθμιση από την geminin (Geminin bans replication licence, Mark Madine & Ron Laskey, Nature Cell Biology)

Εικόνα A1.7. Επιπρόσθετη ρύθμιση της Cdt1 από την CDK2-cyclinE. Φωσφορυλίωση της Cdt1 από το σύμπλοκο CDK2-cyclin E, προκαλεί αναγνώριση της από πρωτεΐνες που την συμπληρώνουν και την οδηγούν σε απουσία για αποκλειστικά από τους προπαιδικούς. (indiana.edu)
A2. ΑΠΟΠΤΩΣΗ

A2.1. Γενικά

Η απόπτωση συμβαίνει συνήθως κατά τη διάρκεια της ανάπτυξης και της γήρανσης και λειτουργεί ως ομοιοστατικός μηχανισμός για τη διατήρηση των πληθυσμών των κυττάρων στους ιστούς. Παρουσιάζεται επίσης ως μηχανισμός άμυνας σε ανοσολογικές αντιδράσεις ή όταν τα κύτταρα έχουν υποστεί βλάβη από ασθένεια ή επιβλαβείς παράγοντες (Norbury και Hickson, 2001). Αν και υπάρχει μια μεγάλη ποικιλία ερεθισμάτων και συνθηκών, τόσο φυσιολογικών όσο και παθολογικών, που μπορούν να προκαλέσουν την απόπτωση, δεν είναι αναγκαίο ότι όλα τα κύτταρα θα πεθάνουν ως απάντηση στο ίδιο ερέθισμα.

Οι ακτινοβολείς ή τα φάρμακα που χρησιμοποιούνται στις χημειοθεραπείες μπορεί να προκαλέσουν βλάβες του DNA σε μερικά κύτταρα, οι οποίες μπορούν να οδηγήσουν σε αποπτωτικό θάνατο μέσω ενός σημαντικού μονοπατιού που εξαρτάται από το p53. Ορισμένες ορμόνες, όπως τα κορτικοστεροειδή, μπορεί να οδηγήσουν σε αποπτωτικό θάνατο ορισμένα κύτταρα (π.χ., θυμοκύτταρα) αν και άλλα κύτταρα δεν επηρεάζονται ή ακόμα και διεγείρονται σε πολλαπλασιασμό. Μερικά κύτταρα εκφράζουν Fas ή TNF υποδοχές που μπορούν να οδηγήσουν σε απόπτωση μέσω σύνδεσης υποδοχών με πρωτεινοειδής-σήματα, ενώ άλλα κύτταρα ακολουθούν μια προκαθορισμένη πορεία θανάτου που θα πρέπει να ανασταλεί από έναν παράγοντα επιβίωσης, όπως είναι οι ορμόνες ή οι αυξητικοί παράγοντες. Υπάρχει επίσης το πρόβλημα της διάκρισης της απόπτωσης από τη νεκρωση, δύο διαδικασιών που μπορούν να συμβούν ανεξάρτητα, διαδοχικά, ή ακόμα και ταυτόχρονα (Hirsch, 1997, Zeiss, 2003).

Σε ορισμένες περιπτώσεις, είναι το είδος και η ένταση των ερεθισμάτων που καθορίζουν εάν τα κύτταρα πεθαίνουν με απόπτωση ή νέκρωση. Σε χαμηλές δόσεις, ένα επιβλαβές ερέθισμα όπως η θερμότητα, η ακτινοβολία, η υποξία και κυτταροτοξικά αντικαρκινικά φάρμακα μπορούν να προκαλέσουν απόπτωση αλλά αυτά τα ίδια ερεθισμάτα μπορεί να οδηγήσουν σε νέκρωση σε υψηλότερες δόσεις. Τέλος, η απόπτωση είναι μια συντονισμένη και συχνά ενεργειακά εξαρτώμενη διαδικασία που περιλαμβάνει την ενεργοποίηση μιας ομάδας πρωτεινών κυστεΐνης που ονομάζονται "κασπάσες" και ένα σύνθετο καταρράκτη μεγαλύτερης γεγονήτων που συνδέουν τα εναρκτήρια ερεθίσματα με την τελική λύση του κυττάρου.
Α2.2. Μορφολογία της απόπτωσης

Έχουν εντοπιστεί διάφορες μορφολογικές αλλαγές που συμβαίνουν κατά τη διάρκεια της απόπτωσης (Hacker, 2000). Κατά την πρώιμη διαδικασία της απόπτωσης, είναι ορατά με οπτικό μικροσκόπιο η συρρύκνωση και πύκνωση του κυττάρου (Kerr et al., 1972). Με τη συρρύκνωση, τα κύτταρα γίνονται μικρότερα σε μέγεθος, το κυτταρόπλασμα πυκνό και τα οργανίδια πιο σφικτά τοποθετημένα. Η πύκνωση είναι το αποτέλεσμα της συμπύκνωσης της χρωματίνης, ίσως το πιο χαρακτηριστικό γνώρισμα της απόπτωσης. Σε ιστολογική εξέταση με χρώση αματοξυλίνης και ημωσίνης, η απόπτωση φαίνεται να περιορίζεται σε μεμονωμένα κύτταρα ή μικρά συσσωματώματα κυττάρων. Το αποπτωτικό κύτταρο εμφανίζεται ως μία στρογγυλή ή οβλική μάζα με σκούρο ημωσιφυλικό κυτταρόπλασμα και πυκνά μωβ θραύσματα χρώσης. Παρατηρείται εκτεταμένη διάγκωση της πλασματικής μεμβράνης, ακολουθούμενη από ρήξη του πυρήνα και διαχωρισμό των θραυσματών του κυττάρου σε αποπτωτικά σωμάτια κατά την διάρκεια μιας διαδικασίας που ονομάζεται "εκβλάστηση". Η κυτταρική μεμβράνη και τα οργανίδια διατηρούνται άθικτα. Αυτά τα σωμάτια φαγοκυτταρώνονται έπειτα από μακροφάγα ή παρεγχυματικά κύτταρα και αποκοδομούνται εντός φαγολυσσωμάτων.

Ουσιαστικά δεν υπάρχει φλεγμονώδης αντίδραση που σχετίζεται με τη διαδικασία της απόπτωσης, ούτε με την απομάκρυνση των αποπτωτικών κυττάρων, επειδή: (1) τα αποπτωτικά κύτταρα δεν απελευθερώνουν τα κυτταρικά συστατικά τους στην εξωκυττάρια ύλη (2) φαγοκυτταρώνονται άμεσα από τα περιβάλλοντα κύτταρα, προλαμβάνοντας μια πιθανή δευτερογενή νέκρωση, και (3) τα φαγοκύτταρα δεν παράγουν αντιφλεγμονώδεις κυτοκίνες (Savill και Fadok 2000, Kurosaka et al, 2003).

Α2.2.1. Διάκριση απόπτωσης από νέκρωση

Μια άλλη μορφή κυτταρικού θάνατου είναι η νέκρωση, η οποία θεωρείται ότι είναι μια τοξική διαδικασία όπου το κύτταρο είναι παθητικό και ακολουθεί μια ενεργειακά ανεξίρτητη πορεία θανάτου. Όμως, δεδομένου ότι η νέκρωση αναφέρεται στις αποκοδομητικές διεργασίες που συμβαίνουν μετά τον κυτταρικό θάνατο, θεωρείται από κάποιους ως ακατάλληλης όρος για να περιγράψει ένα μηχανισμό κυτταρικού θανάτου. Για το λόγο αυτό, ο όρος "όγκωση" έχει προταθεί για να περιγράψει μια διαδικασία που οδηγεί σε νέκρωση με λύση του πυρήνα και διάγκωση των κυττάρων, ενώ η απόπτωση οδηγεί σε κυτταρικό θάνατο με συρρύκνωση των κυττάρων, πύκνωση και ρήξη του πυρήνα. Ως εκ τούτου, οι όροι "ογκωτικός κυτταρικός θάνατος" και "όγκωτική νέκρωση" έχουν προταθεί ως εναλλακτικές λύσεις για να περιγράψουν τον θάνατο των κυττάρων που συνοδεύεται από διάγκωσή τους, αλλά αυτοί οι όροι δεν χρησιμοποιούνται ευρέως αυτή τη στιγμή (Majno και Joris, 1995, Levin et al., 1999).

Α2.3. Μηχανισμοί απόπτωσης

Οι μηχανισμοί της απόπτωσης είναι εξαιρετικά σύνθετοι και περίπλοκοι, περιλαμβάνοντας έναν ενεργειακά εξαρτώμενο καταρράκτη μοριακών συμβάντων. Méchi σήμερα, η έρευνα δείχνει ότι υπάρχουν δύο κύρια αποπτωτικά μονοπάτια: η εξωγενής οδός (ή οδός υποδοχών θανάτου) και η ενδογενής (ή μιτοχονδριακό μονοπάτι). Ωστόσο, υπάρχουν ενδείξεις ότι οι δύο οδοί συνδέονται και ότι τα μόρια σε ένα μονοπάτι μπορεί να επηρεάσουν το άλλο (Igney και Krammer, 2002). Υπάρχει μια πρόσθετη οδός που περιλαμβάνει κυτταροτοξικότητα διαμεσολαβούμενη από Τ-κύτταρα και θανάτωση του κυττάρου εξαρτώμενη από την περιφορική και τα γκρανενζύμα.

Η οδός περιφορίνης/γκρανενζύμων μπορεί να προκαλέσει απόπτωση μέσω είτε του γκρανενζύμου Β είτε του γκρανενζύμου Α. Η εξωγενής, ενδογενής και η οδός του γκρανενζύμου Β συγκλίνουν στο ίδιο μονοπάτι, καλούμενο μονοπάτι εκτέλεσης. Αυτή η οδός εκκινείται από την υδρόλυση της κασπάσης-3 και καταλήγει σε κατάτμηση του DNA,
υποβάθμιση του κυτταροσκελετού και των πυρηνικών πρωτεϊνών, σταυροσύνδεση των πρωτεϊνών, σχηματισμό αποπτωτικών σωμάτων, έκφραση των συνδετών για φαγοκυτταρικούς κυτταρικούς υποδοχείς και τελικά την πρόσληψη από φαγοκύτταρα. Το μονοπάτι του γκρανενζμο Α ενεργοποιεί ένα παράλληλο, ανεξάρτητο από καστάσες μονοπάτι κυτταρικού θανάτου μέσω βλαβών μονοκλωνικού DNA (Martinvalet et al., 2005).

Α2.3.1. Εξωγενής οδός


Η αλληλουχία των γεγονότων που ορύζουν την εξωγενή φάση της απόπτωσης χαρακτηρίζονται καλύτερα με τα μοντέλα των FasL/FasR και TNF-α/TNF1. Σε αυτά τα μοντέλα, υπάρχει ομαδοποίηση των υποδοχέων και δέσμευση με τον ομόλογο τριμερισμένο συνδέτη. Κατά την πρόσδεση, στρατολογούνται κυτταροπλασματικές πρωτεϊνές-προσαρμογιες, οι οποίες εμφανίζουν αντίστοιχες περιοχές θανάτου που προσδένονται στους υποδοχέες. Η σύνδεση του συνδέτη Fas στον υποδοχέα του προκαλεί τη σύνδεση του μορίου-προσαρμογέα FADD, ενώ σύνδεση του TNF στον αντίστοιχο υποδοχέα του προκαλεί τη σύνδεση του προσαρμογέα TRADD, με συνακόλουθη τη στρατολόγηση του FADD και της RIP (Hsu et al, 1995, Grimm et al, 1996, Wajant, 2002). Η FADD στη συνέχεια προσδένει την προκαςπάζη-8 μέσω διμερισμού του DED (Death Effector Domain). Σε αυτό το σημείο, σχηματίζεται ένα σηματοδοτικό σύμπλοκο επαγωγής θανάτου (Death-Inducing Signalling Complex, DISC), με αποτέλεσμα την αυτο-καταλυόμενη ενεργοποίηση της προκαςπάζης-8 (Kischkel et al., 1995).

Μόλις ενεργοποιηθεί η καςπάζη-8, εκκινείται η φάση εκτέλεσης της απόπτωσης. Η διαμεσολαβούμενη από υποδοχείς θανάτου απόπτωση μπορεί να ανασταλεί με μια πρωτείνη που ονομάζεται c-FLIP, η οποία δεσμεύεται με την FADD και την καςπάζη-8, καθιστώντας τες αναπτελεσματικές (Kataoka et al, 1998, Scaffidi, 1999). Ένα άλλο σημείο πιθανής ρύθμισης της απόπτωσης περιλαμβάνει μια πρωτείνη που ονομάζεται Toso, η οποία έχει δειχθεί ότι
εμποδίζει την Fas-επαγόμενη απόπτωση σε Τ κύτταρα μέσω της αναστολής της κασπάσης-8 (Hitoshi et al., 1998)

A2.3.2. Οδός περφορίνης/γκρανενζύμων

Η διαμεσολαβούμενη από Τ-κύτταρα κυτταροτοξικότητα είναι μια παραλλαγή της υπερευαισθησίας τύπου IV, όπου ευαισθητοποιημένα CD8+ κύτταρα σκοτώνουν αντιγονοπαρουσιαστικά κύτταρα. Αυτά τα κυτταροτοξικά Τ λεμφοκύτταρα (CTLs) μπορούν να σκοτώσουν τα κύτταρα στόχους μέσω της εξωγενούς οδού και η FasL/FasR αλληλεπίδραση είναι η κυρίαρχη μέθοδος CTL-επαγόμενης απόπτωσης (Brunner et al., 2003). Ωστόσο, είναι επίσης σε θέση να ασκούν κυτταροτοξικές επιδράσεις σε κύτταρα όγκου και μολυνθέντα από ιό κύτταρα μέσω ενός άλλου μονοπατιού που περιλαμβάνει έκκριση της διαμεμβρανικής πρωτείνης δημιουργίας πόρων, της περφορίνης, με την επακόλουθη απελευθέρωση κυτταροπλασματικών κοκκών διαμέσου του πόρου και μέσα στο κύτταρο στόχο (Trapani και Smyth, 2002).

Τα γκρανένζυμα Α και Β, δύο πρωτείνια σερυνής, είναι τα πιο σημαντικά συστατικά εντός των κοκκών (Pardo et al., 2004). Το γκρανένζυμο Β διασπά πρωτείνες σε υπολείμματα ασπαρτικού και ως εκ τούτου θα ενεργοποιήσει την προκασπάση-10 και μπορεί να υδρολύσει παράγοντες όπως τον ICAD (Αναστολέας της ενεργοποιούμενης από κασπάσες DNAάσης) (Sakahira et al., 1998). Έχει επίσης δειχθεί ότι το γκρανένζυμο Β μπορεί να χρησιμοποιήσει το μιτοχονδριακό μονοπάτι για την ενίσχυση του σήματος θανάτου με ειδική διάσπαση της Bid και επαγωγή της απελευθέρωσης του κυτοχρώματος C (Barry και Bleackley, 2002, Russell και Ley, 2002). Ωστόσο, το γκρανένζυμο Β μπορεί επίσης να ενεργοποιήσει άμεσα την κασπάση-3. Με τον τρόπο αυτό, τα ανοδικά μονοπάτια σηματοδότησης παρακάμπτονται και υπάρχει άμεση επαγωγή της φάσης εκτέλεσης της απόπτωσης. Προτείνεται ότι τόσο το μιτοχονδριακό μονοπάτι, όσο και η άμεση ενεργοποίηση της κασπάσης-3 είναι κρίσιμες για την επαγόμενη από το γκρανένζυμο Β θανάτωση (Goping et al., 2003).

Το γκρανένζυμο Α είναι επίσης σημαντικό στην επαγόμενη από Τ-κυτταροτοξικά κύτταρα απόπτωση και ενεργοποιεί οδούς ανεξάρτητες κασπασών. Μόλις εισέλθει στο κύτταρο, το γκρανένζυμο Α ενεργοποιεί την υδρόλυση του DNA μέσω της DNAάσης NM23- H1, ένα προϊόν ογκοκατασταλτικού γονίδιου (Fan et al., 2003). Αυτή η DNAάση έχει ένα σημαντικό ρόλο στην ανοσολογική επιτήρηση για την πρόληψη του καρκίνου μέσω της επαγωγής της απόπτωσης των καρκινικών κυττάρων. Η πρωτείνη συναρμολόγησης των νουκλεοσωμάτων (SET) συνήθως αναστέλλει το γονίδιο NM23-H1. Το γκρανένζυμο Α διαστά το σύμπλοκο SET αίροντας έτσι την αναστολή της NM23-H1, με αποτέλεσμα την αποπτωτική αποκδόμηση του DNA. Εκτός από την αναστολή της NM23-H1, το συγκρότημα SET έχει σημαντικές λειτουργίες στην δομή της χρωματινής και την επιδιόρθωση του DNA. Οι πρωτείνες που
συνθέτουν αυτό το σύμπλοκο (SET, Ape1, pp32 και HMG2) φαίνονται να εργάζονται από κοινού για την προστασία της χρωματινής και της δομής του DNA (Lieberman και Fan, 2003). Ως εκ τούτου, η απενεργοποίηση αυτού του συμπλοκού από το γκρανζυμο A πιθανότατα συμβάλλει επίσης στην απόπτωση αναστέλλοντας τη διατήρηση της ακεραιότητας της δομής του DNA και της χρωματινής.

**A2.3.3.Ενδογενής οδός**

Τα εγγενείς μονοπάτια σηματοδοτήσης που εκκινούν την απόπτωση περιλαμβάνουν μία ποικιλία από ερεθύσματα χωρίς διαμεσολάβηση υποδοχέων, τα οποία παράγουν ενδοκυτταρικά σήματα που δρουν απευθείας επί στόχων εντός του κυττάρου και είναι ουσιαστικά γεγονότα εκκαινομένα από μιτοχόνδρια. Τα ερεθύσματα που εκκινούν την ενδογενή οδό παράγουν ενδοκυτταρικά σήματα τα οποία μπορεί να ενεργούν είτε με θετικό είτε με αρνητικό τρόπο. Στα αρνητικά σήματα περιλαμβάνεται η απουσία ορισμένων αυξητικών παραγόντων, ορμονών και κυττακιών που μπορεί να οδηγήσουν σε αποτυχία της καταστολής των προγραμμάτων θανάτου, πυροδοτώντας έτσι την απόπτωση. Αντίθετα, τα ερεθύσματα που δρουν με θετικό τρόπο περιλαμβάνουν ακτινοβολίες, τοξίνες, υποξία, υπερθερμανσιούς, ιογενειοβολίες και ελεθίρες ρύζες.


Η δεύτερη ομάδα των αποπτωτικών πρωτεϊνών, δηλαδή η AIF, η ενδονυκλεάση G και η CAD, απελευθέρωνονται από τα μιτοχόνδρια κατά τη διάρκεια της απόπτωσης, αλλά αυτό είναι ένα από τα τελευταία γεγονότα που συμβαίνουν αφού το κύτταρο έχει ήδη δεσμευτεί να πεθάνει. Η AIF μετατοπίζεται στον πυρήνα και προκαλεί κατακερματισμό του DNA σε θραύσματα ~50-300 kb και συμπύκνωσή της περιφερικής πυρηνικής χρωματινής (Joza et al., 2001). Αυτή η πρώιμη μορφή της πυρηνικής συμπύκνωσης αναφέρεται ως συμπύκνωση
«σταδίου I» (Susin et al., 2000). Η ενδονουκλεάση G μετατοπίζεται επίσης στον πυρήνα, όπου διασπά την πυρηνική χρωματίνη και παράγει ολογουνουκλεϊκά θραύσματα DNA (Li et al., 2001). Η AIF και η ενδονουκλεάση G λειτουργούν και οι δύο με τρόπο ανεξάρτητο κασπασών. Στη συνέχεια, η CAD απελευθερώνεται από τα μιτοχόνδρια και μετατοπίζεται στον πυρήνα όπου, μετά από διάσπαση από την κασπάση-3, οδηγεί σε κατακερματισμό του DNA και πιο έντονη και προηγμένη συμπύκνωση της χρωματίνης (Enari et al., 1998). Αυτού του είδους η πιο έντονη συμπύκνωση της χρωματίνης αναφέρεται ως συμπύκνωση «σταδίου II» (Susin et al., 2000).

Ο έλεγχος και η ρύθμιση αυτών των αποπτωτικών μιτοχονδριακών συμβιντών γίνεται μέσω των πρωτεϊνών μελών της οικογένειας Bcl-2 (Cory και Adams, 2002). Η p53 ογκοκατασταλτικό πρωτεΐνη διαδραματίζει υπόνομα κατά την ρύθμιση της οικογένειας μιτοχονδριακών μεμβράνων και μπορεί να έχει είτε αποπτωτικό είτε αντιαποπτωτικό ρόλο. Μέχρι σήμερα, 25 συνολικά γονίδια έχουν ταυτοποιηθεί στην οικογένεια Bcl-2. Μερικά από τα αντιαποπτωτικά μορία περιλαμβάνουν τις Bcl-2, Bcl-x, Bcl-XL, Bcl-w, BAG, ενώ στις αποπτωτικές πρωτεΐνες συμπεριλαμβάνονται οι Bcl-10, Bax, Bak, Bid, Bim, Bik, και Blk.

Αυτούς οι πρωτεϊνες έχουν ιδιαίτερη σημασία, δεδομένου ότι μπορούν να καθορίσουν αν το κύτταρο θα προχωρήσει με την απόπτωση ή αν θα ακυρωθεί η άλλη διαδικασία. Πιστεύεται ότι ο κύριος μηχανισμός δράσης της Bcl-2 οικογένειας πρωτεϊνών είναι η ρύθμιση της απελευθέρωσης του κυτοχρώματος C από τα μιτοχόνδρια μέσω μεταβολής της διαπερατότητας της μιτοχονδριακής μεμβράνης. Η μιτοχονδριακή βλάβη στο Fas μονοπάτι της απόπτωσης διαμεσολαβείται από την διάσπαση της Bid από την κασπάση-8 (Li et al, 1998, Esposti, 2002). Αυτό είναι ένα παράδειγμα της αλληλεπίδρασης μεταξύ του εξωγενού και του ενδογενού μονοπατίου (Igney και Krammer, 2002). Η ψωσφορυλίωση σε σερίνες της Bad σχετίζεται με την 14-3-3, ένα μέλος της οικογένειας πολυλειτουργικών μορίων που δεσμεύουν ψωσφοσφηνή. Όταν η Bad ψωσφοφορίζεται, παγιδεύεται από την 14-3-3 και απορροφάται στο κυτταρόπλασμα, αλλά εάν η Bad είναι μη ψωσφοφορίζη, μετατοπίζεται στη μιτοχόνδρια για να απελευθερώσει το κυτόχρωμα C (Zha, et al., 1996). Η Bad μπορεί επίσης να ετεροδιμερύζεται με την Bcl-XL ή την Bcl-2, εξουδετερώνοντας την προστατευτική τους δράση και προωθώντας τον κυτταρικό θάνατο (Yang et al., 1995). Όταν είναι απομονωμένες από την Bad, τόσο η Bcl-2 όσο και η Bcl-XL αναστέλλουν την απελευθέρωση του κυτοχρώματος C από τα μιτοχόνδρια, αλλά και ο μηχανισμός δεν είναι καλά κατανοητός. Φαίνεται ότι η Bcl-2 και η Bcl-XL αναστέλλουν τον αποπτωτικό θάνατο κυρίως με τον έλεγχο της ενεργοποίησης των πρωτεεσών καστάσης (Newmeyer et al., 2000).

Μία επιπλέον πρωτεΐνη που ονομάζεται "Aven" εμφανίζεται να δεσμεύει τόσο την Bcl-XL όσο και την Apaf-1, εμποδίζοντας έτσι την ενεργοποίηση της προκασπάσης-9 (Chau et al., 2000). Υπάρχουν ενδείξεις ότι η υπερέκφραση είτε του Bcl-2 είτε του Bcl-XL μειορρυθμίζει
την έκφραση του άλλου, δείχνοντας μια αμοιβαία ρύθμιση μεταξύ των δύο αυτών πρωτεινών. 
Οι Puma και Noxa είναι δύο άλλα μέλη της οικογένειας Bcl-2 που εμπλέκονται επίσης στην 
απόπτωση. Η Puma παίζει ένα σημαντικό ρόλο στην p53-διαμεσολαβούμενη απόπτωση. 
Δείχθηκε ότι, in vitro, η υπερέκφραση του Puma συνοδεύεται από αυξημένη έκφραση της 
BAX, αλλαγή στη στερεοδομή της, μετατόπιση της στα μιτοχόνδρια, απελευθέρωση 
κυτοχρώματος C και μείωση του δυναμικού της μιτοχόνδριακής μεμβράνης (Liu et al., 2003). 
Η Noxa είναι επίσης ένας υποψήφιος μεσολαβητός της p53-διαμεσολαβούμενης απόπτωσης. 
Οι μελέτες δείχνουν ότι η πρωτεΐνη αυτή μπορεί να εντοπίζεται στα μιτοχόνδρια και να 
αλληλεπιδρά με αντιαποπτωτικά μέλη της οικογένειας Bcl-2, με αποτέλεσμα την 
ενεργοποίηση της καςπαςης-9 (Oda et al., 2000). Δεδομένου ότι τόσο η Puma όσο και η Noxa 
επάγονται από το p53, μπορεί να μεσολαβούν στην απόπτωση που προκαλείται από 
γονιδιακή βλάβη ή ενεργοποίηση ογκογονιδίων. Η Myc ογκοπρωτεΐνη έχει επίσης αναφερθεί 
ότι ενισχύει την απόπτωση μέσω δύο μηχανισμών, τόσο εξαρτώμενα όσο και ανεξάρτητα από 
το p53 (Meyer et al., 2006).

2.3.4. Μονοπάτι εκτέλεσης

Η εξωγενής και η ενδογενής οδός καταλήγουν τελικά στη φάση εκτέλεσης, που θεωρείται η 
teλική οδός της απόπτωσης. Περιλαμβάνει την ενεργοποίηση των καςπαςών εκτέλεσης που 
ξεκινά αυτή τη φάση της απόπτωσης. Καςπάςεις τελεστές ενεργοποιούν 
kυτταροπλασματικές ενδονουκλεάσεις, οι οποίες αποικοδομούν τα πυρηνικά υλικά, και 
πρωτεάσεις που αποικοδομούν τόσο πυρηνικές, όσο και κυτταροπλασματικές πρωτείνες. 
Η καςπάςη-3, η καςπάςη-6 και η καςπάςη-7 λειτουργούν ως τελεστικές καςπάςεις, διασπούν 
dιάφορα υποστρώματα που τελικά προκαλούν τις μορφολογικές και βιοχημικές αλλαγές που 
pαρατηρούνται στα αποπτωτικά κύτταρα (Slee et al., 2001).

Η καςπάςη-3 θεωρείται ότι είναι η πιο σημαντική από τις τελεστικές καςπάςεις και 
eνεργοποιείται από οποιαδήποτε από τις καςπάςεις εκκινητές (καςπάςη-8, καςπάςη-9, ή 
καςπάςη-10). Η καςπάςη-3 ενεργοποιεί ειδικά την CAD ενδονουκλεάση, η οποία, σε 
pολλαπλασιαζόμενα κύτταρα βρίσκεται σε σύμπλοκο με τον αναστολέα της, ICAD. Σε 
αποπτωτικά κύτταρα όμως, η ενεργοποιημένη καςπάςη-3 διασπά το ICAD, ώστε να 
apελευθερώσει την CAD (Sakahira et al., 1998). Η CAD στη συνέχεια αποικοδομεί το 
χρωμοσωμικό DNA εντός των πυρήνων και προκαλεί συμπύκνωση της χρωματίνης. Η 
καςπάςη-3 επάγει επίσης την αναδιοργάνωση του κυτταροσκελετού και την αποσύνθεση 
του κυττάρου σε αποπτωτικά σωμάτια.

Η γελσολίνη, μια πρωτεΐνη που δεσμεύει ακτίνη, έχει ταυτοποιηθεί ως ένα από τα βασικά 
υποστρώματα της ενεργοποιημένης καςπάςης-3. Η γελσολίνη λειτουργεί συνήθως ως 
pυρήνας για τον πολυμερισμό της ακτίνης, και συνδέεται επίσης με τη διαφωτική 
φωσφατιδυλινοσιτόλη, συνδέοντας την οργάνωση της ακτίνης με την μεταγωγή σήματος. Η
κασπά-3 διασπά τη γελσολίνη και τα θραυσματα της γελσολίνης, με τη σειρά τους, κατακερματίζουν τα νημάτια ακτίνης με τρόπο ανεξάρτητο του ασβεστίου. Αυτό έχει ως αποτέλεσμα τη διάσπαση του κυτταροσκελετού, την κυτταρική διάσπαση, και την μεταγωγή σήματος (Kothakota et al., 1997).

Η φαγοκυτταρική πρόσληψη των αποπτωτικών κυττάρων είναι το τελευταίο στάδιο της απόπτωσης. Η ασυμμετρία των φωσφολιπιδίων και η εξωτερίκευση της φωσφατιδυλοσερίνης στην επιφάνεια των αποπτωτικών κυττάρων και των θραυσμάτων τους είναι το σήμα κατατεθέν της φάσης αυτής. Αν και ο μηχανισμός μετατόπισης της φωσφατιδυλοσερίνης στην εξωτερική στιβάδα του κυττάρου κατά την διάρκεια της απόπτωσης δεν είναι καλά κατανοητός, έχει συσχετιστεί με την απώλεια της δραστικότητας της αμινοφωσφολιπιδικής μεταθέτασης και μη ειδική αναστροφή φωσφολιπιδίων διαφόρων κατηγοριών (Bratton et al., 1997). Έρευνες δείχνουν ότι η Fas, η κασπά-8 και η κασπά-3 ενέχουνται στη ρύθμιση της εξωτερίκευσης της φωσφατιδυλοσερίνης σε οξειδωτικά καταπονημένα ερυθροκύτταρα, οπότε συμβαίνει και ανεξάρτητη από κασπάσες έκθεση της φωσφατιδυλοσερίνης κατά την απόπτωση των πρωτογενών Τ-λεμφοκυττάρων (Ferraro-Peyret et al, 2002, Mandal et al., 2005). Η εμφάνιση της φωσφατιδυλοσερίνης στην εξωτερική επιφάνεια των αποπτωτικών κυττάρων, διευκολύνει στη συνέχεια μη φλεγμονώδη φαγοκυτταρική αναγνώριση, επιτρέποντας την έγκαιρη πρόσληψη και αποκολλήμενη τους (Fadok et al., 2001). Αυτή η διαδικασία της έγκαιρης και αποτελεσματικής πρόσληψης χωρίς απελευθέρωση των κυτταρικών συστατικών, οδηγεί σε ουσιαστικά μηδαμινή φλεγμονώδη απόκριση.
Εικόνα A2.2. Τα μονοπάτια της απόπτωσης ελέγχονται από διάφορα μόρια που ενεργοποιούν ή απενεργοποιούν τις κασπάσες, οι οποίες τελικά είναι υπεύθυνες για την καταστροφή του κυττάρου. (Nature Reviews Molecular Cell Biology 12, 439-452 (July 2011) doi:10.1038/nrm3143 Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death, Domagoj Vucic, Vishva M. Dixit & Ingrid E. Wertz)
Α3. ΚΑΡΚΙΝΟΣ ΤΟΥ ΠΡΟΣΤΑΤΗ

A3.1 Δομή του ανθρώπινου προστάτη

Ο προστάτης είναι ένα αδενομυώδες, εσωτερικό οργανό του άνδρα, το οποίο μαζί με τους υαρηθρικούς και βολβουρηθριαίους αδένες αποτελεί τους κύριους αδένες του ουρογεννητικού ανθρώπινου συστήματος. Ο φυσιολογικός προστάτης έχει σχήμα κάστανου και βάρος περίπου 20 gr. Ανατομικά, βρίσκεται πίσω από την ηβική σύμφωνη, μπροστά από το ορθό, κάτω από την υυροδόχο κύστη και περιβάλλει την ομίζθια προστατική ουρήθρα, στην οποία εκβάλλουν οι εκσπερματικοί και οι προστατικοί πόροι.

Εικόνα A3.1. Ανατομική θέση προστάτη.

Ο προστάτης περιβάλλεται από μια ινώδη κάψα η οποία είναι πλούσια σε αιμοφόρα αγγεία. Εσωτερικά αυτής βρίσκονται ίνες από κολλαγόνο, καθώς και κυκλοτερεύσ λεύεσ μυώκυσ ίνεσ που περιβάλλουν την ουρήθρα, συνιστώντας τον ακούσιο σφικτήρα της. Βαθύτερα βρίσκεται το προστατικό στρώμα, που αποτελείται από συνεκτικό και ελαστικό ιστό με λεύεσ μυίκες ίνες. Στο στρώμα αυτό είναι βυθισμένοι 30-50 σωλήνοκυψελωτοί αδένες. Οι αδένες αυτοί εκβάλλουν στους μείζονες εκφορητικούς πόρους που με τη σειρά τους εκβάλλουν στην οπίσθια ουρήθρα.

Ο προστάτης, σύμφωνα με την ταξινόμηση του Lowsly, διακρίνεται σε πέντε λοβούς. Τον πρόσθιο, τον οπίσθιο, το μέσο και τους δυο πλάγιους. Σύμφωνα με τον McNeal αποτελείται από πέντε ζώνες: Την περιφερική, την κεντρική, τη μεταβατική, την προ-προστατική και την πρόσθια. Η περιφερική ζώνη καταλαμβάνει το 70% του όγκου του προστάτη και αποτελεί το πιο κοινό σημείο εμφάνισης ενδοεπιθηλιακής νεοπλασίας και καρκίνου. Οι κυψελώδεις της περιφερικής ζώνης είναι απλές, κυκλικές προς ωειδείς και βυθίζονται στο στρώμα των λείων μυίκων ινών. Η κεντρική ζώνη αντιστοιχεί στο 25% του όγκου του προστάτη, έχει κοινό σχήμα, περιλαμβάνει τη βάση του αδένα και περικλείει τους εκσπερματικούς πόρους. Οι
κυψελίδες είναι μακριές, σύνθετες με ενδοαυλικές ακρολοφίες και θηλώδεις πτυχές, ενώ ορισμένες εμφανίζουν διάτρητη μορφή. Στην κεντρική ζώνη παρουσιάζεται η μεγαλύτερη αναλογία επιθηλίου προς στρώμα. Η μεταβατική ζώνη αντιστοιχεί στο 5% του όγκου του προστάτη και σε περιπτώσεις καλοψίδες υπερπλασίας μεγεθύνεται μαζί με το υπερκεύμενο ινομυώδες στρώμα. Οι κυψελίδες εδώ είναι απλές, μικρές, κυκλικές και παράμοιες με αυτές της περιφερικής ζώνης.

Εικόνα A3.2. Σχηματική αναπαράσταση τομής προστάτη.

Το επιθήλιο του προστάτη αποτελείται από τρεις τύπους κυττάρων. Τα εκκριτικά, τα βασικά μη εκκριτικά και τα νευροενδοκρινή (Coffey, 1993). Τα εκκριτικά κύτταρα βρίσκονται στο εσωτερικό των κυψελίδων, είναι κυλινδροειδή και έχουν διαφανές κυτταρόπλασμα. Διαθέτουν την ικανότητα να εκκρύνουν διάφορα προώτα όπως το Ειδικό Προστατικό Αντιγόνο (PSA), την Όξινη Προστατική Φωσφατάση (PAP) και την Όξινη βλέννα. Ως πλήρως διαφοροποιημένα κύτταρα, παρουσιάζουν το μικρότερο ρυθμό πολλαπλασιασμού. Τα βασικά κύτταρα βρίσκονται στην περιφέρεια των κυψελίδων, κάτω ακριβώς από τη βασική μεμβράνη. Διαθέτουν τον εντονότερο ρυθμό πολλαπλασιασμού και θεωρούνται προγονικά των εκκριτικών επιθηλιακών κυττάρων (Bonkhoff et al., 1996). Επίσης, τα βασικά κύτταρα στερούνται υποδοχέων ανδρογόνων, καθώς και προϊόντων των εκκριτικών κυττάρων, όπως το PSA, η PAP και η Όξινη βλέννα. Τα νευροενδοκρινή κύτταρα μπορούν να ελέγχουν την ανάπτυξη και τη λειτουργία των επιθηλιακών κυττάρων μέσω νευροπεπτιδίων που διαθέτουν (Coffey, 1992).
Εικόνα A3.3. Σχηματική αναπαράσταση της σύστασης του επιθηλίου του προστάτη.

Το αίμα που τροφοδοτεί τον προστάτη προέρχεται από τις κάτω κυστικές, έσω αιδοϊκές και μέσο-ορθικές αρτηρίες. Η νεύρωση του αδένα προέρχεται από τα συμπαθητικά και παρασυμπαθητικά νευρικά πλέγματα (Μπαρμπαλιάς, 1995).

A3.2. Λειτουργία του προστάτη

Ο προστάτης είναι ένας εξωκρινής αδένας που εκφρίνει ένα λεπτόρρευστο, γαλακτόχρωμο, αλκαλικό υγρό που περιέχει κιτρικό οξύ, ασβέστιο και διάφορες άλλες ουσίες. Κατά την εκσπερμάτιση, η κάψα του προστάτη συσπάται ταυτόχρονα με το σπερματικό πόρο, με αποτέλεσμα στο σπέρμα να προστίθεται το υγρό του προστάτη. Η αλκαλική σύσταση του προστατικού υγρού έχει μεγάλη σημασία για την επιτυχία της γονιμοποίησης του ωαρύου, επειδή το υγρό του σπερματικού πόρου είναι σχετικά ζύμι, εξαιτίας της παρουσίας σε αυτό τελικών προϊόντων του μεταβολισμού των σπερματοζώαρίων, με αποτέλεσμα την αναστολή της κινητικότητάς και της γονιμότητάς τους. Επίσης όξινα είναι και τα εκκρίματα του κόππου της γυναίκας (pH 3,5-4). Τα σπερματοζώαρία δεν αποκτούν άριστη κινητικότητα αν το pH του περιβάλλοντός τους δεν είναι περίπου 6-6,5. Για το λόγο αυτό, το σπερματικό υγρό εξουδετερώνει την οξύτητα των άλλων υγρών μετά την εκσπερμάτιση και αυξάνει πολύ την κινητικότητα και τη γονιμότητα των σπερματοζώαρίων (Guyton, 1984).
Α3.3. Ρύθμιση της αύξησης του προστάτη

Ο προστάτης εμφανίζεται κατά τη διάρκεια των τριών πρώτων μηνών της ενδομήτριας ζωής, ως επιθηλιακή εγκόλπωση της ουρήθρας. Μένει ατροφικός κατά την παιδική ηλικία και αναπτύσσεται στην εφηβεία με την επίδραση αυξητικών παραγόντων, ορμονών και κυρίως με την παρουσία αυξημένων επιπέδων ανδρογόνων στην κυκλοφορία (Cunha et al., 1983).

Α3.3.1. Ρύθμιση μέσω αυξητικών παραγόντων

Κατά την αύξηση του προστάτη παρατηρούνται αλληλεπιδράσεις ανάμεσα στα επιθηλιακά κύτταρα και τα κύτταρα του στρώματος. Οι αλληλεπιδράσεις αυτές γίνονται μέσω παραγωγής και έκκρισης -από τα δύο αυτά είδη κυττάρων- διαφόρων αυξητικών παραγόντων. Οι αυξητικοί παράγοντες δρουν μέσω παρακρινών ή αυτοκρινών μηχανισμών και έχουν καθοριστική σημασία τόσο για τη διατήρηση της ομοιόμορφης του αδένα, όσο και για παθολογικές καταστάσεις όπως είναι ο καρκίνος.

Α3.3.2. Ορμονολογική ρύθμιση

Παρόλο που τα ανδρογόνα είναι οι κύριοι παράγοντες για τη φυσιολογική ανάπτυξη του προστάτη, απαραίτητη είναι και η συμμετοχή μη ανδρογόνων ορμονών. Μετά από ενεργοποίηση από τον εκλυτικό παράγοντα της προλακτίνης (Prolactin Releasing Factor, PRF) και από τον εκλυτικό παράγοντα της αυξητικής ορμόνης (Growth Hormone Releasing Factor, GHRH), που εκφράζονται από τον υποθαλάμο, εκπροσωπούνται από την υπόφυση της προλακτίνης και της αυξητικής ορμόνης αντίστοιχα. Οι δύο αυτές ορμόνες, προσδενόμενες στους ειδικούς υποδοχείς του προστάτη, επάγουν τον πολλαπλασιασμό και τη διαφοροποίηση των κυττάρων. Επιπλέον, υπό τον έλεγχο του απελευθερωτικού παράγοντα των γοναδοτροπινών (Gonadotropin Releasing Hormone, GnRH) του υποθαλάμου, βρίσκεται η έκκριση από την υπόφυση της ωσθηλακιοτρόπου ορμόνης (Follicle Stimulating Hormone, FSH) και της ωχρινοτρόπου ορμόνης (Luteinizing Hormone, LH). Οι δύο αυτές ορμόνες δρουν επί των όρχεων, επάγοντας την σύνθεση της τεστοστερόνης.
### Α3.3.3 Ανδρογόνα

Τα ανδρογόνα αποτελούν τον πιο σημαντικό παράγοντα που επιτρέπει την ανάπτυξη και τη λειτουργικότητα του προστάτη. Τα ανδρογόνα είναι στεροειδείς ορμόνες που επάγουν τη διαφοροποίηση και την ωρίμανση των αρσενικών αναπαραγωγικών οργάνων, καθώς και την ανάπτυξη των δευτερογενών χαρακτηριστικών του φύλου. Στους φυσιολογικούς άνδρες, το 98% των ανδρογόνων που κυκλοφορεί στο αίμα, είναι δεσμευμένο με πρωτεϊνές του πλάσματος, όπως η αλβουμίνη και κυρίως η SHBG (Sex Hormone-Binding Globulin), ενώ το υπόλοιπο 2% βρίσκεται σε ελεύθερη μορφή (Pardridge, 1981).

Η τεστοστερόνη, η κυριότερη ορμόνη αυτό από τα ανδρογόνα, συντίθεται στους όρχεις από τα κύτταρα Leydig, μετά από την επίδραση της LH. Η LH εκκρίνεται από την υπόφυση και βρίσκεται υπό τον έλεγχο της εκλυτικής ορμόνης της ωχρινοτρόπου ομόνης (Luteinizing Hormone Releasing Hormone, LHRH) του υποθαλάμου. Μικρότερη πηγή ανδρογόνων αποτελεί ο φλοιός των επινεφριδίων. Υπό την επίδραση της φλοιοεπινεφριδιακής ομόνης (Adrenocorticotropic Hormone, ACTH), που παράγεται από την υπόφυση, απελευθερώνονται από τα επινεφρίδια ανενεργά πρόδρομα ανδρογόνων, όπως η διϋδροπαιανδροστερόνη (DHEA) και ο ανδροστενεδιόνη. Οι ορμόνες αυτές ψυχιατρικοί ασκούν μικρή δράση στη λειτουργία των όρχεων. Σε περιπτώσεις όμως ψυχικού ή χημικού ευνοχισμού, συμβάλουν στην επιβίωση ορισμένων ανδρογονοεξαρτώμενων καρκινικών κλώνων.

Μετά την εύσοδό τους στον προστάτη, η τεστοστερόνη και τα ανδρογόνα από τα επινεφρίδια μεταβολίζονται γρήγορα από το ένζυμο 5-α-αναγωγή σε διϋδροτεστοστερόνη (DHT) (Syrigos, 2001). Η DHT αποτελεί το ανδρογόνο που είναι υπεύθυνο για την ανάπτυξη του προστάτη και είναι 3-5 φορές πιο δραστικό από την τεστοστερόνη. Η DHT παράγεται από τα βασικά κύτταρα και από τα κύτταρα του στρώματος και δρα στα παρακείμενα επιθηλιακά κύτταρα. Μετά την εύσοδό της στον πυρόνα, δεσμεύεται σε ανδρογονικές υποδοχές και το σύμπλοκο προσέδεται σε ειδικές ρυθμιστικές ακολουθίες των γονιδίων στόχων, επάγοντας τη μεταγραφή. Μεταξύ των γονιδίων που ενεργοποιεί, είναι αυτά που κωδικοποιούν τον επιδερμικό αυξητικό παράγοντα (EGF) και τον αυξητικό παράγοντα των αιμοπεταλών (PDGF), που συμβάλλουν στην αύξηση του αδένα (Steers, 2001).

Ιδιαίτερα σημαντική για τη φυσιολογική ανάπτυξη του προστάτη είναι και η παρουσία οιστρογόνων. Το 75-90% των οιστρογόνων που βρίσκονται στη κυκλοφορία προέρχονται από περιφερειακή κυκλοποίηση τεστοστερόνης και ανδροστενεδιόνης. Οι όρχεις συνθέτουν το υπόλοιπο 10-25%, αλλά οιστρογόνα σχηματίζονται και μέσα στον προστάτη (Syrigos, 2001).
Α3.4. Καλοήθης υπερπλασία του προστάτη

Είναι μια πάθηση που προσβάλει ένα μεγάλο αριθμό ανδρών που έχουν περάσει τα 50 χρόνια ζωής, χωρίς να αποκλείεται η εμφάνισή της παθήσεως σε μικρότερη ηλικία. Παρόλο που η ζωή των ατόμων με καλοήθη υπερπλασία του προστάτη δεν διατρέχει άμεσο κίνδυνο, η ποιότητα ζωής τους μειώνεται.

Ο προστάτης, φυσιολογικά αναπτύσσεται κατά τη διάρκεια της εφηβείας. Ωστόσο, είναι πιθανόν με την πάροδο της ηλικίας να παρατηρηθεί και αύξηση του όγκου του προστάτη, κατάσταση που ονομάζεται καλοήθης υπερπλασία του προστάτη (Benign Prostate Hyperplasia, BPH). Η αύξηση αυτή προκαλείται από υπερπλασία των βασικών κυττάρων και των κυττάρων του στρώματος. Η υπερπλασία των κυττάρων του στρώματος οφείλεται σε μείωση της απόπτωσης σε αυτά τα κύτταρα. Επειδή όμως δεν παρατηρείται κάτι ανάλογο στα επιθηλιακά κύτταρα, το τελικό αποτέλεσμα είναι η αλλαγή της αναλογίας επιθηλίου/στρώματος (Claus et al., 1997).

A3.5. Καρκίνος του προστάτη

Ο καρκίνος του προστάτη είναι μια σοβαρή ασθένεια, η οποία στις ΗΠΑ -μετά τον καρκίνο του πνεύμονα- αποτελεί τη δεύτερη αιτία θανάτου που οφείλεται σε καρκίνο. Τα αυξημένα κρούσματα της ασθένειας από το 1988 και έπειτα είναι πιθανότατα αποτέλεσμα της πληθυσμιακής αύξησης του και των βελτιωμένων μεθόδων ανίχνευσης. Μια από αυτές είναι το τεστ PSA, το οποίο ανιχνεύει την ασθένεια σε πρώιμα στάδια, αυξάνοντας τη βιωσιμότητα των ασθενών (Moul, 2003).

Το μεγαλύτερο ποσοστό των καρκίνων του προστάτη είναι αδενοκαρκινώματα που αναπτύσσονται στη περιφερική ζώνη, ενώ ένα μικρό ποσοστό προέρχεται από τη μεταβατική ζώνη. Ο καρκίνος του προστάτη αρχίζει από την περιφέρεια του οργάνου, εξελίσσεται τοπικά και διηθεύ προοδευτικά στην κάψα και τις στράτες κύτταρος. Ωστόσο είναι δυνατόν να διηθούν και στους ουρητόρεις και την ουρόθρα. Επιπλέον, έχει τη δυνατότητα μετάστασης σε λεμφάδενες, στο ήπαρ, στους πνεύμονες, στο δέρμα και σε οστά του κρανίου, της λεκάνης και κυρίως της σπονδυλικής στήλης (Μπαρμπαλιάς, 1995).

Ιστολογικά, οι κυψελίδες ακολουθούν ακανόνιστα διάταξη και στο στρώμα είναι τυχαία κατανεμημένες, μονήρες ή σε συστάδες. Στην κοιλότητα των κυψελίδων παρατηρούνται κρυσταλλοειδείς σχηματισμοί που είναι αποτέλεσμα ανώμαλου μεταβολισμού πρωτεϊνών ή ανόργανων στοιχείων. Επίσης στη πλειοψηφία των καρκινικών κυττάρων εμφανίζεται διόγκωση του πυρήνα και του πυρηνισμού, καθώς και έλλειψη στιβάδας βασικών κυττάρων.
3.6. Βιολογικοί δείκτες του καρκίνου του προστάτη

Για τον καρκίνο του προστάτη έχουν προταθεί διάφορα μόρια ως βιολογικοί δείκτες, μεταξύ των οποίων υποδοχείς ανδρογόνων, διάφοροι ανυητικοί παράγοντες, η οξύνη προστατική φωσφοράση (PAP) και η υψηλή μοριακή βάρος κερατίνη 34Ε12. Ο πιο ευρέως χρησιμοποιούμενος όμως, είναι το Ειδικό Προστατικό Αντιγόνο (PSA).

Το PSA συντίθεται από τα εκκριτικά επιθηλιακά κύτταρα και καταλέγει τη ρευστοποίηση του σπερμοικόπημα τήματος μετά την εκσπερματίση. Είναι μια πρωτεΐνη σερντίμινας κατευθύνοντας στην ουκογένεια των καλλικρεϊνών. Το PSA ρυθμίζει τη λειτουργία του IGF, αφού εμποδίζει την αλληλεπίδραση με τον υποδοχέα του (Cohen et al., 1992).

Το PSA εντοπίζεται στον ορμό και τα φυσιολογικά επίπεδα κυμαίνονται κάτω των 4 ng/ml. Η τιμή όμως αυτή ποικίλει ανάλογα με την ηλικία και τη φυλή του εξεταζόμενου. Αυξημένα επίπεδα παρατηρούνται σε περιπτώσεις προστατιτίδας και υπερπλασίας, αλλά η σημαντικότερη αύξηση παρατηρείται σε περιπτώσεις καρκίνου. Η συγκέντρωσή του PSA χαρακτηρίζει το κλινικό στάδιο και το μέγεθος του καρκινικού όγκου. Χρησιμοποιείται για την πρόγνωση μετάστασης, καθώς και για τα αποτελέσματα της θεραπείας μετά την απομάκρυνση των ανδρογόνων. Σημαντικό επίσης είναι το ότι συμβάλλει στην έγκαιρη πρόγνωση του καρκίνου στα αρχικά στάδια και για το λόγο αυτό συνίσταται ο ετήσιος ελεγχός σε άνδρες άνω των 45 ετών. Αποτελεί μία γρήγορη μέθοδο, με υψηλή ευαισθησία και ακρίβεια ενώ έχει μικρό κόστος.

3.7. Μοντέλα μελέτης του καρκίνου του προστάτη

Ο καρκίνος του προστάτη εμφανίζεται σπάνια σε άλλα ζώα εκτός από τον άνθρωπο και για το λόγο αυτό δεν υπάρχει κάποιο ιδανικό μοντέλο μελέτης. Ένα τέτοιο μοντέλο θα έπρεπε να έχει μικρή διάρκεια γενιάς, να επηρεαζόταν από τη δράση ανδρογόνων, να παράγει PSA και να δίνει μεταστάσεις σε λεμφαδύνες και οστά (Coffey et al., 1980).

Υπάρχουν μοντέλα τρωκτικών των οποίων ο προστατής είναι χωρισμένος σε λοβούς. Παρόλο που υπάρχουν ανατομικές διαφορές με τον προστάτη του ανθρώπου, τα τρωκτικά αποτελούν πολύτιμα μοντέλα μελέτης, εξαιτίας της ανδρογονό-εξαρτώμενης πρόκλησης καρκίνου, αλλά και γιατί είναι σχετικά οικονομικά και εύκολα στη χρήση (Lucia et al., 1998). Τέτοια μοντέλα είναι το MPR που επιτρέπει τη μελέτη των παρακρινών αλληλεπίδρασεων μεταξύ των κυττάρων και το Dunning R-3327.

Τα τελευταία χρόνια έχει αναπτυχθεί και η τεχνολογία των διαγνωστικών κομμάτων, που παρέχουν τη δυνατότητα εισαγωγής ξένου γενετικού υλικού στο γονιδιώμα του πειραματόζωου. Στη συγκεκριμένη περίπτωση επιτρέπεται η παρατήρηση της αλληλεπίδρασης των γονιδιακών προϊόντων και των κυτταρικών αποκρίσεων, σε in vivo σύστημα μελέτης. Αναφορικά με τον προστάτη, το TRAMP (Transgenic Adenocarcinoma
Mouse Prostate) apoteleí to mοntέλο μελέτης to oπoίο anaptússseι kai metαstássseιs (Gingrich et al., 1996).

Επίσης χρησιμοποιούνται kai anvρώπινες karκινικές κυτταρικές σειρές, oi periσσότερες aπό tis oπoίες έχουν apomωnωθεί aπό metαstássseιs, me εξαίρεση tηn PC-93 που προέρχεται aπό prωτουγενή όγκο (Claas et al., 1983). Oi kalότερα μελετημένες kai oi πιο γνωστές είναι h DU-145, h PC3 kai h LNCaP.

A3.7.1. DU-145

Η καρκινική κυτταρική σειρά DU-145 apomωnωθήke aπό karκίνo tou prοστάτη, me metástαssα στo κεντρικό νευρικό σύστημα. Η αρχική διάγνωση ήταν ελαφρώς διαφοροποιημένο αδενοκαρκίνωμα, ενώ η μετάταση χαρακτηρίζεθηκε ως μετρίως διαφοροποιημένο αδενοκαρκίνωμα, με εστίες ελαφρώς διαφοροποιημένων κυττάρων. O χρόνος διπλασιασμού tων DU-145 είναι περίπου 34h (Mickey et al., 1980). Ta κύτταρα εμφανίζεται να είναι ευαίσθητα ή και εξαρτημένα από ορμόνες. Ta DU-145 παράγουν EGF, TGF-α καθώς και τον υποδοχέα EGFR σε υψηλές συγκέντρωσεις, επάγοντας αυτοκρινώς τον κυτταρικό πολλαπλασιασμό (Ching et al., 1993). Επιπλέον, διαθέτουν την ικανότητα παραγωγής bFGF, IGF-1 TGF-β, εκφράζουν τους αντίστοιχους υποδοχείς και διεγείρονται από εξωγενή bFGF, IGF-1 και TGF-β (Webber et al., 1997). Χαρακτηριστικό επίσης αποτελεί η έκφραση υποδοχών κυττάρων της διαφοροποιημένης φυσικής κυτταρικής σειράς. Η τρανςφερρήνη επάγει την ανάπτυξη τους και ενισχύει την ικανότητα μετάστασης σε οστά.

A3.7.2. PC3

Η PC3 είναι μια karκινική κυτταρική σειρά anθρώπινου προστάτη με metάstαση στην οσφυική μοίρα της σπονδυλικής στήλης. Η διάγνωση για τον ασθένη από τον οποίο προήλθε η συγκεκριμένη κυτταρική σειρά, ήταν τόσο αρχικά, όσο και στη μετάταση, ελαφρώς διαφοροποιημένο αδενοκαρκίνωμα. Ta κύτταρα χαρακτηρίζονται από απουσία του Y χρωμοσώματος, anαπτύσσονται εξίσου καλά σε καλλιέργειες και σε άγαρ και έχουν την ικανότητα ουγκογένεσης σε αθυμικά ποντίκια (Kaighn et al., 1979). Δεν εκφράζουν PSA και είναι υποδοχής ανδρογόνων. Υστόσο, πρόσφατες μελέτες έδειξαν ότι πιθανώς να εκφράζονται πολύ χαμηλές συγκέντρωσεις PSA (Garde et al., 1983) και υποδοχείς ανδρογόνων (Katsuoka et al., 1986).

Τα κύτταρα PC3 εκφράζουν έντονα TGF-α, bFGF και τους υποδοχείς EGFR και FGFR, επάγοντας αυτοκρινώς την ανάπτυξή τους. Αξιοσημειωτές είναι όμως το ότι μετά από επίδραση με εξωγενή bFGF δεν παρατηρείται καμία απόκριση, αλλά μετά από επίδραση με εξωγενή TGF-β, παρατηρείται αναστολή της ανάπτυξης, η οποία όμως επανέρχεται στα φυσιολογικά μετά από διαρκή επίδραση 6 ημερών (Webber et al., 1997). Επιπλέον, το μόριο κυτταρικής προσκόλλησης των επιθηλιακών κυττάρων C-CAM ρυθμίζεται από τα ανδρογόνα.
και παρατηρείται μείωση της αύξησης και της ογκογένεσης που τα PC3 προκαλούν, όταν μετασχηματιστούν με το γονίδιο της C-CAM (Hsieh et al., 1995). Τέλος, παρόμοια με τα DU-145, έχουν την ικανότητα έκφρασης του υποδοχέα της τρανςφερύνης (Rossi et al., 1982).

A3.7.3. LNCaP

Η καρκινική κυτταρική σειρά ανθρώπινου προστάτη LNCaP απομονώθηκε από μετάσταση σε λεμφικό αδένα. Η διάγνωση ήταν μετρώς διαφοροποιημένος καρκίνος του προστάτη. Ο ρυθμός πολλαπλασιασμού των LNCaP κυττάρων είναι 60-72h, εξαρτώμενος από την συγκέντρωση του ορού και ο χρωμοσωματικός αριθμός τους είναι 76. Διαθέτουν την ικανότητα έκφρασης PSA και PAP (Berns et al., 1986), καθώς και τον χρωμοσωματικό υγιών σε αθυμικά ποντικά. Στα LNCaP ανιχνεύονται υποδοχές ανδρογόνων, οι οποίες όμως έχουν μια μεταλλαγή στη θέση πρόσδεσης, με αποτέλεσμα να προσδένονται σε αυτούς και οιςτρογόνα. Εκφράζουν EGF και TGF-α, ενώ η έκφραση του υποδοχέα EGFR απέγαται από τα ανδρογόνα και τα οιςτρογόνα. Παρόλο όμως που παράγουν FGFR, δεν παράγουν σημαντικές ποσότητες bFGF. Μετά από επίδραση με εξωγενή EGF και bFGF παρατηρείται ανάπτυξη των κυττάρων και ενώ ο εξωγενής TGF-β δεν επηρεάζει τον πολλαπλασιασμό τους, επηρεάζει τη δράση των EGF και TGF-α (Schuurmans et al., 1991).

A3.8. RPTPβ/ζ (Receptor-like Protein-Tyrosine Phosphatase)

Η HARP έχει υψηλή συγγένεια με την ηπαρύνη. Εκτός όμως από την ηπαρύνη, οι αλυςύδες της θειικής ηπαρύνης διαφόρων πρωτεογλυκανών της κυτταρικής επιφάνειας ή του εξωκυττάριου υλικού, παρουσιάζουν και αυτές ισχυρή ικανότητα δέσμευσης της HARP. Επιπλέον, η θειική χονροώτυνη και η θειική δερματώνη παρουσιάζουν σε μικρότερο βαθμό συγγένεια με τη HARP, σε αντίθεση με τη θειική κερατώνη, η οποία δεν έχει συγγένεια (Vacherot et al., 1999).

Ο RPTPβ/ζ αποτελεί έναν επιπλέον υποδοχέα για τη HARP. Η αμινοτελική περιοχή του RPTPβ/ζ παρουσιάζει μεγάλη ομοιότητα με το ένζυμο καρβονικό ανυδρίςη (CAH). Ακολουθείται από την αλληλουχία της ισομορφής III (FNIII) και από το καρβοξυτελικό άκρο που είναι πλούσιο σε σερινές και γλυκίνες και το οποίο θεωρείται ότι είναι το σημείο πρόσδεσης της θειικής χονδροώτυνης. Το τμήμα αυτό συνδέεται με τις δυο καρβοξυτελικές κυτταροπλασματικές δομές φωςφατάσης. Μέχρι σήμερα έχουν ανιχνευθεί τρεις διαφορετικές ισομορφές του RPTPβ/ζ -δυο διαμεμβρανικές μορφές και μια εκκρινόμενη- οι οποίες είναι αποτέλεσμα εναλλακτικής ωρύμανσης του μεταχέρα. Τόσο η εκκρινόμενη μορφή, που αποτελείται από ολόκληρη την εξωκυττάρια περιοχή και η οποία ονομάζεται και φωςφακάνη ή 6B4 πρωτεογλυκάνη, όσο και η εκτενής διαμεμβρανική ισομορφή είναι πρωτεογλυκάνες θειικής χονδροώτυνης.
Οι ισομορφές της RPTPβ/ζ ανιχνεύονται στο αναπτυσσόμενο νευρικό σύστημα και θεωρείται ότι παίζουν ρόλο στη μετανάστευση των νευρώνων και στον προσανατολισμό των νευριτών. Οι διαμεμβρανικές μορφές του RPTPβ/ζ εντοπίζονται σε ζώνες πολλαπλασιασμού, ενώ η φωσφακάνη κατανέμεται στο όλο τον εγκέφαλο και μάλιστα σε μεγάλες ποσότητες (Maeda et al., 1998).
Β ΥΛΙΚΑ ΚΑΙ ΜΕΘΟΔΟΙ

B1. Ανακαλλιέργεια κυττάρων

Η καλλιέργεια των κυττάρων αποσκοπεί στη συνεχή παροχή του απαραίτητου προς μελέτη βιολογικού υλικού. Τα κύτταρα, όταν καλλιεργούνται σε στερεό υπόστρωμα, αριθμούν κατά γενικό κανόνα να αναπτυχθούν έως ότου καλύψουν το 80-90% της επιφάνειας του τρυβλίου, ένα σημείο δηλαδή μέχρι το οποίο η ανάπτυξή τους δεν παρεμποδίζεται από την έλλειψη χώρου. Σε πολλά είδη κυττάρων, όταν παρατηρείται έλλειψη χώρου, αναστέλλεται ο κυτταρικός πολλαπλασιασμός και τροποποιούνται οι μεταβολικές τους διαδικασίες με αδιερέυνητες μέχρι και σήμερα συνέπειες (contact inhibition). Σε κάποια μάλιστα είδη κυττάρων, όπως είναι τα HUVEC, όταν δεν υπάρχει διαθέσιμη επιφάνεια για να προσκολληθούν, πεθαίνουν, αποκαλλώνται και αιωρούνται στο θρεπτικό μέσο της καλλιέργειας. Το φαινόμενο αυτό κατά κανόνα δεν παρατηρείται σε καρκινικά κύτταρα τα οποία έχουν απωλεί τον έλεγχο του κυτταρικού κύκλου και πολλαπλασιάζονται συνεχώς.

Επομένως, σε καλλιέργειες πρωτογενών φυσιολογικών κυττάρων, η ανακαλλιέργεια τους θα πρέπει να πραγματοποιείται σε τακτά χρονικά διαστήματα, έτσι ώστε να διασφαλίζεται ο κατάλληλος αριθμός των κυττάρων για πειράματα αλλά και η ομαλή τους ανάπτυξη. Η αποκόλληση των κυττάρων από το υπόστρωμα είναι δυνατή α) με μηχανικό τρόπο, β) με χημική μέσα, γ) με ενζυμική δράση. Κατά την τελευταία περίπτωση συνήθως χρησιμοποιείται διάλυμα τρυφίνης το οποίο διασπά τις συνδέσεις των κυττάρων μεταξύ τους αλλά και με το στερεό τους υπόστρωμα. Για την ανακαλλιέργεια των HUVEC χρησιμοποιούνται τρυβλία Petri που ο πυθμένας τους έχει επιστρωθεί με τζελατίνη, επειδή έχει διαπιστωθεί ότι με αυτό τον τρόπο επιτυγχάνεται καλύτερη προσκόλληση των κυττάρων.

Υλικά και Διαλύματα

- Τρυφίνη/EDTA (0.05 %-0.02 % σε PBS χωρίς Ca²⁺).
- RPMI 1640
- Πλήρες θρεπτικό μέσο καλλιέργειας κυττάρων

Πειραματική πορεία

1. Παρατήρηση του τρυβλίου με τα κύτταρα στο μικροσκόπιο. Η εικόνα των κυττάρων είναι ενδεικτική της κατάστασης στην οποία βρίσκονται. Κύτταρα τα οποία είναι προσκολλημένα στο δάπεδο του τρυβλίου θεωρούνται υγιή ενώ επιπλέοντα κύτταρα στο θρεπτικό μέσο είναι κατά πάσα πιθανότητα νεκρά. Η ανακαλλιέργεια γίνεται όταν τα κύτταρα έχουν καλύψει κατά 80-90% την επιφάνεια του τρυβλίου στο οποίο καλλιεργούνται.

2. Μεταφορά του τρυβλίου με τα κύτταρα σε θάλαμο νηματικής ροής, όπου είναι δυνατή η εργασία υπό άσπιτες συνθήκες.
3. Αναρρόφηση του θρεπτικού μέσου της καλλιέργειας με πιπέτα Pasteur υπό κενό.
4. Έκπλυση των κυττάρων δύο φορές με PBS. Με τη διαδικασία αυτή απομακρύνονται τυχόν εναπομεινάντα ίχνη ορού, τα οποία περιέχουν αναστολέες της τρυψίνης. Τα κύτταρα δεν πρέπει να μένουν για μεγάλο χρονικό διάστημα χωρίς θρεπτικό μέσο ή PBS, αφού είναι ιδιαίτερα ευπαθή σε επαφή τους με τον αέρα. Επιπλέον, και ο χρόνος παραμονής των κυττάρων στο PBS (το οποίο δεν περιέχει ιόντα Ca^{2+}) δεν πρέπει να είναι μεγάλος, γιατί παρατηρείται απώλεια της επαφής τους με το υπόστρωμα.
5. Προσθήκη 1 ml τρυψίνης ανά τρυβλίο διαμέτρου 100 mm.
6. Παρατήρηση της αποκόλλησης των κυττάρων στο μικροσκόπιο. Τα κύτταρα υπό την επίδραση της τρυψίνης χάνουν το σχήμα τους και αποκτούν σφαιρική μορφή κατά την απώλεια της επαφής τους με το στερεό υπόστρωμα. Τα κύτταρα δεν πρέπει να μένουν για πολύ ώρα στην τρυψίνη, καθώς παρατεταμένη δράση της στα κύτταρα είναι δυνατό να οδηγήσει σε αυξημένη θητότητα.
7. Αμόσως μόλις πραγματοποιηθεί η αποκόλληση των κυττάρων, αναστέλλεται η τρυψίνη με την προσθήκη ίσου όγκου θρεπτικού μέσου RPMI που περιέχει 10% ορό.
8. Μεταφορική του εναιώρημα των κυττάρων σε αποστειρωμένο σωλήνα των 15 ml.
9. Φυγοκέντρηση για 4 min σε θερμοκρασία δωματίου στα 500 g.
10. Αναρρόφηση του υπερκεύμενου θρεπτικού μέσου με πιπέτα Pasteur.
11. Προσθήκη RPMI μέχρι τελικού όγκου 1 ml.
12. Επαναίωρηση των κυττάρων με τη βοήθεια πιπέτας, μέχρις ότου να μην υπάρχουν συσσωματώματα που θα κάνουν δύσκολο τον υπολογισμό του αριθμού των κυττάρων στο αιματοκυτταρόμετρο.
13. Προσθήκη 10 μl από το εναιώρημα των κυττάρων στην ειδική υποδοχή του αιματοκυτταρόμετρου.
14. Υπολογισμός του αριθμού των κυττάρων στο μικροσκόπιο.
15. Για κάθε ανακαλλιέργεια τα κύτταρα χρησιμοποιούνται σε συγκέντρωση 1- 1,5X10^4 κύτταρα ανά cm².
B2. Μέτρηση κυττάρων σε αιμοκυτταρόμετρο Neubauer

Το αιμοκυτταρόμετρο είναι μια τροποποιημένη αντικειμενοφόρος πλάκα που έχει δυο κατάλληλα επεξεργασμένες, λείες επιφάνειες. Κάθε μια από αυτές έχει ένα τετραγωνισμένο πλέγμα, το οποίο αποτελείται από 9 κύρια τετράγωνα με μήκος πλευράς 1 mm (εμβαδόν 1 mm²). Κάθε τετράγωνο ορίζεται από παράλληλες γραμμές, των οποίων η μεταξύ τους απόσταση είναι 2,5 μm, που χρησιμοποιούν για τον καθορισμό του εάν τα κύτταρα βρίσκονται μέσα ή έξω από το πλέγμα. Επίσης, κάθε ένα από τα αρχικά τετράγωνα, έχει επιπλέον διαβαθμίσεις (χωρίζεται σε μικρότερα τετράγωνα) για να διευκολύνεται η μέτρηση των κυττάρων. Το επίπεδο του πλέγματος βρίσκεται 0,1 mm χαμηλότερα από δύο προεξοχές στις οποίες στηρίζεται η καλυπτρίδα. Υπάρχει μια κούλη επιφάνεια μεταξύ της εξωτερικής πλευράς κάθε τετραγωνισμένης γυαλισμένης επιφάνειας και των σημείων όπου στηρίζεται η καλυπτρίδα. Στην κούλη αυτή επιφάνεια τοποθετείται το κυτταρικό εναώρημα και με τριχοειδικά φαινόμενα απλώνεται στην τετραγωνισμένη επιφάνεια. Ο όγκος του κυτταρικού εναωρήματος που θα καλύπτει το ένα από εννέα τετράγωνα είναι 0,1 mm³ (1,0 mm² * 0,1 mm) ή 1 * 10⁻⁴ ml. Έτσι, η συγκέντρωση των κυττάρων στο αρχικό εναώρημα (σε κύτταρα / ml) είναι:
Μέτρηση στο ένα από τα κύρια τετράγωνα x 10.

Εικόνα B2.1: Αιμοκυτταρόμετρο Neubauer. Παρουσιάζεται σχηματικά και ο τρόπος υπολογισμού των κυττάρων.
Β3. Εκχύλιση πρωτεϊνών από κύτταρα σε καλλιέργεια

Η ανάλυση και μελέτη των πρωτεϊνών έγινε σε ολικά εκχυλίσματα από τις καλλιέργειες των DU145, DU145-RM6, PC3 και PC3-RM4. Κατά τη διαδικασία αυτή τα κύτταρα λύονται με διάλυμα το οποίο περιέχει απορρυπαντικό, προκειμένου να διαλυθούν οι μεμβράνες των κυττάρων και στη συνέχεια μεταφέρονται σε πάγο για να ανασταλεί η δράση των πρωτεϊνανσών.

Υλικά και Διαλύματα

- Πλήρες υγρό θρεπτικό μέσο
- Διάλυμα διαλυτοποίησης δειγμάτων για SDS-PAGE (Sample Buffer)
- Tris-Cl pH: 6,8
- 10% SDS
- Γλυκερόλη
- DTT

Πειραματική πορεία

1. Ανακαλλιέργεια των κυττάρων σε τρυβλία των 60 mm.
2. Καλλιέργεια των κυττάρων μέχρι να καλυφθεί το 80-90% της επιφάνειας του τρυβλίου.
3. Απομακρύνση του υπερκέυμενου θρεπτικού μέσου με πιπέτα Pasteur.
4. Ξύπλωμα των κυττάρων με PBS.
5. Προσθήκη υγρού θρεπτικού μέσου με αντιβιοτικά, αλλά χωρίς FBS και επώαση για 4h, σε απόλυτη υγρασία, στους 37ο C και σε ατμόσφαιρα 5% CO₂.
6. Απομακρύνση του υπερκέυμενου υγρού θρεπτικού μέσου με πιπέτα Pasteur, ξέπλυμα των κυττάρων με PBS και προσθήκη του παράγοντα. Το στάδιο αυτό πρέπει να γίνει όσο το δυνατό γρήγορότερα.
7. Επώαση για 15 min σε απόλυτη υγρασία, στους 37ο C και ατμόσφαιρα CO₂ 5%.
8. Απομακρύνση του υπερκέυμενου υγρού θρεπτικού μέσου με πιπέτα Pasteur και ξέπλυμα των κυττάρων με PBS (2 φορές).
9. Λύση των κυττάρων με 250 μl ζέον 2X διαλύματος διαλυτοποίησης δειγμάτων για SDS-PAGE.
10. Μεταφορά σε σωληνάριο 2 ml.
11. Επώαση των δειγμάτων στους 95ο C, για 1 min.
B4. SDS ηλεκτροφόρηση σε πήκτωμα πολυακρυλαμιδίου (SDS-PAGE)

Η ανάλυση των πρωτεϊνών έγινε με ηλεκτροφόρηση σε πήκτωμα πολυακρυλαμιδίου, παρουσία αποδιατακτικών παραγόντων (SDS, DTT). Το SDS (Sodium Dodecyl Sulfate) είναι ένα ιοντικό απορρυπαντικό, το οποίο δεσμεύεται στις πρωτεϊνές με σταθερή αναλογία βάρους (1,4 gr SDS ανά gr πρωτεΐνης). Η επιπλέον χρήση αναγωγικών παραγόντων, όπως είναι η διδεκαθετική (DTT) ή η β-μερκαπταιθανόλη, έχει ως αποτέλεσμα την αναγωγή των δισουλφιδικών δεσμών των πρωτεϊνών. Η πλήρης αποδιατάξη των πρωτεϊνών επιτυγχάνεται με θέρμανση των πρωτεινικών δειγμάτων για 5 min στους 100οC, παρουσία όλων των παραπάνω αποδιατακτικών παραγόντων. Εξαιτίας του SDS, οι πρωτεϊνές που περιέχονται στα δείγματα έχουν φορτιστεί αρνητικά και είναι δυνατή η κίνησή τους όταν βρεθούν εντός ηλεκτρικού πεδίου. Η ηλεκτροφορητική τους κινητικότητα είναι συνάρτηση του μοριακού τους βάρους.

Υλικά και Διαλύματα

• 1,5 M Tris-HCl pH 8,8
  Tris-base 45,4 g
  Απεσταγμένο H₂O 180 ml
  Το διάλυμα ρυθμίζεται σε pH=8,8 με τη χρήση διαλύματος HCl 37% και συμπληρώνεται απεσταγμένο H₂O μέχρι τελικού όγκου 250 ml.

• 0,5 M Tris-HCl pH 6,8
  Tris-base 6,055 g
  Απεσταγμένο H₂O 80 ml
  Το διάλυμα ρυθμίζεται σε pH=6,8 με τη χρήση διαλύματος HCl 37% και συμπληρώνεται απεσταγμένο H₂O μέχρι τελικού όγκου 100 ml.

• Ρυθμιστικό διάλυμα διαλυτοποίησης δειγμάτων (5X)
  Tris-HCl pH 6,8 0,25 M
  SDS 4% κ.β.
  Γλυκόρυχο 40% κ.β.
  DTT 100 mM
  Κυανοίν της βρωμοφαινόλης 0,05% κ.β.
  Η DTT προστίθεται λίγο πριν την χρήση του ρυθμιστικού διαλύματος δειγμάτων.

• Ρυθμιστικό διάλυμα ηλεκτροδίων (5X)
  Tris-base 250 mM
  Γλυκίνη 2 M
  SDS 0,5%
Απεσταγμένο H₂O Μέχρι τελικού όγκου 1 lt
Το διάλυμα διατηρείται σε θερμοκρασία δωματίου και αραιώνεται 1:5 με απεσταγμένο H₂O πριν από τη χρήση του.

• Διάλυμα ακρυλαμίδιου / μεθυλεν-δις-ακρυλαμίδιου 30% (30:1)
  Ακρυλαμίδιο 150 gr
  Μεθυλεν-δις-ακρυλαμίδιο 5 gr
  Απεσταγμένο H₂O Μέχρι τελικού όγκου 500 ml

• Διάλυμα SDS 10% κ.β.
  SDS 10 g
  Απεσταγμένο H₂O 100 ml

• Διάλυμα υπερθεώικο αμμωνίου 20% κ.β.
  Υπερθεώικο αμμώνιο 20 g
  Απεσταγμένο H₂O Μέχρι τελικού όγκου 100 ml

• TEMED

• Πήκτωμα συμπύκνωσης επιθυμητής πυκνότητας (3,5, 5%)

<table>
<thead>
<tr>
<th>Συστατικό</th>
<th>3,5%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddH₂O</td>
<td>3,69 ml</td>
<td>3,4 ml</td>
</tr>
<tr>
<td>Διάλυμα ακρυλαμίδιου / μεθυλεν-δις-ακρυλαμίδιου 30%</td>
<td>0,581 ml</td>
<td>0,83 ml</td>
</tr>
<tr>
<td>0,5 M Tris-HCl pH 6,8</td>
<td>0,63 ml</td>
<td>0,63 ml</td>
</tr>
<tr>
<td>SDS 10%</td>
<td>0,05 ml</td>
<td>0,05 ml</td>
</tr>
<tr>
<td>AMPS (ammonium persulfate) 20%</td>
<td>0,05 ml</td>
<td>0,05 ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>0,005 ml</td>
<td>0,005 ml</td>
</tr>
</tbody>
</table>
- Πήκτωμα διαχωρισμού επιθυμητής συκνότητας (5%, 7,5%, 10%)

<table>
<thead>
<tr>
<th>Συστατικό</th>
<th>5%</th>
<th>7,5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddH₂O</td>
<td>8,4 ml</td>
<td>7,15 ml</td>
<td>5,9 ml</td>
</tr>
<tr>
<td>Διάλυμα ακρυλαμίδου /μεθυλεν-δις-ακρυλαμίδου</td>
<td>2,5 ml</td>
<td>3,75 ml</td>
<td>5 ml</td>
</tr>
<tr>
<td>1,5 M Tris-HCl pH 8,8</td>
<td>3,8 ml</td>
<td>3,8 ml</td>
<td>3,8 ml</td>
</tr>
<tr>
<td>SDS</td>
<td>0,15 ml</td>
<td>0,15 ml</td>
<td>0,15 ml</td>
</tr>
<tr>
<td>AMPS (ammonium persulfate) 20%</td>
<td>0,15 ml</td>
<td>0,15 ml</td>
<td>0,15 ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>0,006 ml</td>
<td>0,006 ml</td>
<td>0,006 ml</td>
</tr>
</tbody>
</table>

Πειραματική πορεία

1. Διαμορφώνεται ειδική ύλη μήτρα, μέσα στην οποία θα πραγματοποιηθεί ο πολυμερισμός των πηκτώματων διαχωρισμού και συμπυκνώσεως.
2. Πραγματοποιείται πολύ καλή και γρήγορη ανάδευση των συστατικών που απαρτίζουν το πήκτωμα διαχωρισμού.
3. Απόχυση των υγρών ακόμα συστατικών του πηκτώματος διαχωρισμού στην ύλη μήτρα και επικάλυψη με απεσταγμένο νερό. Παρατηρούμε τον πολυμερισμό του πηκτώματος έτσι ώστε να βεβαιωθούμε ότι πραγματοποιείται φυσιολογικά (2-15 min, ανάλογα με τη σύσταση του πηκτώματος ή και τη θερμοκρασία του περιβάλλοντος).
4. Απόχυση του απεσταγμένου νερού από την επιφάνεια του πηκτώματος.
5. Πραγματοποιείται πολύ καλή και γρήγορη ανάδευση των συστατικών που απαρτίζουν το πήκτωμα συμπυκνώσεως.
6. Απόχυση των υγρών ακόμα συστατικών του πηκτώματος συμπυκνώσεως στην ύλη μήτρα, πάνω από την επιφάνεια του πηκτώματος διαχωρισμού. Προσθήκη κατάλληλης ελαστικής μήτρας, η οποία είναι υπεύθυνη για τη δημιουργία των φρεατίων στο πήκτωμα συμπυκνώσεως. Παρατηρούμε τον πολυμερισμό του πηκτώματος για να βεβαιωθούμε ότι πραγματοποιείται φυσιολογικά (5-15 min ανάλογα με τη θερμοκρασία του περιβάλλοντος).
7. Ανάμιξη των δειγμάτων που θα ηλεκτροφορηθούν με ρυθμιστικό διάλυμα δειγμάτων 5X σε αναλογία 4:1.
8. Θέρμανση των δειγμάτων για 5 min στους 100°C.
9. Φυγοκέντρηση των δειγμάτων για 5 λεπτά στα 10,000 g και σε θερμοκρασία δωματίου.
10. Προσθήκη των δειγμάτων στις ειδικές υποδοχές του πηκτώματος συμπύκνωσης.
11. Πραγματοποίηση της ηλεκτροφόρησης σε θερμοκρασία δωματίου με την εφαρμογή ηλεκτρικού πεδίου σταθερής έντασης 12 mA, μέχρι η χρωστική μπλε της βρωμοφαινόλης να εξαφανιστεί από το άκρο του πηκτώματος της ηλεκτροφόρησης.
Β5. Ανοσοστύπωμα (Western blot)

Η μέθοδος αυτή επιτρέπει την εκλεκτική ανίχνευση μιας πρωτεΐνης αντιγόνου, με τη χρήση ειδικών αντισωμάτων που έχουν παρασκευαστεί γι' αυτό. Η μέθοδος περιλαμβάνει την ηλεκτροφόρητη ανάλυση ενός πρωτεϊνού χού διαλύματος σε πίκτωμα πολυακρυλαμιδίου, την ηλεκτρομεταφορά των πρωτεϊνών σε μεμβράνες και τέλος τη δέσμευση των ειδικών αντισωμάτων στο αντιγόνο. Μετά από την κάλυψη των κενών θέσεων της μεμβράνης (blocking) πραγματοποιείται επώαση της μεμβράνης με ειδικό έναντι του υπό μελέτη αντιγόνου αντίσωμα. Στη συνέχεια, η μεμβράνη επωάζεται με αντίσωμα που αναγνωρίζει την Fc περιοχή του πρωτού αντισώματος. Το δεύτερο αντίσωμα είναι σημασμένο είτε ενζυμικά είτε ραδιενεργά, οπότε είναι δυνατή η ανίχνευση του συμπλόκου αντιγόνου αντισώματος μετά από την προσθήκη κατάλληλου υποστρώματος. Στα πειράματα που πραγματοποιήθηκαν στην παρούσα εργασία, όλα τα δεύτερα αντισώματα που χρησιμοποιήθηκαν ήταν σημασμένα ενζυμικά με την horseradish peroxidase (HRP).

Υλικά και Διαλύματα

• Ρυθμιστικό διάλυμα για τη συσκευή μεταφοράς πρωτεϊνών (10X)
  Γλυκίνη 400 mM
  Tris –base 500 mM
  SDS 0,37% κ.β.
  Το διάλυμα διατηρείται σε θερμοκρασία δωματίου και αραιώνεται πριν από τη χρήση του με αναλογία ρυθμιστικού διαλύματος:απεσταγμένο H2O:μεθανόλη ίση με 1:7:2.

• Ρυθμιστικό διάλυμα TBS pH 7,6 (10X)
  Tris –base 200 mM
  NaCl 1,36 M
  Απεσταγμένο H2O 800 ml
  Ρυθμίζεται το pH του διαλύματος σε τιμή ίση με 7,6 με τη χρήση πυκνού διαλύματος HCl (37%) και συμπληρώνεται ο όγκος του μέχρι 1lt με απεσταγμένο H2O. Το διάλυμα διατηρείται σε θερμοκρασία δωματίου και χρησιμοποιείται ως 1X μετά από αραίωση 1:9 με απεσταγμένο H2O.

• Μεμβράνη PVDF (polyvinylidene fluoride): Millipore Immobilon-P Transfer Membrane

• Απαχο γάλα σε σκόνη (Regilait)
• Ρυθμιστικό διάλυμα TBS –Tween 20 pH 7,6 (TBS-T)
• Σύστημα Χημιοφωτανίσεως:
Χρησιμοποιήθηκε το ολοκληρωμένο σύστημα χημειοφωταύγειας από την εταιρεία Chemicon (ChemiLucentTM #2600).

Πειραματική πορεία
1. Μετά την ολοκλήρωση της ηλεκτροφορητικής ανάλυσης, γίνεται τοποθέτηση του πηκτώματος διαχωρισμού σε κατάλληλη συσκευή, για μεταφορά των πρωτεϊνών από το πήκτωμα σε μεμβράνη PVDF.
2. Εφαρμογή σταθερής ένταση ρεύματος 700 mA για 30-40 min. Τα δείγματα μεταφέρονται από τον αρνητικό στο θετικό πόλο.
3. H μεμβράνη υψίσταται κατάλληλη επεξεργασία ανάλογα με το είδος της πρωτεϊνής που αναλύεται, προκειμένου να πραγματοποιηθεί ή παρεμποδιστεί η μη ειδική δέσμευση των αντισωμάτων (5% γάλα σε TBS-T για 1 h).
4. Πραγματοποιούνται 3 ξεπλύματα της μεμβράνης για 5 min με διάλυμα TBS -T σε θερμοκρασία δωματίου.
5. Εμβιπτιςη της μεμβράνης και επώαςη σε ρυθμιστικό διάλυμα που περιέχει το πρώτο αντισώμα σε κατάλληλη αραίωση.
6. Συλλογή του πρώτου αντισώματος.
7. Πραγματοποιούνται 3 ξεπλύματα της μεμβράνης για 5 min με διάλυμα TBS -T σε θερμοκρασία δωματίου.
8. Επώαςη της μεμβράνης σε ρυθμιστικό διάλυμα που περιέχει το δεύτερο αντίσωμα, σε θερμοκρασία δωματίου υπό ανακίνηση.
9. Πραγματοποιούνται 3 ξεπλύματα της μεμβράνης για 5 min με διάλυμα TBS -T σε θερμοκρασία δωματίου και ένα ξέπλυμα των 5 min με TBS.
10. Εμφάνιση του ανοσοστυπώματος της πρωτεϊνής στη μεμβράνη με σύστημα χημειοφωταύγειας.
Παρατηρήσεις

<table>
<thead>
<tr>
<th>1ο Αντίσωμα</th>
<th>Συγκ/ση</th>
<th>Χρόνος επώασης</th>
<th>2ο Αντίσωμα</th>
<th>Συγκ/ση</th>
<th>Χρόνος επώασης</th>
</tr>
</thead>
<tbody>
<tr>
<td>cleaved Caspase 3 σε TBS-T με 5% BSA</td>
<td>1:1000</td>
<td>overnight στους 4ο C</td>
<td>Anti-rabbit σε TBS-T με 3% άπαχο γάλα</td>
<td>1:5000</td>
<td>1 h στους 37ο C</td>
</tr>
<tr>
<td>cleaved Caspase 8 σε TBS-T με 5% BSA</td>
<td>1:1000</td>
<td>overnight στους 4ο C</td>
<td>Anti-rabbit σε TBS-T με 3% άπαχο γάλα</td>
<td>1:5000</td>
<td>1 h στους 37ο C</td>
</tr>
<tr>
<td>Cdt1 σε TBS-T με 5% BSA</td>
<td>1:1000</td>
<td>overnight στους 4ο C</td>
<td>Anti-rabbit σε TBS-T με 3% άπαχο γάλα</td>
<td>1:5000</td>
<td>1 h στους 37ο C</td>
</tr>
<tr>
<td>HSC70 σε TBS-T με 5% BSA</td>
<td>1:1000</td>
<td>overnight στους 4ο C</td>
<td>Anti-rabbit σε TBS-T με 3% άπαχο γάλα</td>
<td>1:5000</td>
<td>1 h στους 37ο C</td>
</tr>
</tbody>
</table>
Β6. Αποδέσμευση αντισωμάτων και επαναχρησιμοποίηση αποτυπωμάτων

Η ανάπτυξη τεχνικών ανίχνευσης των αντιγόνων στα ανοσοαποτυπώματα που βασίζονται στη μέθοδο της χημειοφωταύγειας, παρέχει τη δυνατότητα επαναχρησιμοποίησης των μεμβρανών με τη χρήση διαφορετικών αντισωμάτων, καθώς δεν έχει πραγματοποιηθεί αλλοίωση της μεμβράνης αλλά και των μεταφερομένων σε αυτήν αντιγόνων. Κατά τη διαδικασία της αποδέσμευσης των αντισωμάτων (stripping) η μεμβράνη επωάζεται σε ζέον ρυθμιστικό διάλυμα που περιέχει αποδιατακτικούς παράγοντες (SDS, β-μερκαπτοαιθανόλη). Με τον τρόπο αυτό, επιτυγχάνεται η διάσπαση του συμπλοκού αντιγόνου-αντισώματος και η απελευθέρωση των αντισωμάτων από την μεμβράνη. Οι ομοδικές πρωτεΐνες που παραμένουν δεσμευμένες στη μεμβράνη είναι εκείνες οι οποίες είναι δεσμευμένες ισχυρά σε αυτήν λόγω των υδρόφοβων αλληλεπιδράσεων κατά την ηλεκτρομεταφορά τους. Στη συνέχεια η μεμβράνη ξεπλένεται εξαντλητικά προκειμένου να απομακρυνθούν οι αποδιατακτικοί παράγοντες και στη συνέχεια, πραγματοποιείται εκ νέου κορεσμός των θέσεων δέσμευσης της μεμβράνης και επώραση με τα επιθυμητά αντισώματα.

Υλικά και διαλύματα

- Διάλυμα αποδέσμευσης αντισωμάτων
  Tris-HCl pH 6.8 62,5 mM
  SDS 2% κ.β.
  β-μερκαπτοαιθανόλη 100 mM

Πειραματική πορεία

1. Μετά την έκθεση της μεμβράνης στο φιλμ, ακολουθεί ξέπλυμα της μεμβράνης 4 φορές, για 5 min κάθε φορά με ρυθμιστικό διάλυμα TBS 1X - 0,05% Tween-20.
2. Επώραση της μεμβράνης για 30 min στους 56°C, με το διάλυμα αποδέσμευσης του αντισώματος.
3. Βίασο ξέπλυμα της μεμβράνης 7 φορές με ρυθμιστικό διάλυμα TBS 1X - 0,05% Tween-20.
4. Επώραση της μεμβράνης με ρυθμιστικό διάλυμα παρεμπόδισης της μη ειδικής δέσμευσης
B7. Προσδιορισμός νεκρών και αποπτωτικών κυττάρων με κυτταρομετρία ροής

Υλικά και διαλύματα

- Ολοκληρωμένο κιτ της εταιρείας BD Pharmigen
- Annexin V-FITC
- Propidium Iodide Staining Solution
- Annexin V-FITC Binding Buffer, 10x

Πειραματική πορεία

1. Έκπλυση των κυττάρων δύο φορές με κρύο PBS και επαναϊώρηση σε 1x Binding Buffer, σε συγκέντρωση 1x10^6 κύτταρα/ml.
2. Μεταφορά 100λ (1x10^5) σε σωλήνακα eppendorf του 1,5ml. Προσθήκη 5λ Annexin V-FITC.
3. Προσθήκη 10λ Propidium Iodide.
4. Απαλή ανακύνηση και επώαση για 15' σε θερμοκρασία δωματίου, στο σκοτάδι.
5. Προσθήκη 400λ 1x Binding Buffer σε κάθε σωλήνακα και ανάλυση σε κυτταρομετρητή ροής σε διάστημα μίας ώρας.
Ανοσοφθορισμός με BrdU για τον προσδιορισμό του ποσοστού κυττάρων στη φάση S του κυτταρικού κύκλου

Υλικά και διαλύματα

- Στρογγυλές καλυπτρίδες 10mm
- PBS
- PBS-Tween
- BrdU 20mM stock
- 2M HCl
- 0,1M Tris-Cl ph 8,8
- Διάλυμα δέσμευσης (3% BSA, 10% FBS σε PBS)
- Αντίσωμα rat anti-BrdU
- Αντίσωμα donkey anti-rat Alexa488
- Χρωστική Hoechst
- Mowiol

Πειραματική πορεία

1. Καλλιέργεια κυττάρων σε πλακίδια 6 μικροκυψελίδων με 2 καλυπτρίδες ανά κυψελίδα μέχρι κάλυψης του 80% της επιφάνειας.
2. Προσθήκη 20μΜ BrdU και επώαση για 4h.
3. 10min 100% μεθανφλη
4. 3 φορές έκπλυση 5min με PBS
5. 1 έκπλυση με UPW
6. Επώαση 1h σε 2M HCl
7. Έκπλυση 1 φορά 5min με 0,1M Tris-Cl pH8,8
8. Επώαση 1h σε διάλυμα δέσμευσης
9. Επώαση overnight αντίσωμα anti-BrdU, στους 4οC, με αραίωση 1:1000
10. Έκπλυση 3 φορές από 5min με PBS-Tween
11. Επώαση 1h με αντίσωμα donkey anti-rat Alexa488, σε θερμοκρασία δωματίου στο σκοτάδι
12. Έκπλυση 3 φορές 5min με PBS-Tween
13. Επώαση 5min με Hoechst 1:2000
14. Έκπλυση 2 φορές 2min με PBS
15. Μονιμοποίηση με 5λ mowiol
16. Παρατήρηση σε μικροσκόπιο ανοσοφθορισμού
Γ. ΑΠΟΤΕΛΕΣΜΑΤΑ

Γ1. Προσδιορισμός νεκρών και αποπτωτικών κυττάρων με κυτταρομετρία ροής

Με σκοπό να μελετήσουμε τα ποσοστά των νεκρών και αποπτωτικών κυττάρων DU145 και DU145-RM6, καθώς και των PC3 και των αντίστοιχων PC3-RM4 κατά την κυτταροκαλλιέργεια, χρησιμοποιήσαμε την τεχνική της κυτταρομετρίας ροής. Με την κυτταρομετρία ροής προσδιορίζουμε το ποσοστό των κυττάρων που είναι αρνητικά και για τα δύο μόρια (ζωντανά κύτταρα), θετικά για χρώση με αννεξίνη (αποπτωτικά σε αρχικά στάδια), διπλά θετικά για χρώση με αννεξίνη και ιωδιούχο προπίδιο (αποπτωτικά σε τελικά στάδια) και θετικά μόνο για ιωδιούχο προπίδιο (νεκρά). Παρακάτω παρατίθενται δύο εικόνες από χαρακτηριστικά πειράματα για DU145\RM6 και PC3\RM4. Στις περιοχές Ε1, Ε2, Ε3 και Ε4 φαίνονται αντίστοιχα τα ποσοστά των κυττάρων που είναι θετικά για χρώση με ιωδιούχο προπίδιο, διπλά θετικά και για τις δύο χρώσεις, διπλά αρνητικά ζωντανά κύτταρα και τέλος, θετικά σε χρώση με αννεξίνη. Μετά τις εικόνες ακολουθούν οι γραφικές παραστάσεις που προκύπτει από τα αποτελέσματα.
Εικόνα Γ1.1. Άνω αριστερά: Εικόνα κυτταρομετρίας ροής για τα DU145 και αντίστοιχα ποσοστά
Άνω δεξιά: Εικόνα κυτταρομετρίας ροής για τα DU145-RM6 και αντίστοιχα ποσοστά.
Κάτω αριστερά: Εικόνα κυτταρομετρίας ροής για τα PC3 και αντίστοιχα ποσοστά
Κάτω δεξιά: Εικόνα κυτταρομετρίας ροής για τα PC3-RM4 και αντίστοιχα ποσοστά
Εικόνα Γ2.2. **Ανω αριστερά:** Ποσοστό επιβίωσης των κυττάρων σε σχέση με το συνολικό αριθμό κυττάρων που μετρήθηκαν. **p<0,01**

**Ανω δεξιά:** Ποσοστό αποπτωτικών κυττάρων σε αρχικά στάδια (θετικά μόνο για αννεξίνη), σε σχέση με το συνολικό αριθμό κυττάρων. Δεν παρατηρείται στατιστικώς σημαντική διαφορά.

**Κάτω αριστερά:** Ποσοστό αποπτωτικών κυττάρων σε τελικά στάδια (διπλά θετικά για αννεξίνη και ιωδιούχο προπίδιο), σε σχέση με το συνολικό αριθμό κυττάρων. **p<0,01**

**Κάτω δεξιά:** Ποσοστό νεκρών κυττάρων (θετικά μόνο για ιωδιούχο προπίδιο), σε σχέση με το συνολικό αριθμό κυττάρων. **p<0,01**

Τα κύτταρα αφεθήκαν να πολλαπλασιαστούν μέχρι να καλύψουν το 80% της επιφάνειας του τρυβλίου. Συλλέχθηκαν, πλύθηκαν με κρόνο PBS και τοποθετήθηκαν σε σωληνάκια eppendorf, με συγκέντρωση 10^5 κύτταρα/ml. Στη συνέχεια, προστέθηκαν 5αλ αννεξίνη και 10αλ ιωδιούχο προπίδιο και τα κύτταρα επωάστηκαν για 30' σε θερμοκρασία δωματίου, στο σκοτάδι. Έπειτα, τα κύτταρα μετρήθηκαν με κυτταρομετρία ροής, στο κατάλληλο πρόγραμμα. Τα ποσοστά προκύπτουν από τρία διαφορετικά μεταξύ τους πειράματα και στην εικόνα φαίνονται τα ποσοστά ±SE για κάθε πείραμα.
Εικόνα Γ1.3. Άνω αριστερά: Ποσοστό επιβίωσης των κυττάρων σε σχέση με το συνολικό αριθμό κυττάρων που μετρήθηκαν. *p<0,05
Άνω δεξιά: Ποσοστό αποπτωτικών κυττάρων σε αρχικά στάδια (θετικά μόνο για αννεξίνη), σε σχέση με το συνολικό αριθμό κυττάρων. *p<0,05
Κάτω αριστερά: Ποσοστό αποπτωτικών κυττάρων σε τελικά στάδια (διπλά θετικά για αννεξίνη και ιωδιούχο προπίδιο), σε σχέση με το συνολικό αριθμό κυττάρων. *p<0,05
Κάτω δεξιά: Ποσοστό νεκρών κυττάρων (θετικά μόνο για ιωδιούχο προπίδιο), σε σχέση με το συνολικό αριθμό κυττάρων. **p<0,01

Τα κύτταρα αφέθηκαν να πολλαπλασιαστούν μέχρι να καλύψουν το 80% της επιφάνειας του τρυβλίου. Συλλέχθηκαν, πλύθηκαν με κρόο PBS και τοποθετήθηκαν σε σωληνάκια eppendorf, με συγκέντρωση 10⁵ κύτταρα/ml. Στη συνέχεια, προστέθηκαν 5λ αννεξίνη και 10λ ιωδιούχο προπίδιο και τα κύτταρα επωϊστήκαν για 15’ σε θερμοκρασία δωματίου, στο σκοτόδι. Έπειτα, τα κύτταρα μετρήθηκαν με κυτταρομετρία ροής, στο κατάλληλο πρόγραμμα. Τα ποσοστά προκύπτουν από τρία διαφορετικά μεταξύ τους πειράματα και στην εικόνα φαίνονται τα ποσοστά ±SE για κάθε πείραμα.
Γ2. Προσδιορισμός των σχετικών επιπέδων της ενεργοποιημένης κασπάςης 3 και κασπάςης 8 με ανάλυση κατά Western

Παράλληλα με τα πειράματα κυτταρομετρίας ροής, πραγματοποιήθηκε και ανάλυση κατά Western, για να πιστοποιηθεί η παρουσία και τα σχετικά επίπεδα των ενεργοποιημένων με υδρόλυση κασπασών 3 και 8. Υψηλότερα επίπεδα αυτών των μορίων υποδεικνύουν υψηλότερο ποσοστό απόπτωσης.

Εικόνα Γ2.1. Χαρακτηριστικές εικόνες από τις εμφανίσεις σε φωτογραφικό φιλμ των πρωτεϊνών που μελετήθηκαν, μαζί με τις αντίστοιχες της HSC70, οι οποίες χρησιμοποιήθηκαν για την ομαλοποίηση των αποτελεσμάτων.
Εικόνα 2.2. Αριστερά: Σχετικά επίπεδα ενεργοποιημένης κασπάσης 8, με σημείο αναφοράς τα επίπεδά της στα DU145. Τα κύτταρα αφέθηκαν να πολλαπλασιαστούν μέχρι να καλύψουν το 80% της επιφάνειας τρυφέλου διαμέτρου 6mm. Έπειτα, λύθηκαν με ζέον διάλυμα διαλυτοποίησης για SDS-PAGE και ηλεκτροφορήθηκαν. Ακολούθησε ανοσοστύπωμα με ειδικά αντισώματα για την υδρολυμένη κασπάση 8 και HSC70. Στη συνέχεια, τα αποτελέσματα αναλύθηκαν με λογισμικό ανάλυσης εικόνας (ImageJ) και έγινε ομαλοποίηση των επιπέδων της κασπάσης 8, σε σχέση με τα επίπεδα της πρωτεΐνης HSC70. Τα ποσοστά προκύπτουν από τρία διαφορετικά μεταξύ τους πειράματα, και παρουσιάζονται τα ποσοστά ±SE των πειραμάτων. *p<0,05

Δεξιά: Σχετικά επίπεδα ενεργοποιημένης κασπάσης 3, με σημείο αναφοράς τα επίπεδά της στα DU145. Τα κύτταρα αφέθηκαν να πολλαπλασιαστούν μέχρι να καλύψουν το 80% της επιφάνειας τρυφέλου διαμέτρου 6mm. Έπειτα, λύθηκαν με ζέον διάλυμα διαλυτοποίησης για SDS-PAGE και ηλεκτροφορήθηκαν. Ακολούθησε ανοσοστύπωμα με ειδικά αντισώματα για την υδρολυμένη κασπάση 3 και HSC70. Στη συνέχεια, τα αποτελέσματα αναλύθηκαν με λογισμικό ανάλυσης εικόνας (ImageJ) και έγινε ομαλοποίηση των επιπέδων της κασπάσης 3, σε σχέση με τα επίπεδα της πρωτεΐνης HSC70. Τα ποσοστά προκύπτουν από τρία διαφορετικά μεταξύ τους πειράματα, και παρουσιάζονται τα ποσοστά ±SE των πειραμάτων. Τα αποτελέσματα δεν είναι στατιστικώς σημαντικά.
Εικόνα Γ2.3.. Χαρακτηριστικές εικόνες από τις εμφανίσεις σε φωτογραφικό φύλμ των πρωτεϊνών που μελετήθηκαν, μαζί με τις αντίστοιχες της HSC70, οι οποίες χρησιμοποιήθηκαν για την ομαλοποίηση των αποτελεσμάτων.
Εικόνα Γ2.4. Αριστερά: Σχετικά επίπεδα ενεργοποιημένης κασπάσης 8, με σημείο αναφοράς τα επίπεδά της στα PC3. Τα κύτταρα αφέθηκαν να πολλαπλασιαστούν μέχρι να καλύψουν το 80% της επιφάνειας τρυμάτου διαμέτρου 6mm. Έπειτα, λύθηκαν με ξένο διάλυμα διαλυτοποίησης για SDS-PAGE και ηλεκτροφορήθηκαν. Ακολούθησε ανοσοστύπωμα με ειδικά αντισώματα για την υδρολυμένη κασπάση 8 και HSC70. Στη συνέχεια, τα αποτελέσματα αναλύθηκαν με λογισμικό ανάλυσης ευκόνας (ImageJ) και έγινε ομαλόποιηση των επιπέδων της κασπάσης 8, σε σχέση με τα επίπεδα της πρωτεινής HSC70. Τα ποσοστά προκύπτουν από τρία διαφορετικά μεταξύ τους πειράματα, και παρουσιάζονται τα ποσοστά ±SE των πειραμάτων. *p<0,05

Δεξιά: Σχετικά επίπεδα ενεργοποιημένης κασπάσης 3, με σημείο αναφοράς τα επίπεδά της στα PC3. Τα κύτταρα αφέθηκαν να πολλαπλασιαστούν μέχρι να καλύψουν το 80% της επιφάνειας τρυμάτου διαμέτρου 6mm. Έπειτα, λύθηκαν με ξένο διάλυμα διαλυτοποίησης για SDS-PAGE και ηλεκτροφορήθηκαν. Ακολούθησε ανοσοστύπωμα με ειδικά αντισώματα για την υδρολυμένη κασπάση 3 και HSC70. Στη συνέχεια, τα αποτελέσματα αναλύθηκαν με λογισμικό ανάλυσης ευκόνας (ImageJ) και έγινε ομαλόποιηση των επιπέδων της κασπάσης 3, σε σχέση με τα επίπεδα της πρωτεινής HSC70. Τα ποσοστά προκύπτουν από τρία διαφορετικά μεταξύ τους πειράματα, και παρουσιάζονται τα ποσοστά ±SE των πειραμάτων. Τα αποτελέσματα δεν είναι στατιστικώς σημαντικά.
Γ3. Προσδιορισμός του ποσοστού των κυττάρων στη φάση $S$ του κυτταρικού κύκλου με χρήση ανοσοφθορισμού

Μας ενδιέφερε επίσης να διερευνήσουμε αν υπάρχει διαφορά στο ποσοστό των κυττάρων στη φάση $S$ του κυτταρικού κύκλου, μεταξύ των φυσιολογικών και των μετασχηματισμένων κυττάρων (RPTP-). Για το πείραμα αυτό, χρησιμοποιήθηκε η ουσία BrdU, η οποία είναι χημικό ανάλογο της θυμίνης. Το BrdU προστίθεται στο θρεπτικό υλικό της κυτταροκαλλιέργειας και ενσωματώνεται στο γενετικό υλικό των κυττάρων που συνθέτουν DNA τη συγκεκριμένη στιγμή, στη θέση της θυμίνης. Έτσι, με χρήση αντισωμάτων για την ανίχνευση του BrdU στο DNA των κυττάρων, μπορούμε έμμεσα να προσδιορίσουμε το ποσοστό των κυττάρων στη φάση $S$ του κυτταρικού κύκλου. Στη συνέχεια παρατίθενται μερικές χαρακτηριστικές εικόνες από τα πειράματα, καθώς και τα διάγραμμα που προκύπτουν από τις μετρήσεις.

Εικόνα Γ3.1 Άνω αριστερά. Πυρήνες των κυττάρων DU145 βαμμένοι με Hoechst.
Άνω δεξιά. Φθορισμός των πυρήνων μετά από 4h επώαςη με BrdU
Κάτω κέντρο. Σύνθεση των δύο παραπάνω εικόνων, όπου φαίνεται το ποσοστό των κυττάρων που φθορίζουν
Εικόνα Γ4.2 Άνω αριστερά. Πυρήνες των κυττάρων DU145-RM6 βαμμένοι με Hoechst. Άνω δεξιά. Φθορισμός των πυρήνων μετά από 4h επώαση με BrdU. Κάτω κέντρο. Σύνθεση των δύο παραπάνω εικόνων, όπου φαίνεται το ποσοστό των κυττάρων που φθορίζουν.
Εικόνα Γ5.3 Άνω αριστερά. Πυρήνες των κυττάρων DU145 βαμμένοι με Hoechst.
Άνω δεξιά. Φθορισμός των πυρήνων μετά από 24h επώαση με BrdU
Κάτω κέντρα. Σύνθεση των δύο παραπάνω εικόνων, όπου φαίνεται το
ποσοστό των κυττάρων που φθορίζουν
Εικόνα Γ6.4 Άνω αριστερά. Πυρήνες των κυττάρων DU145-RM6 βαμμένοι με Hoechst.
Άνω δεξιά. Φθορισμός των πυρήνων μετά από 24h επώαση με BrdU
Κάτω κέντρο. Σύνθεση των δύο παραπάνω εικόνων, όπου φαίνεται το
ποσοστό των κυττάρων που φθορίζουν
Εικόνα 13.5 Κύτταρα DU145 και DU145-RM6 καλλιεργήθηκαν σε πλακίδια 6 μικροκυψελών, με 2 στρογγυλές καλυπτρίδες διαμέτρου 10mm, ανά μικροκυψελίδιο. Όταν καλύφθηκε το 80% της επιφάνειας κάθε μικροκυψελίδας, αναρροφήθηκε το θρεπτικό υλικό και αντικαταστάθηκε με πλήρες θρεπτικό υλικό που περιείχε επιπλέον 20μΜ BrdU και αφέθηκε για 4h και 24h. Στη συνέχεια, οι καλυπτρίδες αφαιρεθήκαν και τοποθετήθηκαν σε πλακίδια 12 μικροκυψελών για το υπόλοιπο της διαδικασίας. Οι καλυπτρίδες εκπλήθηκαν 2 φορές με PBS, και στη συνέχεια αφέθηκαν σε καθαρή μεθανάλη για 10min, για την μονιμοποίηση των κυττάρων. Μετά από εκπλύσεις με PBS, τα κύτταρα αφέθηκαν σε 2M HCl για 1h. Έπειτα, εκπλήθηκαν με διάλυμα Tris-Cl 0,1M pH 8,8 για 5min. Μετά από εκπλύσεις με PBS, προστέθηκε διάλυμα δέσμευσης για 1h. Με την πάροδο της ώρας, προστέθηκε αντίσωμα rat anti-BrdU αραβώσης 1:1000, στους 4°C, για όλο το βράδυ.

Την επόμενη μέρα, μετά από εκπλύσεις με PBS-Tween, προστέθηκε 2ο αντίσωμα donkey anti-rat Alexa488, αραβώσης 1:500, για 1h, σε θερμοκρασία δωματίου, στο σκοτάδι. Με την πάροδο της μίας ώρας, και μετά από εκπλύσεις με PBS-Tween, προστέθηκε χρωστική Hoechst σε αραβώση 1:2000 για 5min. Τέλος, οι καλυπτρίδες μονιμοποιήθηκαν με 5λ mowiol, παρατηρήθηκαν σε μικροσκόπιο ανοσοφθορισμού, και προσδιορίστηκε το ποσοστό επί τοις εκατό των κυττάρων που ήταν στη φάση S του κυτταρικού κύκλου (βετικά για BrdU). Τα ποσοστά προκύπτουν από τρία διαφορετικά μεταξύ τους πειράματα και στην εικόνα φαίνονται τα ποσοστά ±SE για κάθε πείραμα. *p<0.05.
Εικόνα 7.6 Άνω αριστερά. Πυρήνες των κυττάρων PC3 βαμμένοι με Hoechst.
Άνω δεξιά. Φθορισμός των πυρήνων μετά από 4h επώαση με BrdU
Κάτω κέντρο. Σύνθεση των δύο παραπάνω εικόνων, όπου φαίνεται το
ποσοστό των κυττάρων που φθορίζουν
Εικόνα Γ8.7 Ανω αριστερά. Πυρήνες των κυττάρων PC3-RM4 βαμμένοι με Hoechst.
Ανω δεξιά. Φθορισμός των πυρήνων μετά από 4h επώαση με BrdU
Κάτω κέντρο. Σύνθεση των δύο παραπάνω εικόνων, όπου φαίνεται το
ποσοστό των κυττάρων που φθορίζουν
Εικόνα Γ9.8 Άνω αριστερά. Πυρήνες των κυττάρων PC3 βαμμένοι με Hoechst.
Άνω δεξιά. Φθορισμός των πυρήνων μετά από 24h επώαση με BrdU
Κάτω κέντρο. Σύνθεση των δύο παραπάνω εικόνων, όπου φαίνεται το
ποσοστό των κυττάρων που φθορίζουν
Εικόνα Γ10.9 Άνω αριστερά. Πυρήνες των κυττάρων PC3-RM4 βαμμένοι με Hoechst.
Άνω δεξιά. Φθορισμός των πυρήνων μετά από 4h επώαση με BrdU.
Κάτω κέντρο. Σύνθεση των δύο παραπάνω εικόνων, όπου φαίνεται το ποσοστό των κυττάρων που φθορίζουν.
Εικόνα Γ3.10 Κύτταρα PC3 και PC3-RM4 καλλιεργήθηκαν σε πλακίδια 6 μικροκυψελίδων, με 2 στρογγυλές καλυπτρίδες διαμέτρου 10mm, ανά μικροκυψελίδα. Όταν καλύφθηκε το 80% της επιφάνειας κάθε μικροκυψελίδας, αναρροφήθηκε το θρεπτικό υλικό και αντικαταστάθηκε με πλήρες θρεπτικό υλικό που περιείχε επιπλέον 20μΜ BrdU και αφέθηκε για 4h και 24h. Στη συνέχεια, οι καλυπτρίδες αφαιρέθηκαν και τοποθετήθηκαν σε πλακίδια 12 μικροκυψελίδων για το υπόλοιπο της διαδικασίας. Οι καλυπτρίδες εκπλήθηκαν 2 φορές με PBS, και στη συνέχεια αφέθηκαν σε καθαρή μεθανάλη για 10min, για την μονιμοποίηση των κυττάρων. Μετά από εκπλήξεις με PBS, τα κύτταρα αφέθηκαν σε 2M HCl για 1h. Έπειτα, εκπλήθηκαν με διάλυμα Tris-Cl 0,1M pH 8,8 για 5min. Μετά από εκπλήξεις με PBS, προστέθηκε δίαλυμα δέσμευσης για 1h. Με την πάροδο της ώρας, προστέθηκε αντίσωμα rat anti-BrdU αραίωσης 1:1000, στους 4°C, για όλο το βράδυ.

Την επόμενη μέρα, μετά από εκπλήξεις με PBS-Tween, προστέθηκε 2ο αντίσωμα donkey anti-rat Alexa488, αραίωσης 1:500, για 1h, σε θερμοκρασία δωματίου, στο σκοτεινά. Με την πάροδο της μίας ώρας, και μετά από εκπλήξεις με PBS-Tween, προστέθηκε χρωστική Hoechst σε αραίωση 1:2000 για 5min. Τέλος, οι καλυπτρίδες μονιμοποιήθηκαν με 5λ mowiol, παρατηρήθηκαν σε μικροσκόπιο ανασωμοθυσισμού, και προσδιορίστηκε το ποσοστό επί τοις εκατό των κυττάρων που ήταν στη φάση S του κυτταρικού κύκλου (θετικά για BrdU). Τα ποσοστά προκύπτουν από τρία διαφορετικά μεταξύ τους πειράματα και στην εικόνα φαίνονται τα ποσοστά ±SE για κάθε πείραμα. *p<0,05
4. Προσδιορισμός των σχετικών επιπέδων της ενεργοποιημένης με φωσφωρυλίωση Cdt1

Με σκοπό να μελετήσουμε περαιτέρω την ταχύτητα του κυτταρικού κύκλου σε κύτταρα DU\RM6 και PC3\RM4, μελετήσαμε τα επίπεδα της ενεργοποιημένης Cdt1, μιας πρωτεΐνης που συμμετέχει στην αδειοδότηση της αντιγραφής του DNA. Υψηλότερα επίπεδα υποδηλώνουν ταχυτέρο ρυθμό αντιγραφής του DNA.

Εικόνα Γ4.1. Χαρακτηριστικές εικόνες από τις εμφανίσεις σε φωτογραφικό φίλμ των πρωτεινών που μελετήθηκαν, μαζί με τις αντίστοιχες της HSC70, οι οποίες χρησιμοποιήθηκαν για την ομαλοποίηση των αποτελεσμάτων
Εικόνα 14.2. Αριστερά. Σχετικά επίπεδα ενεργοποιημένης Cdt1, με σημείο αναφοράς τα επίπεδά της στα PC3. Τα κύτταρα αφέθηκαν να πολλαπλασιαστούν μέχρι να καλύψουν το 80% της επιφάνειας τρυβλίου διαμέτρου 6mm. Έπειτα, λύθηκαν με ζέον διάλυμα διαλυτοποίησης για SDS-PAGE και ηλεκτροφορήθηκαν. Ακολούθησε ανοσοστύπωμα με ειδικά αντισώματα για την υδρολυμένη κασπάση 8 και HSC70. Στη συνέχεια, τα αποτελέσματα αναλύθηκαν με λογισμικό ανάλυσης εικόνας (ImageJ) και έγινε ομαλοποίηση των επιπέδων της κασπάσης 8, σε σχέση με τα επίπεδα της πρωτεΐνης HSC70. Τα ποσοστά προκύπτουν από τρία διαφορετικά μεταξύ τους πειράματα, και παρουσιάζονται τα ποσοστά ±SE των πειραμάτων. *p<0,05

Δεξιά. Σχετικά επίπεδα ενεργοποιημένης Cdt1, με σημείο αναφοράς τα επίπεδά της στα PC3. Τα κύτταρα αφέθηκαν να πολλαπλασιαστούν μέχρι να καλύψουν το 80% της επιφάνειας τρυβλίου διαμέτρου 6mm. Έπειτα, λύθηκαν με ζέον διάλυμα διαλυτοποίησης για SDS-PAGE και ηλεκτροφορήθηκαν. Ακολούθησε ανοσοστύπωμα με ειδικά αντισώματα για την υδρολυμένη κασπάση 8 και HSC70. Στη συνέχεια, τα αποτελέσματα αναλύθηκαν με λογισμικό ανάλυσης εικόνας (ImageJ) και έγινε ομαλοποίηση των επιπέδων της κασπάσης 8, σε σχέση με τα επίπεδα της πρωτεΐνης HSC70. Τα ποσοστά προκύπτουν από τρία διαφορετικά μεταξύ τους πειράματα, και παρουσιάζονται τα ποσοστά ±SE των πειραμάτων. *p<0,05
Δ. ΣΥΜΠΕΡΑΣΜΑΤΑ-ΣΥΖΗΤΗΣΗ

Ο κυτταρικός κύκλος είναι η διαδικασία που ακολουθεί το κύτταρο με σκοπό να διαμορφωθεί. Η μετάβαση από την μία φάση του κυτταρικού κύκλου στην άλλη συμβαίνει με καλά καθορισμένο τρόπο και ρυθμίζεται από διάφορες κυτταρικές πρωτεΐνες. Βασικές ρυθμιστικές πρωτεΐνες είναι οι κυκλινοεξαρτώμενες κινάσες, μια οικογένεια από κινάσες σερίνης/θρεονίνης, οι οποίες ενεργοποιούνται σε συγκεκριμένα σημεία του κυτταρικού κύκλου. Τα επίπεδα των CDK παραμένουν σταθερά κατά τη διάρκεια του κυτταρικού κύκλου, σε αντίθεση με τις ενεργοποιούσες πρωτεΐνες τους, τις κυκλίνες. Τα επίπεδα των κυκλινών αυξάνονται κατά τη διάρκεια του κυτταρικού κύκλου και με αυτό τον τρόπο ενεργοποιούν περιοδικά τις CDK, ενώ διαφορετικές κυκλίνες είναι αναγκαίες για να ενεργοποιήσουν διαφορετικές CDK. Η δραστικότητα των CDK μπορεί να εξουδετερωθεί από ανασταλτικές πρωτεΐνες του κυτταρικού κύκλου, που ονομάζονται αναστολεύσεις των CDK (CKI), οι οποίες δεσμεύονται σε ελεύθερες CDK ή σε σύμπλοκα CDK-κυκλίνης και έτσι ρυθμίζουν τη δραστηριότητα των CDK. Γενικότερα, ο κυτταρικός κύκλος ρυθμίζεται και ελέγχεται σε διάφορα στάδια, ώστε να αποφευχθούν λάθη, με βασικό ρυθμιστή την πρωτεΐνη p53. Κατά τη διάρκεια της S φάσης του κυτταρικού κύκλου, η πωτερνή Cdt1 εξασφαλίζει άλλη από κάθε σημείο έναρξης της αντιγραφής θα εκκινηθεί αντιγραφή του DNA μία και μόνο φορά.

Η απόπτωση συμβαίνει συνήθως κατά τη διάρκεια της ανάπτυξης και της γήρανσης και λειτουργεί ως ομοιοστατικός μηχανισμός για τη διατήρηση των πληθυσμών των κυττάρων στους ιστούς. Παρουσιάζεται επίσης ως μηχανισμός άμυνας σε ανοσολογικές αντιδράσεις ή όταν τα κύτταρα έχουν υποστεί βλάβη από ασθένεια ή επιβλάβεις ιμποστολογικές. Υπάρχουν τρεις οδοί που οδηγούν την απόπτωση, με βασικότερα μία υπόλοιπο κατηγορία γενετικών κυττάρων, μια κατηγορία διαφορετικών κυττάρων και μια κατηγορία διαφορετικών κυττάρων. Οι κατηγορίες διακρίνονται σε εναρκτορικές και τελετικές, και ενεργοποιούνται σε έναν καταρράκτη συμβάντων που αποτελεί την κινητήρια δύναμη της απόπτωσης.

Απορρύθμιση του κυτταρικού κύκλου ή/και της απόπτωσης μπορεί να οδηγήσει σε καρκίνο, μια πολύπλοκη γενετική ασθένεια. Συγκεκριμένα, ο καρκίνος του προστάτη είναι ο δεύτερος πιο συχνά διαγνωστικός καρκίνος και η έκτη κύρια αιτία βασικών παγκοσμίως στους άνδρες. Σε πολλά είδη καρκινικών κυττάρων έχει βρεθεί να εκφράζεται ο RPTPβ/ζ, ένας υποδοχός της HARP.

Στην εργασία αυτή χρησιμοποιήσαμε ως μοντέλα μελέτης του καρκίνου του οροστάτη δύο καρκινικές σειρές, την DU145 και PC3, μαζί με πληθυσμούς αυτών με απενεργοποιημένο τον υποδοχό RPTPβ/ζ, και διενεργήσαμε πειράματα με σκοπό να εντοπίσουμε τις διαφορές στην ταχύτητα εξέλιξης του κυτταρικού κύκλου και στο ρυθμό απόπτωσης μεταξύ των φυσιολογικών και των μετασχηματισμένων κυττάρων. Βρέθηκε ότι υπάρχουν διαφορές και στις δύο αυτές εκφάνσεις της κυτταρικής λειτουργίας, ίσως όμως ήταν πιο έντονες στην περίπτωση του κυτταρικού κύκλου. Πιθανότατα ο υποδοχός σχετίζεται περισσότερο με μονοπάτια πολλαπλασιασμού παρά με μονοπάτια επιβίωσης, όποτε η αποσιώπηση του επιπρεπείς περισσότερο την ταχύτητα διαάρεσης των κυττάρων, παρά τον ρυθμό απόπτωσης.
23. Maiorano D, Moreau J, Mechali M: XCDT1 is required for the assembly of pre-replicative complexes in *Xenopus laevis*, *Nature* 2000, **404**:622-625
33. Li A, Blow JJ: Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in *Xenopus*, *EMBO J* 2005, **24**:395-404
34. Yoshida K, Takisawa H, Kubota Y: Intrinsic nuclear import activity of geminin is essential to prevent re-initiation of DNA replication in *Xenopus* eggs, *Genes Cells* 2005, **10**:63-73.


54. Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J. Tumor suppressor NM23-H1 is a granzyme 
Activated DNase during CTL- mediated apoptosis, and the nucleosome assembly protein SET is 

55. Ferraro-Peyret C, Quemeneur L, Flacher M, Revillard JP, Genestier L. Caspase-independent 
phosphatidylserine exposure during apoptosis of primary T lymphocytes. J Immunol 

56. Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis, necrosis 

57. Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Capaccioli S, Orlandini 
SZ. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell 

S, Schaper J. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J 

59. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in 
vitro and protects against ischemia- reperfusion injury in mouse heart. Circulation 

60. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c 

61. Waterhouse NJ, Juin P, Evan GI, Green DR. The coordinate release of cytochrome c during 

62. Goping IS, Barry M, Liston P, Sawchuk T, Constantinescu G, Michalak KM, Shostak I, Roberts DL, 
Hunter AM, Korneluk R, Bleackley RC. Granzyme B-induced apoptosis requires both direct 

63. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 

64. Grabarek J, Amstad P, Darzynkiewicz Z. Use of fluorescently labeled caspase inhibitors as 


syndrome p53 that has a mutation outside of the DNA-binding domain. Cancer Res 

68. Gurtu V, Kain SR, Zhang G. Fluorometric and colorimetric detection of caspase activity 


72. Hetz C, Vitte PA, Bombrun A, Rostovtseva TK, Montessuit S, Hiver A, Schwarz MK, Church DJ, 
Korsmeyer SJ, Martinou JC, Antonsson B. Bax channel inhibitors prevent mitochondrion- 
mediated apoptosis and protect neurons in a model of global brain ischemia. J Biol Chem 
2005;280:42960–70
