ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΦΥΣΙΚΗΣ

Κατεύθυνση Εφαρμοσμένης Φυσικής

« Μελέτη και Παρασκευή Ευαισθητοποιημένων Ηλεκτροχημικών Κυψελίδων – Οργανικά Φ/Β »

ΔΙΑΣΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ

Του Συρροκώστα Γιώργου

Επιβλέπων: Καθηγητής Π. Γιαννούλης

ΠΑΤΡΑ, 2007
Ευχαριστίες

Η ειδική αυτή ερευνητική εργασία εκπονήθηκε στο εργαστήριο ‘Ανανεώσιμων Πηγών Ενέργειας’ του Τμήματος Φυσικής του Πανεπιστημίου Πατρών.

Αναγνώριση προσφοράς και ευχαριστίες εκφράζονται προς όλους όσους συνέβαλαν, άμεσα ή έμμεσα στην πραγματοποίηση της εργασίας αυτής και ειδικότερα:

Θερμές ευχαριστίες οφείλονται στον επιστημονικό υπεύθυνο καθ. Παναγιώτη Γιαννούλη για την ανάθεση του θέματος, την συνεχή καθοδήγηση και συμπαράσταση που προσέφερε καθ’ όλη τη διάρκεια εκτέλεσης της εργασίας αυτής, τόσο στο επιστημονικό όσο και στο προσωπικό επίπεδο, για την επιμελή και προσεκτική ανάγνωση του αρχικού χειρόγραφου και κυρίως για τον τρόπο με τον οποίο δημιούργησε ένα κλίμα συνεργασίας, καλλιεργώντας έτσι και ενισχύοντας την επιστημονική αυτοτέλεια και πρωτοβουλία.

Ευχαριστίες επίσης οφείλονται στα υπόλοιπα μέλη της τριμελούς συμβουλευτικής που αποτελούνταν από την αναπληρώτρια καθ. Αθανασούλη Γεωργία και τον επίκουρο καθ. Αργυρίου Αθανάσιο για τις συμβουλές τους κατά τη διάρκεια της διπλωματικής.

Οι συζητήσεις και οι ανταλλαγές επιστημονικών απόψεων με τους ερευνητές Δρ. Λευθερίωθ Γιώργο και τον υποψήφιο διδάκτορα Σόμπολο Ζώη αποτέλεσαν πηγές γόνιμου προβληματισμού και έμπνευσης.

Θερμές ευχαριστίες τέλος εκφράζονται στους Δράκοπουλο Βασίλειο από το Ε.Ι.Χ.Μ.Υ.Θ. – Ι.Τ.Ε. και Κωστόπουλο Βασίλειο από το Εργαστήριο Ηλεκτρονικής Μικροσκοπίας & Μικροανάλυσης του Παν/μίου Πατρών για την λήψη των φωτογραφιών με το ηλεκτρονικό μικροσκόπιο σάρωσης (SEM).

Τέλος η εργασία αυτή αφιερώνεται στην οικογένειά μου και σε όλους εκείνους που χωρίς την ήθική τους συμπαράσταση δεν ήταν δυνατή η εκπλήρωσή της.
Περιεχόμενα

Εισαγωγή ... 6

Κεφάλαιο 1 .. 7
1.1 Υποστρώματα.. 7
 1.1.1 Ιδιότητες υποστρωμάτων: 7
 1.1.2 Γνώμονα υποστρώματα: 7
 1.1.3 Εύκαμπτα υποστρώματα: 8

1.2 Διοξείδιο του τιτανίου .. 10
 1.2.1 Χρήσεις: .. 10
 1.2.2 Κρυσταλλική δομή: ... 11
 1.2.3 Ηλεκτρονιακή δομή: .. 13
 1.2.4 Ημέρια διοξείδιο του τιτανίου: 13
 1.2.5 Ιδιότητες ομοιών για χρήση σε ευαίσθητοποιημένες ηλεκτροχημικές κυψέλες: 15
 1.2.6 Περασκευή ηλεκτροδίων διοξείδιο του τιτανίου: 16
 1.2.6.1 Περασκευή κολλεοειδούς διαλύματος: 16
 1.2.6.2 Τεχνική λύματος – πηκτόματος: 16
 1.2.6.3 Απόθεση διαλύματος – Μέθοδοι περασκευής ομοιών: 18
 1.2.7 Νανοδομή: ... 18

1.3 Ευαίσθητοποιητές .. 20
 1.3.1 Κριτήρια επιλογής του ευαίσθητοποιητή: 20
 1.3.2 Ευαίσθητοποιητές: .. 22
 1.3.3 Ροδαμίνη [Rh B]: .. 27
 1.3.4 Πράσινο του μαλαχίτη [M.G.]: 28

1.4 Ηλεκτρολύτες... 30
 1.4.1 Ιδιότητες δ/τ – οξειδωναγωγικό ζεύγους: 30
 1.4.2 Ρόλος του ηλεκτρολύτη: 33
 1.4.3 Επιδράσεις των κατιόντων: 36
 1.4.4 Υγροί – Στερεοί ηλεκτρόλυτες: 37
 1.4.5 Πρόσθετα στον ηλεκτρόλυτη: 39

1.5 Αντιηλεκτροδίο ... 41
 1.5.1 Ιδιότητες αντιηλεκτροδίου: 41
 1.5.2 Τρόποι περασκευής: .. 43

Κεφάλαιο 2: .. 48
 2.1 Μηχανισμός λειτουργίας ευαίσθητοποιημένης ηλεκτροχημικής κυψέλες: 48
2.2 Θεωρητική προσέγγιση του μηχανισμού λειτουργίας .. 52
2.2.1 Απορρόφηση του φωτός από τα μέρη της χρωστικής........................... 52
2.2.2 Έκχυση φορτίων και μεταφορά... 54
2.2.2 a Έκχυση – Διαχωρισμός φορέων:... 54
2.2.2 b Μεταφορά:... 57
2.2.3 Επανασύνδεση φορέων .. 61
2.3 Λόγοι δημιουργίας φωτοδυναμικού – Τάση ανοικτού κυκλώματος:........... 65
2.4 Φωτορέμια – Ρεύμα βραχυκυκλώσεως ... 67

Κεφάλαιο 3 .. 72
3.1 Υλικά που χρησιμοποιήθηκαν για την παρασκευή των κυψελίδων.................. 72
3.1.1 Υποστρώματα: .. 72
3.1.2 Υμένιο TiO2:.. 72
3.1.3 Άλλα χημικά: .. 73
3.2 Παρασκευή κυψελίδων .. 74
3.3 Παρασκευή κυψελίδων με μη νανοδομημένη σκόνη TiO2............................ 80
3.4 Παρασκευή κυψελίδων με νανοδομημένη σκόνη TiO2............................... 85
3.4.1 Μεταβολή της απόδοσης με το πάχος του υμενίου: 86
3.4.2 Μεταβολή της απόδοσης με την συγκέντρωση της χρωστικής:.......... 93
3.4.3 Μεταβολή της απόδοσης με τον χρόνο παραμονής του μίγματος μέχρι την απόδοση στο ύπόστρωμα: .. 97
3.4.4 Μεταβολή της απόδοσης με το αντιελεκτρόδιο:...................................... 107
3.4.5 Μεταβολή της απόδοσης με τον χρόνο:... 112
3.4.6 Μεταβολή της απόδοσης λόγω χρήσης διαφορετικής χρωστικής:........ 123
3.4.7 Μεταβολή της απόδοσης λόγω διάλυσης της χρωστικής:..................... 126
3.4.8 Μεταβολή της απόδοσης με την ενεργό επιφάνεια του υμενίου:......... 131
3.5 Μετρήσεις με ηλιακό φως:.. 133
3.6 Γενικά συμπεράσματα .. 141
3.6.1 Πειραματική διαδικασία: ... 141
3.6.2 Συμπεράσματα από τον τρόπο παρασκευής:...................................... 142

Κεφάλαιο 4 .. 146
Οργανικά φωτοβολταϊκά .. 146
4.1 Αρχή λειτουργίας: ... 146
4.2 Διαφορές με ανόργανα φ/β: ... 147
4.3 Πλεονεκτήματα – Μειονεκτήματα: .. 149
4.4 Διατάξεις: .. 150
4.4.1 Μονοστροματικές διατάξεις: .. 151
4.4.2 Διστροφικές διατάξεις: ... 153
4.4.3 Διατάξεις διεσπαρμένων επεξεργασιών: ... 155
4.4.4 Στροματοειδείς – βαθμοτές διατάξεις: .. 156
4.4.5 Επίλογος: .. 157
Βιβλιογραφία .. 158
Εισαγωγή

Στην παρούσα διπλωματική εξετάζεται η χρήση ευαισθητοποιημένων ηλεκτροχημικών κυψελίδων για την μετατροπή της ηλιακής ακτινοβολίας σε ηλεκτρική ενέργεια. Η κατηγορία αυτή των φωτοβολταϊκών κατέχει σήμερα ξεχωριστή θέση όσο αφορά τον τομέα της έρευνας και γνωρίζει σημαντική ανάπτυξη τα τελευταία 20 χρόνια περίπου. Οι λόγοι είναι κυρίως η υπόσχεση για χαμηλό κόστος και η ευκολία του τρόπου παρασκευής των κυψελίδων αυτών, σε συνδυασμό όμως με τη διατήρηση της απόδοσής σε υψηλά επίπεδα.

Γι’ αυτό το λόγο παρασκευάζουμε κυψελίδες αυτού του τύπου και χαρακτηρίζουμε κυρίως όσο αφορά την απόδοσή τους. Για την επίτευξη υψηλότερων αποδόσεων μελετήθηκαν τα επιμέρους υλικά που απαρτίζουν μια τέτοια κυψελίδα και βελτιστοποιήθηκαν. Η μελέτη των επιμέρους υλικών έγινε με την χρήση σύγχρονων τεχνικών όπως με την βοήθεια ηλεκτρονικού μικροσκοπίου σάρωσης, αλλά προσδιορίστηκαν και άλλα χαρακτηριστικά τους όπως το πάχος των υμενίων.

Δοκιμάστηκαν διαφορετικοί τρόποι παρασκευής των κυψελίδων αυτών με στόχο πάντα την επίτευξη υψηλότερης απόδοσης και έγινε σύγκριση των αποτελεσμάτων έτσι ώστε να προσδιοριστούν οι διάφοροι παράγοντες στους οποίους οφείλεται η μη καλή λειτουργία των κυψελίδων αυτών.

Τέλος πραγματοποιήθηκε βιβλιογραφική ανασκόπηση άλλων νέων τεχνολογιών στον τομέα των φ/β όπως είναι τα οργανικά φ/β.
Κεφάλαιο 1

1.1 Υποστρώματα

1.1.1 Ιδιότητες υποστρωμάτων:

Τα υποστρώματα τα οποία χρησιμοποιούνται για την παρασκευή των ηλεκτροδίων εύκαμπτα ή μη θα πρέπει να έχουν τις παρακάτω προδιαγραφές:

1. Να έχουν καλή ηλεκτρική αγωγιμότητα, ώστε η αντίσταση στην μεταφορά των φορέων να είναι μικρή.
2. Να είναι διαφανής και όσο το δυνατόν πιο λεπτά ώστε να μην έχουμε μεγάλη απορρόφηση της προσπίπτουσας ηλιακής ακτινοβολίας.
3. Να αντέχουν στις υψηλές θερμοκρασίες εφόσον η διαδικασία για την παρασκευή των ηλεκτροδίων του TiO₂ περιλαμβάνει θέρμανση στους 450°C, όπως επίσης και για την παρασκευή του αντιηλεκτροδίου υπάρχει απαίτηση για αντοχή στην υψηλή θερμοκρασία.
4. Θα πρέπει να είναι δυνατή ενεργειακά η μεταφορά ηλεκτρονίων από το TiO₂ στο υπόστρωμα. Αν π.χ. χρησιμοποιείται κάποιος άλλος ημιαγωγός έτσι ώστε το υπόστρωμα να γίνει αγώγιμο, θα πρέπει να είναι η ζώνη αγωγιμότητας του ημιαγωγού να είναι χαμηλότερα από την άκρη της ζώνης αγωγιμότητας του διοξειδίου του τιτανίου για να μπορεί να γίνει η μεταφορά των ηλεκτρονίων.
5. Να μπορούν να γίνουν εύκολα οι ηλεκτρικές επαφές με το εξωτερικό κύκλωμα

1.1.2 Γυάλινα υποστρώματα:

Συνήθως η παρασκευή των ηλεκτροδίων τόσο του διοξειδίου του τιτανίου όσο και του αντιηλεκτροδίου πραγματοποιείται πάνω στην επιφάνεια αγώγιμων γυαλιών. Πρόκειται για γυαλιά στη μια πλευρά των οποίων έχει γίνει απόθεση κάποιου
κατάλληλου οξειδίου. Γίνεται επομένως χρήση είτε γυαλιών στη μία επιφάνεια των οποίων έχει γίνει απόθεση διοξειδίου του κασσίτερου με προσμίξεις ιόντων φθαρίου (SnO₂:F), το οποίο έχει την εμπορική ονομασία K – glass, είτε γυαλιών στα οποία έχει γίνει απόθεση οξειδίου του ινδίου με προσμίξεις κασσίτερου (In₂O₃:Sn) το οποίο έχει την εμπορική ονομασία ITO. Τα γυαλιά αυτά χαρακτηρίζονται από καλή ηλεκτρική αγωγιμότητα, δηλ. έχουν αντίσταση της τάξης του 10 – 15 Ω ανά τετραγωνικό και καλή διαπερατότητα που φθάνει το 80 – 85 % για την περιοχή του ορατού φάσματος. Για την επίτευξη υψηλότερης αγωγιμότητας μειώνεται η διαπερατότητα και αντιστρόφως. Μπορεί επομένως να χρησιμοποιηθούν γυαλιά με διαφορετικές ιδιότητες για τα δύο ηλεκτρόδια. Για παράδειγμα το ηλεκτρόδιο του TiO₂ πρέπει να είναι όσο το δυνατόν περισσότερο διαφανές, γιατί από την πλευρά του προσπίπτει το φως του ήλιου [1].

Η απόθεση των οξειδίων στην επιφάνεια του γυαλιού γίνεται με τεχνικές όπως εξάχυση με την χρήση ηλεκτρονικού πυροβόλου και sputtering, ενώ η παρασκευή τέτοιων αγώγιμων επιφανειών πρόκειται για μια πολύ καλά δοκιμασμένη τεχνολογία πλέον.

1.1.3 Εύκαμπτα υποστρώματα:

Το κυρίωτερο μειονέκτημα των γυαλίνων υποστρωμάτων είναι ότι είναι άκαμπτα και εύθραυστα. Η αντικατάστασή τους με εύκαμπτα θα έχει ως αποτέλεσμα πληθώρα εφαρμογών, μείωση του κόστους και του βάρους, αλλά και μεγαλύτερη ευκολία στον τρόπο παρασκευής. Τα εύκαμπτα υποστρώματα που έχουν χρησιμοποιηθεί μέχρι στιγμής δεν παρουσιάζουν τόσο καλή αγωγιμότητα και για να χρησιμοποιηθούν θα πρέπει να αλλάξει ο τρόπος παρασκευής των ηλεκτροδίων του TiO₂ αφού δεν αντέχουν στις υψηλές θερμοκρασίες. Οι λόγοι για τους οποίους μέχρι στιγμής δεν έχουν επιτευχθεί υψηλές αποδόσεις είναι κυρίως τρεις. Πρώτον λόγο του διαφορετικού τρόπου παρασκευής των ηλεκτροδίων δεν επιτυγχάνεται καλή ηλεκτρική επαφή μεταξύ των νανοσωματιδίων του TiO₂, αφού πλέον δεν μπορεί να γίνει ανάπτυξη σε υψηλή θερμοκρασία. Επίσης επειδή δεν μπορεί να γίνει ανάπτυξη σε υψηλή θερμοκρασία δεν καίγονται οι διάφορες οργανικές ουσίες που χρησιμοποιούνται για την παρασκευή του δ/τος [2]. Ο δεύτερος λόγος είναι λόγω μη
καλής πρόσφυσης με την επιφάνεια του υποστρώματος έχουμε αύξηση της αντίστασης στην μεταφορά φορέων [3]. Ο τρίτος λόγος τέλος είναι λόγο μη καλής προστρώσης της χρωστικής [4].

Τα εύκαμπτα υποστρώματα που χρησιμοποιούνται είναι πολυμερή υμένια όπως ITO – PET [3-6] υμένια δηλ. poly(ethylene terephthalate) πάνω στα οποία έχει γίνει απόθεση οξείδιο του ινδίου με προσμίξες κασσιτέρου. Επίσης χρησιμοποιούνται υμένια polyethylene naphthalate (PEN/ITO) [7]. Η χρήση τέτοιων υμενίων επιβάλλει η παρασκευή των ηλεκτροδίων να γίνεται σε θερμοκρασίες που δεν θα υπερβαίνουν τους 150°C. Πάνω από την θερμοκρασία αυτή το πολυμερές υφίσταται θερμική κατάπτωση (thermal degradation) και μειώνεται η διαπερατοτητά του.

Για την ανάπτυξη επομένως εύκαμπτων κυψελίδων είναι απαραίτητη η αλλαγή τόσο του τρόπου με τον οποίο γίνεται η παρασκευή των ηλεκτροδίων, όσο και των συστατικών του δ/τος από το οποίο προκύπτουν τα ηλεκτρόδια. Δοκιμάστηκε επομένως η παρασκευή των ηλεκτροδίων να γίνεται με ανάπτυξη στους 100°C χωρίς να γίνεται χρήση κάποιων οργανικών ουσιών [8,9]. Οι Pichot, Pitts και Gregg έδειξαν μάλιστα ότι τα υμένια που παρασκεύασαν με τον παραπάνω τρόπο είχαν μεγαλύτερη εσωτερική επιφάνεια με αποτέλεσμα να προσφέρονται μεγαλύτερη ποσότητα χρωστικής [9].

Ο Hagfeldt [5,10,11] δοκίμασε μια τεχνική, η οποία συμπεριλάμβανε την πίεση του υλικού στην επιφάνεια του υποστρώματος για την επίτευξη καλύτερης πρόσφυσης σ’ αυτό.

Έχει δοκιμαστεί επίσης η παρασκευή του πορώδους υμενίου να γίνεται σε διαφορετικό υπόστρωμα και στην συνέχεια να μεταφέρεται σε ένα εύκαμπτο υπόστρωμα [12]. Ο Zhang [13,14] χρησιμοποίησε άλατα του τιτανίου ή αλκοξείδια αυτού ως ‘κόλλα’ για να επιτευχθεί χημική ένωση μεταξύ των νανοσωματιδίων του TiO₂. Αντί της ανάπτυξης των υμενίων στους 450°C, τα υμένια υφίστανται μία επεξεργασία με την χρήση ατμού στους 100°C. Μίγματα τιτάνιας και αλκοξείδιο του τιτανίου χρησιμοποιούνται και από την Konarka για την παρασκευή εύκαμπτων διατάξεων με την τεχνική roll – to – roll, η οποία υπόσχεται σημαντική μείωση του κόστους [8].
1.2 Διοξείδιο του τιτανίου

1.2.1 Χρήσεις:

Ανάμεσα στους ημιαγωγούς οξείδιων το διοξείδιο του τιτανίου κατέχει ξεχωριστή θέση. Με ετήσια παραγωγή περίπου 3 εκατ. τόνων, η βιομηχανία του διοξειδίου του τιτανίου κοστολογείται πάνω από 5,5 δις. δολάρια [16]. Τυπικές χρήσεις του TiO₂ είναι στην ετερογενή κατάλυση, στη φωτοκατάλυση κυρίως αέριων ρύπων, για την παραγωγή υδρογόνου και ηλεκτρικής ενέργειας σε ηλιακές κυψελίδες, ως αισθητήρας αερίων, ως βαφική ύλη λόγω του υψηλού δείκτη σκέδασης του φωτός, ως αντιδιαβρωτικό επίστρωμα, σε εμφυτεύματα οστών, σε ηλεκτρονικές διατάξεις (varistor, Mosfet), σε ηλεκτροχωμικές διατάξεις και τέλος σε μπαταρίες ιόντων λιθίου. Είναι πολύ δημοφιλές υλικό γιατί μπορεί εύκολα να παρασκευαστεί με την τεχνική αποσάθρωσης ανόδου (sputtering) και ανόπτηση [17].
1.2.2 Κρυσταλλική δομή:

Το διοξείδιο του τιτανίου συναντάται στην φύση σε τρεις διαφορετικές κρυσταλλικές μορφές. Ρουτήλιο (tetragonal), ανατάσης (tetragonal) και μπρουκίτης (orthorombic) είναι οι τρεις αυτές μορφές, με την πρώτη να είναι η πιο θερμοδυναμική σταθερή φάση, αλλά και αυτή που έχει μελετηθεί διεξοδικότερα. Το τελευταίο οφείλεται στο γεγονός ότι οι περισσότερες μέθοδοι για την ανάπτυξη κρυστάλλων έχουν σαν αποτέλεσμα την παραγωγή ρουτήλιου, αφού η παρασκευή μεγάλων κρυστάλλων καθαρού ανατάση είναι πιο δύσκολη διαδικασία. Ο μπρουκίτης μετατρέπεται σε ρουτήλιο σε αρκετά χαμηλές θερμοκρασίες, ενώ το ίδιο συμβαίνει και με τον ανατάση αλλά σε υψηλές θερμοκρασίες (από 700 °C έως 1000 °C) [17]. Ο μπρουκίτης είναι το πιο μαλακό υλικό από τα άλλα δύο.

Η δομή τόσο του ανατάση όσο και του ρουτήλιου μπορεί να περιγραφεί σαν μια αλυσίδα από οκτάεδρα TiO₆, τα οποία έχουν κοινά άκρα. Δύο και τέσσερα άκρα είναι κοινά στο ρουτήλιο και στον ανατάση, αντίστοιχα [18,19]. Η δομή αυτή φαίνεται στο παρακάτω σχήμα. Οι δομές διαφέρουν μεταξύ τους στον τρόπο με τον οποίο τοποθετούνται τα άτομα στο οκτάεδρο, αλλά και στον τρόπο με τον οποίο τα οκτάεδρα ενώνονται μεταξύ τους. Σε κάθε περίπτωση, κάθε οκτάεδρο TiO₆ είναι ελαφρά διαταραγμένο, με δύο δεσμούς Ti – O να είναι ελαφρά μεγαλύτεροι από τους άλλους τέσσερις και μερικές γονίες των δεσμών O – Ti – O να διαφέρουν πάνω από 90 μοίρες [18].

![Diagram](attachment:diagram.png)

Σχήμα 1: Κρυσταλλική δομή (a) ανατάσης, (b) ρουτήλιο, (c) μπρουκίτης [18]
Ο συντονισμός των οκτάεδρων είναι λιγότερο πυκνός στον ανάταση, με αποτέλεσμα η δομή του να είναι πιο ανοικτή, λιγότερο πυκνή και εύκαμπτη [20].

Στην περίπτωση του ανατάση κάθε οκτάεδρο είναι σε επαφή με 8 γείτονες, ενώ στην περίπτωση του ρουτήλιου ο αριθμός είναι 10. Το οκτάεδρο στο ρουτήλιο δεν είναι ακριβώς κανονικό, αλλά εμφανίζει κάποια ορθορομβική διαταραχή. Στην περίπτωση του ανατάση η διαταραχή είναι πιο έντονη [21].

Στον ανατάση ξεχωρίζουμε άτομα τιτανίου που ενώνονται με 4 γείτονικά άτομα οξυγόνου, αλλά και άτομα τιτανίου που ενώνονται με 5 και 6 γείτονικά άτομα οξυγόνου. Τα άτομα οξυγόνου ενώνονται με 3 άτομα τιτανίου. Οι αποστάσεις μεταξύ ατόμων Τi είναι μεγαλύτερες στον ανατάση (3,79 και 3,04 Å) από ότι στο ρουτήλιο (3,57 και 2,96 Å), ενώ οι αποστάσεις Ti – Ο μικρότερες στον ανατάση (1,91 και 1,95 Å) από το ρουτήλιο (1,94 και 1,99 Å).

Στον ανατάση έχουμε περισσότερες ατέλειες καθώς και μεγαλύτερη αταξία. Ο δείκτης διάθλασης των φιλμ με ανατάση είναι λίγο μικρότερος από ότι στα φίλμ ρουτήλιου [22]. Επίσης νανοκρύσταλλοι TiO2 με μέγεθος μικρότερο από μια κρίσιμη τιμή έχουν την δομή του ανατάση, λόγω της μικρότερης ενέργειας της επιφάνειας σε σχέση με το ρουτήλιο. Πάνω από την κρίσιμη τιμή έχουμε μείγμα νανοκρύσταλλων ανατάση και ρουτήλιου, οι οποίοι με θέρμανση μετατρέπονται σε ρουτήλιο [23].

Το μέγεθος, το σχήμα και η κρυσταλλική δομή νανοσωματιδίων TiO2 εξαρτάται από την μέθοδο που χρησιμοποιείται για την παρασκευή της σκόνης [24]. Οι μικροκρύσταλλοι έχουν μια πολύ καλά καθορισμένη μορφή πρίσματος, επιδεικνύοντας τις 101, 010 και 001 κατευθύνσεις, με την 101 κατεύθυνση να είναι η πιο θερμοδυναμικά σταθερή. Ακόμα και πολύ μικρά σωματίδια (5 nm) έχουν κρυσταλλική δομή, καθώς και πολύ καλά καθορισμένο σχήμα.
Σχήμα 2: Απλοποιημένο μοντέλο νανοκρυστάλλου ανατάση [25]

Τα μορφολογικά χαρακτηριστικά των σωματιδίων επηρεάζουν την συγκρότηση (packing) στη σκόνη, αλλά και τον μηχανισμό της αντίδρασης.

1.2.3 Ηλεκτρονιακή δομή:

Το ενεργειακό χάσμα του ανατάση είναι 3,2 eV και του ρουτήλιου 3 eV. Το ρουτήλιο χαρακτηρίζεται ως ημιαγωγός άμεσου χάσματος (direct band gap), ενώ ο ανατάσης ως μη άμεσου χάσματος (indirect band gap), με πολύ όμως μικρή διαφορά [18].

Το πάνω μέρος της ζώνης σθένους αποτελείται από O\textsubscript{2p} τροχιακά και έχει εύρος 6,22 eV. Οι χαμηλότερες ενεργειακές στάθμες της ζώνης αγωγιμότητας αποτελούνται από δύο ζώνες από Ti\textsubscript{3d} τροχιακά, με εύρος 5,9 eV [18,23]. Από μετρήσεις της ψυκνότητας καταστάσεων (DOS) προκύπτει ότι υπάρχει ένας σημαντικός υβριδισμός μεταξύ των τροχιακών O\textsubscript{2p} και Ti\textsubscript{3d} και στις δύο ζώνες αγωγιμότητας και σθένους.

1.2.4 Υμένια διοξειδίου του τιτανίου:

Λεπτά υμένια διοξειδίου του τιτανίου έχουν παρασκευαστεί με διάφορες φυσικές και χημικές μεθόδους όπως θα δούμε παρακάτω. Τέτοια υμένια χρησιμοποιούνται ως αντιανακλαστικά επιστρώματα, διηλεκτρικά υλικά, σε
αισθητήρες και κυματοδηνούς. Τα υμένια του TiO\textsubscript{2} που παρασκευάζονται για ενεργειακή χρήση είναι συνήθως αρκετά πορώδη και αποτελούνται από ένα δίκτυο σωματιδίων με διάμετρο 25 nm, σε ηλεκτρική επιφάνεια μεταξύ τους. Η ηλεκτρική επιφάνεια των σωματιδίων αλλάζει και με το υπόστρωμα επιτυγχάνεται κατά την διάρκεια της ανάπτυξης. Το πορώδες του υμενίου μεταβάλλεται με την θερμοκρασία στην οποία γίνεται η ανάπτυξη, αφού συμβαίνει αύξηση του μεγέθους των νανοσωματιδίων. Τα υμένια αυτά έχουν παράγοντα τραχώτητας (roughness factor) περίπου 1000, δηλ. η πραγματική τους εσωτερική επιφάνεια είναι 1000 φορές μεγαλύτερη από την επίπεδη - εξωτερική, για ένα υμένιο με πάχος 10 μm [26]. Τα υμένια παρουσιάζουν ηλεκτροχημική συμπεριφορά, δηλ. χρωματίζονται μαύρα όταν εφαρμοστεί πιο αρνητικό δυναμικό από –0,4 V [27] και με τον χρωματισμό να συμβαίνει σε όλο τον όγκο του υμενίου. Αυτό εξηγείται από το γεγονός ότι ο χρωματισμός είναι ανάλογος του πάχους του υμενίου. Η αλλαγή του χρώματος οφείλεται στα ιόντα Ti [III].

Το φάσμα απορρόφησης παρουσιάζει μέγιστο στην υπεριώδη περιοχή του φάσματος, λόγω του μεγάλου ενεργειακού χάρακτα. Γι αυτό το λόγο όταν τα υμένια αυτά χρησιμοποιηθούν για μετατροπή της ηλιακής ενέργειας ευαισθητοποιούνται με την κατάλληλη χρωστική. Η προσορόφηση όμως μορίων χρωστικής έχει σαν αποτέλεσμα την μείωση κατά περίπου 30% του πορώδους του υμενίου [28].

Τα υμένια που αποτελούνται από ανάταση έχουν μεγαλύτερο εύρος εφαρμογών από ότι τα υμένια με ροουτήλιο. Η κυριότερη διαφορά οφείλεται στο γεγονός ότι τα πρώτα εμφανίζουν πιο ευρύ φάσμα απορρόφησης καθώς και μικρότερη ενεργό μάζα ηλεκτρονίων, με αποτέλεσμα την μεγαλύτερη ευκινησία των φορέων [18]. Η μικρότερη ενεργό μάζα εξηγεί και τις ρηχές ενεργειακές καταστάσεις δοτών στον ανάταση [22].

Όσο αφορά την αγωγιμότητά τους είναι πολύ μικρή, αυξάνεται όμως σημαντικά όταν τα υμένια φωτοστοιχεία. Η αύξηση αυτή της αγωγιμότητας μπορεί να φτάσει και τις μερικές τάξεις μεγέθους, παραμένει πάντως μικρή ώστε να μπορούν τα υμένια αυτά να χρησιμοποιηθούν ως φ/β χωρίς να γίνει ευαισθητοποίηση τους. Επίσης η φωτοαγωγιμότητα όπως χαρακτηρίζεται επηρεάζεται από διάφορους παράγοντες όπως από το περιβάλλον στο οποίο βρίσκονται τα υμένια, από την θερμοκρασία, από την ένταση του φωτός κ.τ.λ.
Διάφορα οξείδια ημιαγωγών έχουν χρησιμοποιηθεί με την μορφή λεπτών υμενίων για φωτοβολταϊκές εφαρμογές, ανάμεσά τους το ZnO, SnO2, Nb2O5. Το διοξείδιο του τιτανίου εμφανίζει διάφορα πλεονεκτήματα, όπως χαμηλό κόστος, επάρκεια στην αγορά, μη τοξικό και φιλικό στο περιβάλλον, ενώ χρησιμοποιείται ευρύτατα σε προϊόντα υγείας, σε χρώματα κ.τ.λ. [29]

1.2.5 Ιδιότητες υμενίων για χρήση σε ευαισθητοποιημένες ηλεκτροχημικές κυψελίδες:

Πιο συγκεκριμένα τα υμένια τα οποία θα χρησιμοποιηθούν σε ηλεκτροχημικές κυψελίδες θα πρέπει να έχουν τα παρακάτω χαρακτηριστικά:

1. Μεγάλη εσωτερική επιφάνεια ώστε να μπορούν να προσφορηθούν περισσότερα μόρια χρωστικής. Η ευαισθητοποίηση επίπεδων ημιαγωγών και όχι νανοδομημένων είναι πολύ λιγότερο αποτελεσματική, λόγω της μικρής ενεργού διατομής απορρόφησης για μονομοριακό στρώμα χρωστικής.

2. Τα υμένια θα πρέπει να έχουν μεγάλο πορώδες ώστε να μπορεί να εισχωρήσουν τόσο τα μόρια της χρωστικής κατά την ευαισθητοποίηση, όσο και ο ηλεκτρολύτης για την πιο αποτελεσματική αναγωγή της χρωστικής.

3. Το μέγεθος των σωματιδίων θα πρέπει να είναι τέτοιο ώστε το υμένιο να είναι διαφανές. Για παράδειγμα αν το μέγεθος των σωματιδίων είναι τις τάξεις των μίκρού, το υμένιο θα προκύψει αδιαφανές. Επίσης για να είναι πορώδες το υμένιο το μέγεθος των σωματιδίων θα πρέπει να είναι μικρό, αν και μεγαλύτερα σωματιδία θα σκέδαζαν το φως πιο αποτελεσματικά.

4. Καλή ηλεκτρική επαφή μεταξύ των σωματιδίων ώστε τα ηλεκτρόνια να μπορούν να μεταφέρθουν και να συλλεχθούν στο ηλεκτρόδιο. Η επαφή αυτή επιτυγχάνεται κατά την διάρκεια της ανάπτυξης [16].

5. Να μην αποκολλάται εύκολα από την επιφάνεια του υποστρώματος

6. Όσο αφορά το πάχος του δεν θα πρέπει να εχει μεγάλη τιμή ώστε να έχουμε μικρότερη ηλεκτρική αντίσταση κατά την μεταφορά φορέων, αλλά και μικρότερη πιθανότητα για επανασύνδεση των ηλεκτρονίων.

7. Επίσης το πάχος θα πρέπει να είναι μικρότερο από το μήκος διάχυσης των ηλεκτρονίων, ώστε τα ηλεκτρόνια να μπορούν να συλλεχθούν στο
ηλεκτρόδιο. Από την άλλη μεριά το πάχος του υμενίου θα πρέπει να είναι μεγαλύτερο από το μήκος απορρόφησης του φωτός για την πιο αποτελεσματική απορρόφησή του. Γι’ αυτούς τους λόγους το πάχος πρέπει να είναι της τάξης των μερικών μι μεγαλύτερο από την οπτική ενέργεια διατομή του ευαισθητοποιητή και της συγκέντρωσής του στο υμένιο [30].

1.2.6 Παρασκευή ηλεκτροδίων διοξειδίου του τιτανίου:

Η παρασκευή ηλεκτροδίων διοξειδίου του τιτανίου περιλαμβάνει δύο στάδια. Πρώτον την παρασκευή ενός κολλοειδούς διαλύματος από νανοσωματίδια του TiO₂ και δεύτερον την απόθεση του διαλύματος αυτού στην επιφάνεια ενός αγώγιμου υποστρώματος.

1.2.6.1 Παρασκευή κολλοειδούς διαλύματος:

Για την παρασκευή του διαλύματος ακολουθούνται δύο κυρίως κατευθύνσεις. Είτε χρησιμοποιείται έτοιμη σκόνη νανοσωματίδιων TiO₂, είτε παρασκευάζεται από την αρχή με την τεχνική λύματος – πηκτώματος (sol – gel). Στην παρούσα εργασία έγινε χρήση της εμπορικής σκόνης Degussa P – 25 και επειδή η διαδικασία αυτή θα περιγραφεί στο πειραματικό μέρος, θα αναφέρουμε μόνο προς το παρόν την τεχνική λύματος – πηκτώματος. Εκτός από την τεχνική αυτή έχουν αναπτυχθεί και άλλες τεχνικές, με τις οποίες μπορούν να παρασκευαστούν και νανοσωλήνες TiO₂ [31].

1.2.6.2 Τεχνική λύματος – πηκτώματος:

Η τεχνική αυτή χρησιμοποιείται για την παρασκευή κεραμικών και υαλωδών υλικών. Γενικά η τεχνική αυτή περιλαμβάνει την μετάβαση ενός συστήματος από την υγρή κατάσταση “sol” (συνήθως κολλοειδές δ/μα) στην στερεά “gel” κατάσταση. Ως πρόδρομες ενόσεις χρησιμοποιούνται ανόργανα άλατα μετάλλων ή οργανικά άλατα, όπως αλκοοξείδια μετάλλων. Η τεχνική αυτή περιλαμβάνει αρκετά επιμέρους στάδια [30].
1. Υδρόλυση ισοπροποξείδιοι του τιτανίου σε διάλυμα νιτρικού οξέος με βάση την παρακάτω αντίδραση, υπό συνεχή ανάδευση:

\[
\text{Ti}(\text{OCH}[\text{CH}_3]_2)_4 + 2 \text{H}_2\text{O} \rightarrow \text{TiO}_2 + 4 \text{[CH}_3]_2\text{CHOH}
\]

2. συμπύκνωση (peptization) με θέρμανση στους 80°C για 8 h

3. φιλτράρισμα

4. αραίωση

5. αποστείρωση (autoclave)

6. χρήση υπερήχων

7. εξάτμιση

Το ισοπροποξείδιο του τιτανίου παρασκευάζεται από την αντίδραση του τετραχλωρούχου τιτανίου με ισοπροπανόλη, όπως βλέπουμε στην παρακάτω αντίδραση:

\[
\text{TiCl}_4 + 4 \text{[CH}_3]_2\text{CHOH} \rightarrow \text{Ti}(\text{OCH}[\text{CH}_3]_2)_4 + 4 \text{HCl}
\]

Στο πρώτο στάδιο πραγματοποιείται η ελεγχόμενη υδρόλυση ενός αλκοξείδιου του τιτανίου [24] και ο σχηματισμός ενός λευκού συμπυκνώματος. Στο δεύτερο στάδιο συμβαίνει ο διαχωρισμός των συσσωματομάτων σε απομονωμένα σωματίδια. Με το φιλτράρισμα στο τρίτο στάδιο απομακρύνονται τυχόν συσσωματόματα τα οποία δεν έχουν διασπαστεί και με την αραίωση επιτυγχάνεται η επιθυμητή συγκέντρωση του τελικού δ/τος. Στην συνέχεια το υλικό θερμάνεται στους 200 – 250 °C για 12 h για την ανάπτυξη σωματιδίων με διαστάσεις έως 10 – 25 nm ενώ στην συνέχεια γίνεται χρήση υπερήχων για την περαιτέρω διάσπαση των συσσωματωμάτων. Τέλος, γίνεται εξάτμιση έτσι ώστε να επιτυγχάνει η σωστή συγκέντρωση 11% wt σε TiO₂ [16,32]. Επίσης για να αποφευχθούν οι διάφορες ρωγμές στο υμένιο (cracks) προστίθεται polyethylene glycol ως συνδετικό για τα νανωσωματίδια.

Η επίδραση των διαφόρων παραγόντων της διαδικασίας αυτής, όπως θερμοκρασία, pH και άλλα στις ιδιότητες του τελικού διαλόματος (π.χ. μέγεθος σωματιδίων) περιγράφονται από τον Cheng [19].
Μια παράλλαγή της μεθόδου αυτής είναι αρχικά να έχουμε την ελεγχόμενη υδρόλυση ενός άλατος του Ti[IV], όπως το TiCl₄ χωρίς την προηγούμενη μετατροπή του σε αλκοξείδιο [19,33].

1.2.6.3 Απόθεση διαλύματος – Μέθοδοι παρασκευής υμενίων:
Όταν το κολλοειδές διάλυμα είναι έτοιμο μπορεί να γίνει η απόθεσή του με τους παρακάτω τρόπους:
1. doctor blade: η μέθοδος αυτή χρησιμοποιήθηκε για την παρασκευή των κυψελίδων στην παρούσα διπλωματική και θα αναλυθεί στο πειραματικό μέρος.
2. screen – printing: στην μέθοδο αυτή γίνεται χρήση του ίδιου τρόπου λειτουργίας με τους εκτυπωτές.
3. spin – coating [34,35]: στην μέθοδο αυτή το διάλυμα ουσιαστικά τοποθετείται πάνω στο υπόστρωμα το οποίο στην συνέχεια περιστρέφεται με πολύ μεγάλη ταχύτητα, με αποτέλεσμα να απλώνεται ομοιόμορφα σε όλη την έκτασή του λόγω της φυγόκεντρου δύναμης.
4. sputtering [36]: η μέθοδος αυτή χρησιμοποιείται και για την παρασκευή του αντιλεκτροδίου και θα αναφερθεί στην συνέχεια
5. spray – deposition [37], spray pyrolysis [34,38]: η μέθοδος αυτή ουσιαστικά περιλαμβάνει τον ψεκασμό του διαλύματος πάνω στο υπόστρωμα

Για την παρασκευή των ελεκτροδίων διοξειδίου του τιτανίου συνήθως η απόθεση γίνεται μία φορά, αλλά έχουν αναφερθεί και περιπτώσεις στις οποίες έχουμε πολλαπλές αποθέσεις [39].

1.2.7 Νανοδομή:
Εξαιτίας του πολύ μικρού μεγέθους των σωματιδίων που αποτελούν το υμένιο μας έχουμε την εμφάνιση κβαντικών φαινομένων, τα οποία διαφοροποιούν τις ιδιότητες των υμενίων. Η εμφάνιση τέτοιων κβαντικών φαινομένων συμβαίνει πάντοτε όταν το μέγεθος των σωματιδίων είναι συγκρίσιμο με το μήκος κύματος De
Broglie των φορέων (ηλεκτρονιών – οπών). Αλλαγές στις ηλεκτρονικές ιδιότητες, π.χ. ενέργειακό χάσμα, δομή ζωνών, καθώς και στις φασματικές ιδιότητες του ημιαγωγού είναι δύο άμεσες συνέπειες της ύπαρξης πολύ μικρού μεγέθους των σωματιδίων. Το ενέργειακό χάσμα μάλιστα αυξάνεται, καθώς μειώνεται το μέγεθος των σωματιδίων, γεγονός που υποδεικνύεται από την αλλαγή του άκρου της απορρόφησης σε μικρότερα μήκη κύματος. Είναι επομένως πολύ πιθανόν η ζώνη αγωγιμότητας και η ζώνη σθένους να μετατοπίζονται προς περισσότερο αρνητικά και θετικά δυναμικά αντίστοιχα, με την μείωση του μεγέθους των νανοσωματιδίων. Στην περίπτωση του ανάτασης έχει παρατηρηθεί μια αλλαγή του ενέργειακο χάσματος κατά 0,15 eV σε σύγκριση με το ενέργειακό χάσμα της κύριας μάζας του.

Επομένως έχουμε αλλαγή στις ηλεκτρονικές ιδιότητες των σωματιδίων. Επίσης οι φυσικές και οι χημικές ιδιότητες που συνδέονται με τις ηλεκτρονικές ιδιότητες, εξαρτώνται επομένως από το μέγεθος των σωματιδίων.

Η διαπερατότητα των υμενίων εξαρτάται επίσης από το μέγεθος των νανοσωματιδίων. Το υμένιο είναι διαφανές μόνο όταν τα σωματίδια είναι μικρότερα τουλάχιστον από 50 nm.
1.3 Ευαισθητοποιητής

To διοξείδιο του τιτανίου με ενεργειακό χάσμα $E_g = 3,2eV$ στην περίπτωση του ανατάση χαρακτηρίζεται ως ημιαγωγός ευρέως χάσματος. Λόγω επομένως του μεγάλου ενεργειακού χάσματος δεν μπορεί να χρησιμοποιηθεί όπως το πυρίτιο ($E_g = 1,1eV$) για κάποια εφαρμογή στα φωτοβολταϊκά, αφού απορροφά στην υπερώδη περιοχή του φάσματος. Γι’ αυτό τον λόγο πρέπει να γίνει η ευαισθητοποίηση του με κάποια κατάλληλη χρωστική ουσία – ευαισθητοποιητή, η οποία θα απορροφά το προσπίπτον ηλιακό φως. Η διαδικασία της ευαισθητοποίησης συναντάει από πολύ παλιά, αλλά το γεγονός ότι οι ημιαγωγοί που χρησιμοποιούνταν ήταν μονοκρυσταλλικοί ή πολυκρυσταλλικοί και όχι νανοδομημένοι είχε σαν αποτέλεσμα πολύ μικρά φωτοεύματα [40]. Από το 1978 οι Chen, Deb και Witzke ήταν οι πρώτοι που παρασκεύασαν μια ευαισθητοποιημένη κυψελίδα χρησιμοποιώντας την χρωστική N-methylphenazium. Η χρωστική αυτή επέκτεινε το φάσμα απορρόφησης του TiO₂ μέχρι τα 500 nm. Η απόδοση της κυψελίδας αυτής ήταν πολύ μικρή, ενώ η σταθερότητα της χρωστικής ήταν αμφισβητούμενη [41]. Οι πρώτοι βέβαια ημιαγωγοί οι οποίοι ευαισθητοποιήθηκαν χρησιμοποιήθηκαν για φωτογραφικά φίλμ και όχι σε φωτογραφικές κυψελίδες για την μετατροπή του ηλιακού φωτός.

1.3.1 Κριτήρια επιλογής του ευαισθητοποιητή:

Για την επίτευξη υψηλής απόδοσης ο ευαισθητοποιητής που θα χρησιμοποιηθεί θα πρέπει να έχει κάποια συγκεκριμένα χαρακτηριστικά:

1. Η χρωστική θα πρέπει να έχει ευρύ φάσμα απορρόφησης το οποίο να φθάνει τουλάχιστον μέχρι τα 920 nm, δηλ. θα πρέπει η διεγερμένη κατάσταση της χρωστικής να βρίσκεται περίπου 1,35 eV πιο ψηλά από εκείνη την ηλεκτρονική κατάσταση που αντιστοιχεί στο ιδανικό ενεργειακό χάσμα ενός ημιαγωγού για χρήση σε φωτοβολταϊκά [42].

2. Οι ενεργειακές στάθμες της χρωστικής θα πρέπει να έχουν τέτοια τιμή ώστε να εξασφαλίζεται η μέγιστη απόδοση της κυψελίδας. Δηλ. θα πρέπει η
ενέργεια της διεγερμένης κατάστασης να βρίσκεται πιο ψηλά από την ζώνη αγογμότητας του TiO₂ ώστε να είναι εφικτή η έκχυση ηλεκτρονίων και μάλιστα όσο μεγαλύτερη η διαφορά τόσο μεγαλύτερη και η δύναμη που οδηγεί τα ηλεκτρόνια στην ζώνη αγογμότητας. Επίσης η ενέργεια της οξειδωμένης χρωστικής θα πρέπει να είναι πιο θετική από το δυναμικό οξειδοαναγωγής του οξειδοαναγωγικού ζεύγους, ώστε να είναι εφικτή η αναγωγή της, η οποία θα πρέπει να γίνεται αρκετά γρήγορα από τα ίντα ιωδίου, έτσι ώστε να αποφεύγεται η επανασύνδεση με τα ηλεκτρόνια από τη ζώνη αγογμότητας του ημιαγωγού.

3. Η διαδικασία για την έκχυση των ηλεκτρονίων θα πρέπει να είναι αρκετά γρήγορη, ώστε να αποφεύγονται άλλοι τρόποι αποδέχερσης της χρωστικής και με κβαντική απόδοση που να πλησιάζει την μονάδα. Ο χρόνος ζωής της διεγερμένης κατάστασης της χρωστικής θα πρέπει επομένως να είναι τέτοιος ώστε να επιτρέπει την έκχυση ηλεκτρονίων, όσο γρήγορη και να είναι η διαδικασία αυτή.

4. Τα μόρια της χρωστικής θα πρέπει να αντέχουν σε μεγάλο αριθμό επαναλαμβανόμενων κύκλων, ώστε να εξασφαλίζεται η καλή λειτουργία των φ/β αυτών για μια χρονική περίοδο τουλάχιστον 20 ετών. Στο χρονικό αυτό διάστημα υπολογίζεται ότι η χρωστική θα έχει πραγματοποιήσει περίπου 50 – 100 τρις κύκλους οξείδωσης – αναγωγής χωρίς να αλλάξουν σημαντικά οι ιδιότητές της [43].

5. Καλή και σταθερή προσφορή στην επιφάνεια του ημιαγωγού [42], όπως και δυνατότητα να εισχωρήσει στους πόρους του υπενθύμου κατά την διαδικασία της ευαισθητοποίησης.

6. Χημική αδράνεια κατά την επαφή με τον ηλεκτρολύτη. Σε περίπτωση που η χρωστική αντιδρά με τον ηλεκτρολύτη, η διεγερμένη της κατάσταση θα αποσβένεται τόσο γρήγορα, ώστε να αποκλείεται η διάχυση της προς το ηλεκτρόλυτο, αν έχει διαλυθεί μέσα στον ηλεκτρολύτη, και η έκχυση ηλεκτρονίων δεν θα μπορεί να γίνει, επειδή δεν θα είναι σε επαφή με το TiO₂.

7. Τα μόρια της χρωστικής θα πρέπει να είναι μικρά και να έχουν ένα ευρύ και έντονο φάσμα απορρόφησης στο οποίο για να απορροφούν όσο το δυνατόν
περισσότερο φως. Επίσης θα πρέπει να υπάρχει δυνατότητα για ρύθμιση του φάσματος απορρόφησης [44].

8. Τα μόρια της χρωστικής θα πρέπει να είναι πλησίον του ημιαγογού, ώστε να επιτυγχάνεται η έκχυση των ηλεκτρονίων και να μη συμβαίνει αποδιέγερση με ή χωρίς την εκπομπή ακτινοβολίας.

9. Τέλος από πλευράς κόστους να μπορεί να παρασκευαστεί από φθηνές πρώτες ύλες και με μη εξειδικευμένους τρόπους παρασκευής

1.3.2 Ευαισθητοποιήτες:

Οι χρωστικές οι οποίες χρησιμοποιούνται χωρίζονται σε δύο κατηγορίες ανάλογα με τη δομή τους σε ανόργανες και σε οργανικές. Στις ανόργανες χρωστικές συμπεριλαμβάνονται κυρίως οι χρωστικές που περιέχουν μεταλλικά σύμπλοκα, όπως είναι αυτές του ρουθηνίου και του οσμίου, ενώ στις οργανικές συμπεριλαμβάνονται τόσο οι φυσικές όσο και οι συνθετικές [29].

Οι ανόργανες χρωστικές παρουσιάζουν υψηλή θερμική και χημική σταθερότητα. Ανάμεσα σε αυτές έχουν ρόλο κατέχουν τα σύμπλοκα του ρουθηνίου, λόγω της υψηλής τους σταθερότητας, των αξιοσημειωτών οξειδωναγωγικών τους χαρακτηριστικών και της καλής τους απόκρισης στην περιοχή του ορατού φάσματος της η/μ ακτινοβολίας.

Οι χρωστικές αυτές έχουν την εξής δομή: στο κέντρο βρίσκεται το ιόν ενός μετάλλου, όπως του ρουθηνίου ή του οσμίου και γύρω από αυτό οι διάφοροι υποκαταστάτες (ligands). Το ιόν του μετάλλου έχει 6 ηλεκτρόνια σθένους και δανειζται ένα ξείρον ηλεκτρονίων από τους υποκαταστάτες. Διαλέγονται επομένως κατάλληλα τους υποκαταστάτες, μπορούν να επιτυχθούν και οι επιθυμητές ιδιότητες των χρωστικών αυτών, όπως δυναμικό οξειδωναγωγής και περιοχή απορρόφησης. Κατά την απορρόφηση του φωτός ηλεκτρόνια διεξάγονται από κάποιο μοριακό τροχιακό που βρίσκεται στο κέντρο του μεταλλικού ιόντος [t_2g], σε κάποιο μοριακό τροχιακό που εντοπίζεται στους υποκαταστάτες [π^*]. Η διέγερση αυτού του τύπου είναι η MLCT (metal to ligand charge transfer). Όσο μικρότερη είναι η ενεργειακή διαφορά των δύο αυτών τροχιακών, τόσο και το φάσμα της απορρόφησης μετατοπίζεται προς το ερυθρό. Η ενεργειακή διαφορά των δύο αυτών τροχιακών

22
μπορεί να ρυθμιστεί. Για παράδειγμα η πυκνότητα ηλεκτρονίων του μεταλλικού ιόντος καθορίζει την ενεργειακή στάθμη των μοριακών τροχιακών \(t_{2g} \) [16]. Εκτός από τα μέταλλα αυτά έχει δοκιμαστεί και ο σίδηρος. Στην περίπτωση του σιδήρου η χρωστική που προκύπτει έχει δύο περιοχές απορρόφησης, από τις οποίες η μία χρησιμοποιείται για την ευαίσθητοποίηση του ημιαγωγού [45,46] και αποτελούν μια φθηνή εναλλακτική λύση σε σχέση με τις αντίστοιχες του ρουθενίου.

Οι ανόργανες χρωστικές προσφορές στην επιφάνεια του ημιαγωγού μέσω καρβοξυλικών [carboxylate \(-COOH\)] ή φωσφορικών [phosphonate \(-PO(OH)_2\)] ομάδων, οι οποίες κάνουν δυνατή την έκχυση ηλεκτρονίων στην ζώνη αγωγιμότητας του ημιαγωγού. Ανάλογα με ποια ομάδα χρησιμοποιείται για να γίνει η πρόσφυση έχουμε και διαφορετικές ιδιότητες. Για παράδειγμα όταν η προσφορά γίνεται με την βοήθεια καρβοξυλικών ομάδων, τότε η χρωστική είναι πιο εύκολο να εκφραστεί σε υδατικό διάλυμα με \(pH \) κάτω από 5, αλλά έχουν περισσότερα πλεονεκτήματα, όπως μεγαλύτερη επικάλυψη του τροχιακού π\(^*\) της διεγερμένης χρωστικής με τα κενά [TiIV] 3d τροχιακά του της ζώνης αγωγιμότητας του TiO\(_2\). Στην περίπτωση των φωσφορικών ομάδων η εκρόφηση μπορεί να γίνει σε υψηλότερες τιμές \(pH \), αλλά παρουσιάζουν χειρότερη χημική συγγένεια με την επιφάνεια του TiO\(_2\) [43]. Στο παρακάτω σχήμα φαίνεται ο τρόπος με τον οποίο μια καρβοξυλική ή φωσφορική ομάδα προσφοράτε μέσω ομοιοπολικού δεσμού με την επιφάνεια ενός οξειδίου. Στις περισσότερες περιπτώσεις δηλ. οι ομάδες αυτές αντιδρούν αυθόρμητα με επιφανειακές υδροξυλομάδες των οξειδίων και σχηματίζουν σταθερούς δεσμούς [16].

[Diagram: Carboxy ester linkage -O-(C=O)- on oxides (carboxylic acids RCOOH) and Phosphonate ester linkage -O-(C=O)- on oxides (phosphonic acids RPO\(_2\)H)]

Σχήμα 3: Τρόποι προσφορής στην επιφάνεια οξειδίων [16]

Για την προσφόρηση της στην επιφάνεια του TiO₂ χρησιμοποιούνται 2 από τις 4 συνολικά καρβοξυλομάδες. Το καρβοξύλιο είτε γεφυρώνει δύο γειτονικές γραμμές ιόντων τιτανίου μέσω bidentate coordination, ή αντιδρά με επιφανειακές υδροξυλομάδες μέσω δεσμών υδρογόνου. Από τις άλλες δύο καρβοξυλομάδες η μία ιονιζείται, ενώ η άλλη παραμένει στην θεμελιώδη κατάσταση (protonated state). Η επιφάνεια την οποία καταλαμβάνει το μόριο της χρωστικής αυτής, αν υποθέσουμε στις ολόκληρες επιφάνειες του TiO₂ έχει καλυφθεί από ένα μονομοριακό στρώμα, είναι 1,65 nm² [47].

Το κυρίωτερο μειονέκτημα όμως της χρωστικής αυτής είναι η χαμηλή απορροφητικότητα που παρουσιάζει στην ερυθρή περιοχή του φάσματος. Γι αυτό γίνεται προσπάθεια ώστε να παρασκευαστούν χρωστικές οι οποίες να έχουν πιο ευρύ φάσμα απορρόφησης [42]. Οι προσπάθειες αυτές επικεντρώνονται στην αλλαγή των ενεργειακών σταθμών των τροχιακών LUMO και HOMO, με το πρώτο να είναι το χαμηλότερο ενεργειακά μη κατειλημμένο μοριακό τροχιακό και το δεύτερο το υψηλότερα κατειλημμένο. Τα τροχιακά αυτά διαδραματίζουν ρόλο ανάλογο με τις ζώνες αγογιμότητας και σθένους των ημιαγωγών. Μικρότερη ενεργειακή διαφορά θα έχει σαν αποτέλεσμα και μετατόπιση της απορρόφησης προς το ερυθρό.

Στο παρακάτω σχήμα βλέπουμε την μοριακή δομή κάποιου συμπλόκου του ρουθηνίου που έχουν χρησιμοποιηθεί και ανάμεσα τους ξεχωρίζουμε τις δομές της χρωστικής N₃, της N719 που αποτελεί κάποιο άλλος της προηγούμενης και της λεγόμενης μαύρης χρωστικής (black dye), οι οποίες έχουν δώσει και τα καλύτερα αποτελέσματα συνδυασμένες πάντα με υγρό ηλεκτρολύτη.
Σχήμα 4: Συντακτικοί τύποι συμπλόκων του ρουθηνίου [29]

Έχουν δοκιμαστεί επίσης και πολυπυρηνικά μόρια τα οποία παρουσιάζουν ένα χαρακτηριστικό κεραίας προκειμένου να αναζητεί ο συντελεστής απορρόφησης. Η 'κεραία' είναι ένα κομμάτι του μορίου το οποίο περιέχει μεν χρωμοφόρες ομάδες για την απορρόφηση του φωτός, αλλά δεν βρίσκεται σε άμεση επαφή με την επιφάνεια του ημιαγωγού. Τα μόρια δηλ. αυτά αποτελούνται από δύο τμήματα, το ένα χρησιμεύει στην απορρόφηση του φωτός, ενώ το άλλο για την προσρόφηση στην επιφάνεια του ημιαγωγού.

Η αύξηση του συντελεστή απορρόφησης δεν είναι τόσο ικανοποιητική για μεγάλα μήκη κύματος, όπου η ανάγκη είναι και μεγαλύτερη, αφού ο συντελεστής απορρόφησης των χρωστικών του ρουθηνίου μειώνεται δραματικά. Επίσης οι χρωστικές αυτές καταλαμβάνουν μεγαλύτερη επιφάνεια και διεισδύουν πιο δύσκολα
ανάμεσα στους πόρους του TiO₂. Αρα λοιπόν μπορεί να έχουμε υψηλότερο συντελεστή απορρόφησης αλλά το γεγονός αυτό επισκιάζεται από τα προηγούμενα μειονεκτήματα [43].

Οι οργανικές χρωστικές με την σειρά τους έχουν εύκολο σχεδιασμό και χαμηλό κόστος. Οι αποδόσεις των κυψελίδων που χρησιμοποιούν κάποια οργανική χρωστική είναι συγκρίσιμες με τις αποδόσεις των ανόργανων χρωστικών του ρουθηνίου. Οι οργανικές χρωστικές αποτελούνται συνήθως από δύο μέρη. Το ένα μέρος διαδραματίζει το ρόλο του δότη ηλεκτρονίων και το άλλο μέρος το ρόλο του δέκτη ηλεκτρονίων. Ρυθμίζοντας κατάλληλα τις ιδιότητες των δύο αυτών μερών είναι δυνατόν να ρυθμίσετε το φάσμα απορρόφησης σε μεγαλύτερα μήκη κύματος, με αποτέλεσμα πιο αποτελεσματική μετατροπή του φωτός και μεγαλύτερα ρεύματα βραχυκύκλωσης. Η δομή κάποιων οργανικών χρωστικών φαίνεται στο παρακάτω σχήμα, όπως και οι αντίστοιχες αποδόσεις οι οποίες έχουν επιτευχθεί:

Σχήμα 5: Συντακτικοί τύποι οργανικών χρωστικών [29]

Εκτός όμως από την χρήση μίας μόνο χρωστικής για την ενασθητοποίηση του ημιαγωγού, έχουν γίνει προσπάθειες για την χρήση περισσότερων έτσι ώστε το φάσμα απορρόφησης να ταιριάζει καλύτερα με το φάσμα εκπομπής του ήλιου στην επιφάνεια της γης. Η χρήση όμως δύο χρωστικών παρουσιάζει προβλήματα, όπως η ενεργειακή ή ηλεκτρονική μεταφορά μεταξύ των δύο χρωστικών.
1.3.3 Ροδαμίνη [Rh B]:

Η ροδαμίνη ήταν από τις πρώτες χρωστικές που χρησιμοποιήθηκαν για την ευαίσθητοποίηση ημιαγωγών όπως ZnO, TiO₂, SnO₂, In₂O₃ και SrTiO₃ [48-51]. Αν και αρχικά δεν ήταν γνωστό αν ο μηχανισμός της ευαίσθητοποίησης είχε σαν αποτέλεσμα την έκχυση ηλεκτρόνιον στην ζώνη αγωγιμότητας του ημιαγωγού ή την μεταφορά ενέργειας από την διεγερμένη κατάσταση της χρωστικής στον ημιαγωγό και την δημιουργία κάποιου ζεύγους ηλεκτρόνιον – οπής σ’ αυτόν, ο Hauffe [52] και ο Schumacher παρατήρησαν ότι η ροδαμίνη μετά από συνεχή φωτισμό οξειδωνόταν. Η παρατήρηση αυτή μπορούσε να εξηγηθεί μόνο λόγω της έκχυσης ηλεκτρόνιον. Μάλιστα ο Schumacher ευαίσθητοποίησε TiO₂ με ροδαμίνη B και έδειξε ότι η χρωστική μπορούσε να αναχθεί στην συνέχεια ηλεκτροχημικά, δηλ. με την εφαρμογή ηλεκτρικού πεδίου. Το φωτόρευμα που μετρούσαν ήταν της τάξης του 1.5 nA, αλλά το σημαντικό ήταν ότι αποδείχθηκε ο ρόλος που διαδραματίζει η χρωστική στην ευαίσθητοποίηση ενός ημιαγωγού [40]. Η αναγωγή της χρωστικής θα μπορούσε επομένως να γίνει και με τα ηλεκτρόνια της ζώνης αγωγιμότητας, δείχνοντας την σταθερότητα του δεσμού μεταξύ χρωστικής και επιφάνειας ημιαγωγού. Αλλες εφαρμογές εκτός από την ευαίσθητοποίηση ημιαγωγών, είναι σε laser αλλά και σαν βαφή. Τέλος επειδή είναι αρκετά φθορίζουν μόριο μπορεί να χρησιμοποιηθεί μέσα σε κάποιο υγρό, όπως νερό, προκειμένου να καθοριστεί η παροχή και η κατεύθυνση της ροής.

Η ροδαμίνη έχει μοριακό τύπο C₂₈H₅₁N₂O₃Cl και μοριακό βάρος 479.02 grams per mole. Στα παρακάτω σχήματα φαινόταν ο συντακτικός τύπος

![Σχήμα 6: Συντακτικός τύπος ροδαμίνης B](image-url)
όπως επίσης και το φάσμα απορρόφησης της. Από το φάσμα παρατηρούμε ένα μέγιστο της απορρόφησης στα 550 nm περίπου, καθώς και ένα μικρότερο στα 350 nm.

Σχήμα 7: Το φάσμα απορρόφησης της ροδαμίνης B σε αιθανόλη

Η προσρόφηση της ροδαμίνης στην επιφάνεια του TiO2 πραγματοποιείται μέσω ενός δεσμού εστέρα [ester bond] μεταξύ της καρβοξυλομόδας της χρωστικής και επιφανειακών υδροξυλομάδων του ημιαγχογόου [49,53].

1.3.4 Πράσινο του μαλαχίτη [M.G]:

Το πράσινο του μαλαχίτη έχει μοριακό τύπο C_{23}H_{25}ClN_{2} και μοριακό βάρος 364.911 g/mol. Η χρωστική αυτή χρησιμοποιείται στην βαφή υλικών όπως μεταξί, δέρμα και χαρτί. Η χρήση αυτού του υλικού όμως έχει απαγορευτεί σε πολλές χώρες, αφού πιστεύεται ότι προκαλεί καρκίνο, όταν περιέχεται έστω και σε πολύ μικρές ποσότητες στα τρόφιμα. Επίσης έχει χρησιμοποιηθεί από πολύ παλιά όπως και η ροδαμίνη για την ευαισθητοποίηση ημιαγχογών [54].
Στα παρακάτω σχήματα βλέπουμε τον συντακτικό τύπο, καθώς και το φάσμα απορρόφησης της χρωστικής αυτής.

![Chemical structure](image)

Σχήμα 8: Συντακτικός τύπος πράσινου του μαλαχίτη

Παρατηρούμε ότι το μέγιστο της απορρόφησης βρίσκεται λίγο πάνω από τα 600 nm, όπως επίσης ότι είναι και πιο έντονο από το αντίστοιχο της ροδαμίνης. Επίσης έχει θετικό φορτίο, σε αντίθεση με την ροδαμίνη που είναι αυδέτερο.

![Molar extinction coefficient vs. wavelength](image)

Σχήμα 9: Το φάσμα απορρόφησης του πράσινου του μαλαχίτη σε νερό
1.4 Ηλεκτρολύτης

Τα συστατικά του ηλεκτρολύτη, όπως οξειδοαναγωγικό ζεύγος, διαλύτης, και θετικά ιόντα επηρεάζουν σε μεγάλο βαθμό την απόδοσή των φ/β αυτών. Οι αλλαγές στις φωτοβολταϊκές ιδιότητες εξηγούνται κυρίως από την αλλαγή στην ενεργειακή στάθμη της ζώνης αγωγιμότητας του TiO2, αλλά και από τις διαφορές των φυσικών ιδιοτήτων του διαλύτη, όπως ιοντική αγωγιμότητα, ιζώδες και βασικός ή δέξιος χαρακτήρας [55].

1.4.1 Ιδιότητες δ/τη – οξειδοαναγωγικού ζεύγους:

Ο διαλύτης που θα χρησιμοποιηθεί για την παρασκευή του ηλεκτρολύτη θα πρέπει να εκπληρώνει τις παρακάτω προδιαγραφές: [56]

1. στην περίπτωση που θα χρησιμοποιηθεί υγρός ηλεκτρολύτης, θα πρέπει να είναι μη πτητικός στην περιοχή θερμοκρασιών λειτουργίας των συσκευών, για την αποφυγή καταστροφής τους.
2. θα πρέπει να έχει χαμηλό ιζώδες, έτσι ώστε να πραγματοποιείται με ευκολία η διάχυση των ιόντων, με αποτέλεσμα μεγαλύτερο παράγοντα πληρότητας και ρεύμα βραχυκύκλωσης.
3. το οξειδοαναγωγικό ζεύγος θα πρέπει να είναι ευδιάλυτο στον διαλύτη, αντίθετα με την χρωστική. Διάλυση της χρωστικής θα έχει σαν αποτέλεσμα σοβαρές συνέπειες στην απόδοση της συσκευής.
4. θα πρέπει να έχει μεγάλη αντοχή στους επαναλαμβανόμενους κύκλους λειτουργίας
5. τέλος θα πρέπει να είναι φθηνός και μη τοξικός, ώστε να μπορεί να χρησιμοποιηθεί εμπορικά

Το οξειδοαναγωγικό ζεύγος θα πρέπει και αυτό με την σειρά του να έχει τα παρακάτω χαρακτηριστικά [28].

1. το δυναμικό οξειδοαναγωγής να είναι κατάλληλο σε σχέση με το δυναμικό οξειδοαναγωγής της χρωστικής, ώστε να έχουμε την μεγαλύτερη δυνατή
τάση. Ως πιο αρνητικό το δυναμικό για το οξειδοαναγωγικό ζεύγος, τόσο πιο μεγάλη θερμοδυναμικά είναι και η δύναμη για την αναγέννηση της χροστικής
2. μεγάλη διαλυτότητα στον χρησιμοποιούμενο ηλεκτρολύτη
3. μεγάλη σταθερά διάχυσης, αφού η μεταφορά των φορέων γίνεται κυρίως με διάχυση
4. χαμηλή απορροφητικότητα στο ορατό, έτσι ώστε περισσότερο φως να είναι διαθέσιμο για ενεργειακή μετατροπή και επομένως μεγαλύτερη απόδοση
5. υψηλή σταθερότητα του ζεύγους στο φως, αλλά και στην θερμική καταπόνηση
6. η οξείδωση της ανηγμένης κατάστασης του ζεύγους, όπως και η αναγωγή της οξειδωμένης κατάστασης θα πρέπει να είναι αντιστοιχεί την ελεκτροχημικά και χημικά, έτσι ώστε να επιτυγχάνεται γρήγορη μεταφορά ηλεκτρονίων και να αποφεύγονται άλλες αντιδράσεις
7. να είναι χημικά αδρανές με τα υπόλοιπα συστατικά, όπως το TiO₂
8. θα πρέπει να αντιδρά γρήγορα και αντιστοιχεί στο αντιηλεκτρόδιο, ώστε η υπέρταση της αναγωγής του να είναι πολύ μικρή, ακόμα και για υψηλές πυκνότητες ρεύματος [57].
9. ενώ θα πρέπει να παρουσιάζει εξαρτητική αργή κινητική μεταφοράς ηλεκτρονίων από το ευαίσθητοποιημένο ηλεκτρόδιο, ώστε να μην αυξάνει το "ρεύμα σκότους" (μειώνοντας ταυτόχρονα το φωτόρευμα) που προκαλείται από την επανασύνδεση των ηλεκτρονίων από την ζώνη αγωγής ητών του ημιαγωγού με τα ιόντα [Ι³] του ηλεκτρολύτη [57,58].

Το οξειδοαναγωγικό ζεύγος που χρησιμοποιείται ευρέως στην περίπτωση των υγρών ηλεκτρολυτών είναι το ζεύγος Γ, Γ₃ (iodide / triiodide). Παρόλο όμως την εξαιρετική του ικανότητα για να μεταφέρει φορέες, το ζεύγος αυτό έχει και ορισμένα μειονεκτήματα. Καθώς το δυναμικό οξειδοαναγωγής τού είναι 0,15 V vs SCE και το οριζόντιο δυναμικό (flatband potential) του TiO₂ είναι στα - 0,82 V σε pH = 7, το μέγιστο δυναμικό που μπορούμε να έχουμε είναι 0,97 V. Αρα θα μπορούσαμε να έχουμε μεγαλύτερο θεωρητικό μέγιστο ρυθμίζοντας κατάλληλα το δυναμικό οξειδοαναγωγής, δηλ. αν αυτό ήταν περισσότερο θετικό. Η ρύθμιση του δυναμικού οξειδοαναγωγής μπορεί να γίνει με την αλλαγή του ζεύγους οξειδοαναγωγής, αλλά η
αλλαγή αυτή δεν θα πρέπει να επηρεάσει τα δυναμικά των δύο ηλεκτροδίων, TiO₂ και αντιηλεκτρόδιο. Επιπροσθέτως, ανάμεσα στα μειονεκτήματα αυτού του ζεύγους είναι η διάβρωση που προκαλεί το ιωδίδιο σε διάφορα μέταλλα, γεγονός ανεπιθύμητο ιδιαίτερα στην περίπτωση κατασκευής πλασιών όπου για την συλλογή των φορέων οι ενώσεις γίνονται κυρίως με μεταλλικές λωρίδες [59]. Ένα ακόμη μειονέκτημα αποτελεί το γεγονός ότι λόγω της ύπαρξης του I₂ η ηλεκτρολύτης έχει έντονο κοκκινιστό χρώμα με αποτέλεσμα να απορροφά μέρος της προσπέπτουσας ακτινοβολίας, μεταξύ 400 και 500 nm.

Όλα τα ζεύγη εκείνα τα οποία έχουν δυναμικό οξειδοαναγωγής μικρότερο από το δυναμικό της οξειδωμένης χρωστικής και μεγάλη διαφορά στον ρυθμό μεταφοράς ηλεκτρονίων προς τα δύο ηλεκτρόδια, μπορούν να χρησιμοποιηθούν για να αντικαταστήσουν το ζεύγος Ι, I₃. Το εναλλακτικό ζεύγος θα πρέπει επίσης να είναι σταθερό κατά την διάρκεια λειτουργίας, δηλ. κάτω από συνθήκες έντονου φωτισμού, όπως επίσης και στην θερμική καταπόνηση.

Μερικά από τα οξειδοαναγωγικά ζεύγη τα οποία έχουν χρησιμοποιηθεί είναι τα Br₂, Br-, κινόνη / ιόροκινόνη , [SCN]²⁻/SCN⁻ και [SeCN]²⁻/SeCN⁻. Αν και το δυναμικό οξειδοαναγωγής των τελευταίων ζευγών είναι πιο θετικό, παρόλο αυτά δεν παρατηρήθηκε αύξηση της τάσης ανοικτού κυκλώματος, λόγω μεταβολής των δυναμικών τόσο του TiO₂ όσο και του αντιηλεκτροδίου [59].

Εκτός από αλογόνα, πευδό – αλογόνα και οξειδοαναγωγικά ζεύγη μεταφοράς οπών, έχουν χρησιμοποιηθεί όπως και μεταλλικά σύμπλοκα ως πιθανοί υποψήφιοι για την αντικατάσταση του καθερμομενού ζεύγους.

Οι συγκεντρώσεις που χρησιμοποιούνται διαφέρουν ανάλογα με τον διαλύτη που χρησιμοποιείται κάθε φορά, αλλά και με το άλλο τον ειδικό, με κοινό τους όμως πάντα χαρακτηριστικό ότι η συγκέντρωση του άλλου του ιωδίου είναι μεγαλύτερη από την συγκέντρωση του ιωδίου. Στον παρακάτω πίνακα βλέπουμε ενδεικτικά κάποιες συγκεντρώσεις που χρησιμοποιούνται, κυρίως στην περίπτωση των υγρών ηλεκτρολυτών:
<table>
<thead>
<tr>
<th>Αναφορά</th>
<th>Συγκέντρωση Άλατος</th>
<th>Συγκέντρωση Ιοδίου</th>
<th>Διαλύτης</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. J.Am.Chem.Soc. 115 1993, 6382 – 6390</td>
<td>0,3 M LiI</td>
<td>0,03 M I₂</td>
<td>• Propylene carbonate</td>
</tr>
<tr>
<td>Sol. Energ Mat. and Sol. Cells 55 [1998] 157 – 178</td>
<td>0,5 M KI</td>
<td>0,05 M I₂</td>
<td>Ethylene glycol</td>
</tr>
<tr>
<td>Sol. Energ. Mat. and Sol. Cells 32 [1994] 259 – 272</td>
<td>0,5 M tetrapropylammonium iodide [C₁₂H₂₈IN]</td>
<td>0,05 M I₂</td>
<td>Ethylene carbonate and water free acetonitrile Propylene carbonate</td>
</tr>
<tr>
<td>Deb, S. K., et al., 1998, 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion; 6-10 July 1998, Austria,</td>
<td>alkyl methylimidazolium iodide</td>
<td>I₂</td>
<td>• Acetonitrile</td>
</tr>
<tr>
<td>Nature 353 [1991] 737</td>
<td>0.5 M tetrapropylammonium iodide [TPAI]</td>
<td>0.04 M I₂</td>
<td>Mixture of ethylene carbonate [80% by volume] with acetonitrile</td>
</tr>
<tr>
<td>Y. Liu et al. /Solar Energy Materials and Solar Cells 55 [1998] 267–281</td>
<td>0.04 M LiI 0.5 mM dimethyl hexyl imidazolium</td>
<td>0.02 M I₂</td>
<td>Acetonitrile</td>
</tr>
</tbody>
</table>

Πίνακας 1: Χαρακτηριστικές συγκεντρώσεις ηλεκτρολύτων

1.4.2 Ρόλος του ηλεκτρολύτη:

Ο ρόλος που διαδραματίζει ο ηλεκτρολύτης είναι αρκετά σημαντικός, κυρίως όσο αφορά την αναστρέψιμη λειτουργία της συσκευής. Ο ηλεκτρολύτης με το οξειδοαναγορικό του ζεύγος αναλαμβάνει την αναγέννηση της χρωστικής, καθώς και
την μεταφορά οπών \(I_3 \) προς το αντιηλεκτρόδιο, εξασφαλίζοντας με αυτό τον τρόπο ότι κατά την διάρκεια της λειτουργίας δεν παράγονται, αλλά όταν καταναλώνονται διάφορες χημικές ουσίες. Ο ρόλος του όμως δεν περιορίζεται μόνο στην εξασφάλιση της παραπάνω απαίτησης αντιστροφιμότητας, αλλά πηγάνει και πιο βαθιά στο μηχανισμό λειτουργίας. Ο ηλεκτρολύτης επομένως καθώς εισχωρεί στους πόρους του ομενίου του \(\text{TiO}_2 \) περιορίζει την χωρική έκταση του ηλεκτρικού πεδίου στα νανοσωματίδια του \(\text{TiO}_2 \), βοηθάει στον διαχωρισμό των φορέων ενώ η αλλαγή στην σύστασή του επηρεάζει της απόδοση της λειτουργίας [60].

Η τάση ανοικτού κυκλώματος, αλλά και το ρεύμα βραχυκύκλωσης εξαρτώνται από τον χρησιμοποιούμενο ηλεκτρολύτη, άρα και τη συνολική απόδοση. Η αλλαγή της τάσης ανοικτού κυκλώματος οφείλεται στην αλλαγή της στάθμης της ζώνης αγωγιμότητας του \(\text{TiO}_2 \) κατά την επαφή με τον ηλεκτρολύτη αφενός, αλλά και στο διαφορετικό δυναμικό οξειδοαναγωγής του ζεύγους που χρησιμοποιείται.

Στην παρακάτω σχέση βλέπουμε την εξάρτηση της τάσης ανοικτού κυκλώματος από την συγκέντρωση των ιόντων \(I_3^- \), καθώς και από το ρεύμα λόγω έκχυσης φορέων από την χρωστική στο \(\text{TiO}_2 \).

\[
V_\infty = \frac{kT}{e} \ln \left(\frac{I_{\text{inj}}}{n_e k_e \left[I_3^- \right]} \right) \quad [1]
\]

όπου \(I_{\text{inj}} \) το ρεύμα λόγω έκχυσης φορέων, \(n_e \) η συγκέντρωση των ηλεκτρονίων στην επιφάνεια του \(\text{TiO}_2 \) και \(k_e \) η σταθερά για την αναγωγή του τριωδίου. Η τάση ανοικτού κυκλώματος μείωνεται καθώς αυξάνεται η συγκέντρωση τριωδίου [61]. Η συγκέντρωση ιόντων τριωδίου αυξάνεται με βάση την παρακάτω αντίδραση

\[
I^- + I_2 = I_3^- \quad [2]
\]

Μεγαλύτερη όμως συγκέντρωση ιόντων τριωδίου έχει ως αποτέλεσμα η πιθανότητα επανασύνδεσης με τα ηλεκτρόνια της ζώνης αγωγιμότητας να είναι μεγαλύτερη. Έχουμε επομένως αύξηση του ρεύματος σκότους και μάλιστα όπως
φαίνεται από την παρακάτω αντίδραση για την αναγωγή του τριωδίου απαιτούνται δύο ηλεκτρόνια από την ζώνη αγωγιμότητας του ημιαγωγού.

\[I_s + 2e_{cb} = 3I_c \quad [3] \]

Η παραπάνω αντίδραση αποτελείται από τρία στάδια, τα οποία περιγράφονται από τον Liu [61] και αποτελεί ουσιαστικά και έναν από τους κυριότερους λόγους επανασύνδεσης φορέων. Έχουν βεβαίως προταθεί και άλλοι μηχανισμοί πραγματοποιήσης της παραπάνω αντίδρασης [62].

Η παραπάνω αντίδραση όταν πραγματοποιείται στο φωτολεκτρόδιο είναι ανεπιθύμητη. Ο ηλεκτρολύτης όμως έρχεται σε επαφή και με το αντιηλεκτρόδιο. Στο αντιηλεκτρόδιο όμως είναι επιθυμητή. Ο Vetter [63] ήταν αυτός που πρώτος πρότεινε κάποιον μηχανισμό για την αναγωγή της αντιδράσης αυτής στο αντιηλεκτρόδιο, ο οποίος περιλαμβάνει πρώτα την προσφόρηση των ιόντων ιωδίου στο αντιηλεκτρόδιο και στην συνέχεια την μεταφορά των ηλεκτρονίων.

Αύξηση της συγκέντρωσης του ιωδίου έχει αρνητικές συνέπειες τόσο στην τάση ανοικτού κυκλώματος, όσο και στο ρεύμα βραχυκύκλωσης. Η τάση ανοικτού κυκλώματος μειώνεται λόγω αύξησης της συγκέντρωσης των αιώντων τριωδίου [αντίδραση 2], ενώ το ρεύμα μειώνεται λόγω αύξησης του ιξώδους του ηλεκτρολύτη. Αύξηση της συγκέντρωσης του άλατος έχει αρχικά θετικά αποτελέσματα, γιατί αυξάνεται η αγωγιμότητα του ηλεκτρολύτη αυξανομένης της συγκέντρωσης ιωδίου. Περαιτέρω αύξηση όμως έχει ως αποτέλεσμα την αύξηση του ιξώδους του ηλεκτρολύτη, άρα και την μείωση της κινητικότητας των φορέων, που συνεπάγεται μικρότερο ρεύμα.

Όσο αφορά τέλος τις ιδιότητες του χρησιμοποιούμενου διαλύτη μπορούν και αυτές με την σειρά τους να επηρεάσουν την απόδοση της κυψελίδας. Αν για παράδειγμα ο διαλύτης έχει βασικές ιδιότητες, τότε αυτό έχει ως αποτέλεσμα την αρνητική μετατόπιση στην ζώνη αγωγιμότητας του ημιαγωγού, οδηγώντας σε μεγαλύτερη τάση ανοικτού κυκλώματος [55].
1.4.3 Επίδραση των κατιόντων:

Ο Ο’ Regan και Gratzel [64] παρατήρησαν μεγαλύτερα φωτοεύματα στην περίπτωση όπου ο χρησιμοποιούμενος ηλεκτρολύτης περιέχει κατιόντα λιθίου. Στο ίδιο συμπέρασμα σχετικά με την εξάρτηση της φωτοτάσης και του φωτοευμάτου από τον λόγο του φορτίου προς την ακτίνα των κατιόντων που προέρχονται από το άλας του ιωδίου που χρησιμοποιείται κάθε φορά κατέληξε και ο Liu [61]. Η εξάρτηση αυτή αποδόθηκε στην αλλαγή της άκρης της ζώνης αγωγιμότητας του TiO2 λόγω της προσφόρησης των κατιόντων στην επιφάνεια του ημιαγωγού. Επίσης υποστήριξαν ότι όσο πιο μικρά είναι τα κατιόντα τόσο πιο αποτελεσματική είναι η προσφόρηση τους στην επιφάνεια, έχοντας ως αποτέλεσμα μεγαλύτερες αλλαγές στην άκρη της ζώνης αγωγιμότητας [48]. Στο ίδιο συμπέρασμα κατέληξε και ο Hara [55] ο οποίος υποστήριξε ότι λόγω της προσφόρησης των κατιόντων λιθίου, συμβαίνει μια πτώση τάσης στο στρώμα Helmholtz, η οποία αυξάνεται όσο πιο μικρά είναι τα ιόντα που προσφερόνται. Αυτή η πτώση τάσης προκαλεί μια θετική μεταβολή στην ζώνη αγωγιμότητας του TiO2 η οποία αυξάνεται, όσο πιο μικρά είναι τα κατιόντα [61]. Η ζώνη αγωγιμότητας γίνεται πιο αρνητική για μεγάλα κατιόντα, άρα αυξάνεται η τάση αλλά μειώνεται το ρεύμα. Το φωτοδυναμικό επομένως αυξάνεται για μεγαλύτερα κατιόντα.

Επίσης ο Wolfbauer [28] παρατήρησε ότι το φωτόρευμα αυξάνονταν γραμμικά με την μείωση της ακτίνας των ιόντων, με τα ιόντα λιθίου και καλλιόντα την πιο μικρή ακτίνα να συνδέονται με μεγαλύτερα φωτοεύματα, όπως φαίνεται στο παρακάτω σχήμα:
Σχήμα 10: Εξάρτηση του φωτορεύματος από την ακτίνα των κατιόντων [28]

Η εξάρτηση αυτή σύμφωνα με τον Wolfbauer οφείλεται στην αδύναμία των μεγαλύτερων κατιόντων να εισχωρήσουν στους πόρους του υμενίου μαζί με τα ιόντα ιοδίου, εξασφαλίζοντας με αυτό τον τρόπο ηλεκτρική ουδετερότητα. Τέλος, σύμφωνα με τον Liu [61] το φωτόρευμα επηρεάζεται από την διάχυση των φορέων. Μικρή κινητικότητα του τριώδιου σε ένα διάλυμα από μεγάλα κατιόντα έχει σαν αποτέλεσμα μικρότερο φωτόρευμα.

1.4.4 Υγροί - Στερεοί ηλεκτρολύτες:

Οι υγροί ηλεκτρολύτες παρουσιάζουν τα εξής πλεονέκτηματα: σχηματίζουν αμέσως μια πολύ καλή ηλεκτρική επαφή με τα νανοσωματίδια του TiO₂, προσφέρουν καλή ιοντική αγωγιμότητα και σταθερότητα. Οι υψηλότερες αποδόσεις έχουν επιτευχθεί με την χρήση υγρού ηλεκτρολύτη (10,5 % σε συνθήκες Α.Μ. 1.5), ωστόσο η χρήση του παρουσιάζει κάποια μειονέκτημα. Το κυριότερο μειονέκτημα έχει να κάνει με την απαίτηση για ερμητικό σφράγισμα της κυψελίδας ώστε να αποφευχθεί η εξάτμιση του διαλύτη αλλά και η εύσωδος υδρατμόν και μορίων οξυγόνου, τα οποία μπορούν να αντιδράσουν με τον ηλεκτρολύτη, αλλάζοντας την σύστασή του και να επηρεάσουν την απόδοση της κυψελίδας. Οι υγροί ηλεκτρολύτες κάνουν την παρασκευή πλαστικών αρκετά δύσκολη, αφού στο ίδιο υπόστρομα θα πρέπει να υπάρχουν κυψελίδες συνδεδεμένες ηλεκτρικά, αλλά απομονωμένες μεταξύ
τους χημικά [65]. Για την αντιμετώπιση αυτών των προβλημάτων προτάθηκε η χρήση στερεών ηλεκτρολυτών, οι οποίοι επιτρέπουν και περισσότερους τρόπους σχεδίασης (flexible). Γενικά η σχεδίαση μιας διάταξης η οποία θα ήταν εξολοκλήρου στερεά είναι προτιμητική, με τους στερεούς ηλεκτρολύτες να παρέχουν την δυνατότητα για πιο συμπαγείς, αλλά ακόμα και εύκαμπτους σχεδιασμούς.

Στην θέση του υγρού ηλεκτρολύτη μπορεί να χρησιμοποιηθεί κάποιος αγωγός μεταφοράς οπόν, όπως κάποιος ημιαγωγός τύπου – p, πολυμερείς ηλεκτρόλυτες και ηλεκτρολύτες ιοντικών υγρών.

Έχουν χρησιμοποιηθεί τόσο ανόργανο όσο και οργανικοί ημιαγωγοί. Τα χαρακτηριστικά ενός τέτοιου ημιαγωγού είναι:

a) Θα πρέπει να είναι ικανός να μεταφέρει οπές από την χρωστική αμέσως μετά την έκρηξη ηλεκτρονίων στην ζώνη αγωγιμότητας του TiO\textsubscript{2}, δηλ. θα πρέπει το πάνω μέρος της ζώνης σθένους του ημιαγωγού τύπου – p να είναι πιο ψηλά από την ενέργεια της θεμελιώδους κατάστασης της χρωστικής.

b) Θα πρέπει να μπορεί να εισχωρήσει μέσα στους πόρους του υμενίου του TiO\textsubscript{2}

c) Η μέθοδος που θα χρησιμοποιηθεί για την απόδειξη τους δεν θα πρέπει να επηρεάζει την χρωστική

d) Θα πρέπει να είναι διαφανής στην περιοχή του ορατού, ή αν απορροφά φως θα πρέπει να είναι τουλάχιστον τόσο αποδοτικός στην έκρηξη ηλεκτρονίων, όσο και η χρωστική [65].

Πολλοί ανόργανοι ημιαγωγοί τύπου – p πληρώνουν κάποια από τα παραπάνω χαρακτηριστικά, συνήθως όμως χρησιμοποιούνται ημιαγωγοί όπως CuI, CuBr και CuSCN. Αποδόσεις της τάξης του 2 με 2,5 % έχουν επιτευχθεί με την χρήση τέτοιων ημιαγωγών, πολύ μακριά από την απόδοση των υγρών ηλεκτρολυτών. Οι οργανικοί ημιαγωγοί μπορούν να χρησιμοποιηθούν για αγωγή οπών, αφού μπορεί να γίνει η εναπόθεση τους από διάλυμα και να γεμίσουν τους πόρους του υμενίου ομοιογενώς [66]. Σε αντίθεση με τους ανόργανους έχουν χαμηλό κόστος, μπορούν εύκολα να παρασκευαστούν με την μορφή υμενίων και να βρεθούν πιο εύκολα. Το πρόβλημα είναι ότι η κινητικότητα των φορέων είναι πολύ χαμηλή σε σύγκριση με τους ανόργανους ημιαγωγούς και εμπορικούς ηλεκτρόλυτες. Επίσης η επανασύνδεση φορέων στην διεπιφάνεια TiO\textsubscript{2} – οργανικού ημιαγωγού είναι έντονη, ενώ η ηλεκτρική
επαφή τον μορίον της χρωστικής με τους οργανικούς ημιαγωγούς είναι φτωχή, κυρίως λόγω της μη καλής εισχώρησης του ημιαγωγού στους πόρους του υμενίου. Οι παράγοντες αυτοί μειώνουν την απόδοση των κυψελίδων αυτών. Ήδη από το 1998 ο Gratzel ανάφερε την κατασκευή μιας κυψελίδας χρησιμοποιώντας τον οργανικό ημιαγωγό OMeTAD. O ημιαγωγός αυτός βρίσκει εφαρμογή στα οργανικά f/β, αλλά και στα LED [67].

Οι ηλεκτρολύτες που αποτελούνται από ιοντικά υγρά σε θερμοκρασία δωματίου παρουσιάζουν καλή θερμική και χημική σταθερότητα, είναι μη εύφλεκτα και μη πτητικά, έχουν υψηλή ιοντική αγωγιμότητα και μεγάλη περιοχή λειτουργίας από πλευράς δυναμικού. Όταν χρησιμοποιηθούν μπορούν να διαδραματίσουν το ρόλο τόσο του ιοδίου όσο και του διαλύτη. Οι ηλεκτρολύτες αυτού του είδους όμως παραμένουν υγροί [68,69].

Τέλος πολυμερείς ηλεκτρολύτες έχουν αρχίσει να χρησιμοποιούνται τελευταίως. Διάφορα πολυμερή έχουν χρησιμοποιηθεί γι’ αυτό το σκοπό, όπως επίσης και συνδυασμοί με υγρούς ηλεκτρολύτες. Καλή ηλεκτρική επαφή μεταξύ πολυμερούς και TiO2 μπορεί να επιτευχθεί όταν πραγματοποιηθεί ο πολυμερισμός του μονομερούς μέσα στους πόρους του υμενίου του TiO2. Οι πολυμερείς ηλεκτρολύτες επιδεικνύουν υψηλότερες αποδόσεις και δυνατότητες για περισσότερες μελλοντικές εφαρμογές [2,65,70].

Τετημένα άλλα έχουν επίσης χρησιμοποιηθεί στην θέση του ηλεκτρολύτη. Ο Παπαγεωργίου [71] έδειξε ότι τετημένα άλατα σε θερμοκρασία δωματίου, όπως το MHImI, μπορεί να λειτουργήσει ταυτόχρονα τόσο ως διαλύτης όσο και ως άλας ιοδίου, με την σταθερότητα των αλάτων αυτών να είναι πολύ καλή.

1.4.5 Πρόσθετα στον ηλεκτρολύτη:

Προκειμένου να αυξηθεί περαιτέρω η απόδοση των f/β αυτών, έχει δοκιμαστεί η προσθήκη διαφόρων ουσιών στον ηλεκτρολύτη. H ουσία εκείνη η οποία προστίθεται κυρίως είναι η 4 – tert – butylpyridine. H ουσία αυτή έχει βρεθεί ότι μειώνει το ρεύμα σκότους, το οποίο συνδέεται με την επανασύνδεση των φορέων, δηλ. με την επανασύνδεση των ηλεκτρονίων της ζώνης αγωγιμότητας του TiO2 με τα
ανιόντα τριωδίου. Ουσίες παρόμοιες με την παραπάνω έχει βρεθεί ότι αυξάνουν την τάση ανοικτού κυκλώματος, ενώ μειώνουν το ρεύμα βραχυκύκλωσης [72].

Ένα ακόμα παράδειγμα είναι η προσθήκη κάποιας ουσίας για την μείωση της απορρόφησης του φωτός από τον ηλεκτρολύτη. Τα ιόντα τριωδίου απορροφούν φως κάτω από τα 500 nm, άρα η συγκέντρωσή τους δεν θα πρέπει να είναι υψηλή. Γι αυτό το λόγο μπορεί να χρησιμοποιηθεί κάποια βάση η οποία θα μετατρέπει τα Γ3 σε άχρωμα ιόντα IO−, τα οποία ανάγονται σε Ι + ΟΗ στο αντιηλεκτρόδιο [1].
1.5 Αντιηλεκτρόδιο

Ο ρόλος του αντιηλεκτρόδιου είναι διπλός. Πρώτον διαδραματίζει το ρόλο της καθόδου στο φωτοηλεκτροχημικό κελί, δηλ. είναι το σημείο εκείνο όπου συλλέγονται τα ηλεκτρόνια από το εξωτερικό κύκλωμα. Δεύτερον τα ηλεκτρόνια που συλλέγονται, μεταφέρονται στον ηλεκτρολύτη ώστε να γίνει η αναγωγή του τριωδίου σε ιονίδιο, διεργασία αρκετά σημαντική για την συνολική απόδοση του φ/β. Για να είναι πιο αποτελεσματική η αναγωγή το αντιηλεκτρόδιο αποτελείται συνήθως από ένα πολύ λεπτό υμένιο λευκόχρυσο, για λόγους κατάλυσης της αντίδρασης της αναγωγής η απόθεση του οποίου γίνεται πάνω σε μία αγόριμη επιφάνεια όπως K–glass, χωρίς να αποκλείεται και η χρήση εύκαμπτων υποστροφών. Η χρήση λευκόχρυσου σε φωτοηλεκτροχημικά κελιά είναι συνήθισμενή επειδή πρόκειται για χημικά αδρανές μετάλλων, ειδικά στην περίπτωση όπου ο ηλεκτρολύτης περιέχει το οξειδοαναγωγικό ξεύγος ιονίδιο/τριωδίο [73]. Η καταλυτική δράση του λευκόχρυσου είναι αρκετά καλή (η αντίδραση της αναγωγής γίνεται πολύ γρήγορα), επηρεάζεται όμως από τον τρόπο παρασκευής του φιλμ και το κόστος του είναι ιδιαίτερα υψηλό, ιδιαίτερα στην περίπτωση μεγάλων συστημάτων.

1.5.1 Ιδιότητες αντιηλεκτροδίου:

Το αντιηλεκτρόδιο δεν χρειάζεται να είναι διαφανές. Αντίθετα ένα αδιαφανές αντιηλεκτρόδιο μπορεί να χρησιμοποιηθεί σαν καθρέφτης στον οποίο θα ανακλάται η ηλιακή ακτινοβολία που δεν απορροφήθηκε από τα μόρια της χρωστικής, με αποτέλεσμα να έχουμε μια δεύτερη ευκαιρία για απορρόφηση του φωτός. Το κόστος όμως στην περίπτωση αυτή είναι μεγαλύτερο λόγω αύξησης του πάχους του φιλμ. Επίσης το αντιηλεκτρόδιο θα πρέπει να έχει μεγάλη ενεργή επιφάνεια, δηλ. να είναι πορώδες ώστε να υπάρχουν πολλές καταλυτικές ενεργές περιοχές και για αυτό το λόγο η απόδοση εξαρτάται από τον τρόπο παρασκευής.

Το υμένιο του λευκόχρυσου θα πρέπει να είναι ανθεκτικό και να μην επηρεάζεται από την επαφή του με τον ηλεκτρολύτη. Το πάχος του υμενίου είναι μερικά 2 – 400 nm περίπου. Η ποσότητα του λευκόχρυσου που εναποτίθεται είναι της
τάξης του 5 – 10 μg/cm², πρόκειται δηλ. ουσιαστικά για ένα μονομοριακό στρώμα. Η διάλυση όμως ακόμα και ενός μικρού ποσοστού θα είχε ως αποτέλεσμα η ποσότητα αυτή να εναποτεθεί στο υμένιο του TiO₂ εμποδίζοντας την αναγωγή του τριωδίου, βραχυκυκλώνοντας με αυτό τον τρόπο το στοιχείο. Η καταλυτική δράση του λευκόχρυσου μειώνεται επίσης με την έκθεση του στην χρωστική λόγω προσρόφησης μορίων της [74].

Επίσης θα πρέπει για είναι η κατάλυση αποτελεσματική η ζώνη αγωγιμότητας του αντιηλεκτροδίου να βρίσκεται πλησίον του δυναμικού οξείδοαναγωγής του ηλεκτρολύτη, ώστε να έχουμε μεγάλη πυκνότητα ρεύματος ανταλλαγής [73] και στην διεπιφάνεια λευκόχρυσου - ηλεκτρολύτη η υπέρταση για την αναγωγή του τριωδίου να είναι μικρή ακόμα και για πυκνότητες ρευμάτων της τάξης του 20 mA/cm² [58,74]. Η πυκνότητα του ρεύματος ανταλλαγής εξαρτάται από τον χρησιμοποιούμενο διαλύτη. Δεδομένη της σχέσης μεταξύ ρεύματος ανταλλαγής και υπέρτασης [εξίσωση BUTLER – VOLMER] και η υπέρταση θα εξαρτάται από τον διαλύτη.

Για να είναι αποτελεσματική η συλλογή φορέων από το εξωτερικό κύκλωμα θα πρέπει το υμένιο λευκόχρυσου να παρουσιάζει πολύ καλή ηλεκτρική αγωγιμότητα, με την προϋπόθεση ότι και το υπόστρωμα θα έχει πολύ μικρή αντίσταση. Η μέθοδος που θα χρησιμοποιηθεί για την παρασκευή θα πρέπει να εξασφαλίζει επίσης την καλή προσκόλληση στο χρησιμοποιούμενο υπόστρωμα, εύκαμπτο ή μη. Η καλή προσκόλληση εκτός από μηχανική σταθερότητα, προσφέρει και αύξηση του ρεύματος βραχυκύκλωσης [75]. Για την παρασκευή του υμενίου χρησιμοποιούνται εκτός από τις κλασικές μεθόδους παρασκευής υμενίων που περιγράφονται παρακάτω και άλλες λιγότερο γνωστές [76]. Ο λευκόχρυσος βρίσκεται σε κατάσταση μηδενικού στόχους [77,78] κυρίως, η οποία είναι και περισσότερο ενεργή καταλυτική σε σχέση με τον διαθετημένο και τον τετρασθενή λευκόχρυσο.

Όσο αφορά το πάχος του υμενίου έχει προταθεί ότι η αντίσταση (sheet resistance) μειώνεται μέχρι το πάχος του υμενίου να ξεπεράσει τα 100 nm. Περαιτέρω αύξηση του πάχους δεν συνεπάγεται και περαιτέρω μείωση της αντίστασης [79]. Επίσης υμένια με μεγάλο πάχος εμφανίζουν μικρότερη αντίσταση μεταφοράς φορτίου από πιο λεπτά υμένια, αν και η τιμή της αντίστασης μεταφοράς εξαρτάται σε μεγάλο βαθμό από την φύση του ηλεκτρολύτη και του διαλύτη, από το
πόσο πορώδης είναι η επιφάνεια του αντιελεκτροδίου αλλά και από την συγκέντρωση των ιόντων τριωδίου [75].

Οπως και στην περίπτωση όλων των καταλυτών ένα από τα προβλήματα που παρουσιάζεται είναι η δηλητηρίαση του καταλύτη. Στην συγκεκριμένη περίπτωση έχει αναφερθεί δηλητηρίαση λόγω προσφρόφησης μορίων ιώδιου, αλλά και λόγω προσφρόφησης μορίων χρωστικής.

Τα κυρίότερα μειονεκτήματα των ηλεκτροδίων λευκόχρυσου εκτός από το υψηλό κόστος είναι η διάβρωση του υμενίου του λευκόχρυσου από τον ηλεκτρολύτη και τον χρησιμοποιούμενο διαλύτη, καθώς και η μη καλή προσκόλληση των σωματιδίων στο υπόστρωμα.

1.5.2 Τρόποι παρασκευής:

Μερικοί από τους τρόπους παρασκευής περιγράφονται παρακάτω. Πρόκειται για μεθόδους που χρησιμοποιούνται γενικά για την παρασκευή λεπτών υμενίων. Έχουν αναπτυχθεί φυσικά πολλοί τρόποι με τους οποίους μπορούμε να παρασκευάζουμε πρόδρομες ενώσεις λευκόχρυσου για χρήση στην παρασκευή υμενίων, οι οποίοι περιγράφονται αναλυτικά από τον Bonnenmann [78]. Ανάμεσα στους τρόπους αυτούς η αναγωγή με υδρογόνο παρέχει πολύ καλά αποτελέσματα από άποψη επίτευξης μηδενικού σθένους του λευκόχρυσου [76].

* Πυρολυτική απεικονισμή σε αλάτων πλατίνας: Η μέθοδος αυτή είναι η πιο απλή που χρησιμοποιείται καθώς περιλαμβάνει το άπλωμα λίγων σταγών διαλύματος H₂PtCl₆ (5 mM) σε ισοπροπανόλη πάνω στην αγχόμη επιφάνεια του αντιελεκτροδίου και θέρμανση στη συνέχεια στους 450 °C για μισή ώρα. Ο χρόνος και η θερμοκρασία στην οποία γίνεται η θέρμανση διαφέρουν σημαντικά, με την θερμοκρασία να κυμαίνεται από 350 – 450 °C και ο χρόνος από 10 λεπτά έως μία ώρα. Τα υμένια που παρασκευάζονται με αυτό τον τρόπο είναι διαφανείς λόγω της πολύ μικρής ποσότητας λευκόχρυσου που εναποτίθεται (λιγότερο από 3 μg/cm²) και αποτελούνται δομικά από συσσωματώματα μορίων, με μέγεθος σωματιδίων μέχρι 20 nm. Το κυρίότερο μειονέκτημα της μεθόδου αυτής είναι ότι ο λευκόχρυσος εναποτίθεται σε
μικρό ποσοστό και με σθένος 2 και 4, με αποτέλεσμα να μειώνεται η καταλυτική του δράση [78, 80, 81].

- Ηλεκτροαπόθεση: Το υπόστρωμα πάνω στο οποίο θα αποτεθεί το φύλμ βυθίζεται μέσα σε δοχείο με ηλεκτρολύτη όπου φαίνεται στο παρακάτω σχήμα. Με την εφαρμογή μιας διαφοράς δυναμικού μεταξύ του υποστρώματος (κάθοδος) και του αντιηλεκτροδίου (άνοδος) που είναι συνήθως Pt ή συνεχώς ρεύματος, πραγματοποιείται ο σχηματισμός του φύλμ στην κάθοδο λόγω αντιδράσεων οξειδωσαναγωγής μεταξύ ηλεκτρολύτη και ηλεκτροδίων. Για να είναι επιτυχής η διαδικασία αυτή θα πρέπει η επιφάνεια του υποστρώματος πάνω στην οποία θα γίνει ο σχηματισμός του φύλμ να είναι φυσικά αρχύγημα. Οι συστάσεις μερικών ηλεκτρολυτικών διαλυμάτων που χρησιμοποιούνται φαίνεται στον παρακάτω πίνακα. Τα υμένια που παρασκευάζονται με αυτό τον τρόπο έχουν κρυσταλλική δομή. Η δομή τους εξαρτάται από τη σύσταση του ηλεκτρολύτη που χρησιμοποιείται, καθώς και τις συνθήκες της απόθεσης. Οι συνθήκες που επηρεάζουν την απόθεση είναι η πυκνότητα ρεύματος, δηλ. ο ρυθμός με τον οποίο πραγματοποιείται η απόθεση, η θερμοκρασία και η μέθοδος ή ο βαθμός συσσωμάτωσης. Σύμφωνα με τον Παπαγεωργίου τα φύλμ που παρασκευάζονται με αυτό τον τρόπο έχουν την προδιάθεση να διαλύνονται με την παρουσία του ιωδιών στον ηλεκτρολύτη, καθώς επίσης δεν εμφανίζουν καλή μηχανική σταθερότητα ενάντια στην τριβή. Επίσης στην ιδία εργασία γίνεται μια πολύ καλή συγκρίση των ιδιοτήτων των αντιηλεκτροδίων που παρασκευάζονται με τους δύο παραπάνω τρόπους.
Σχήμα 11: Ηλεκτροαπόθεση λευκόχρυσου σε K - glass

Στο παρακάτω πίνακα διακρίνουμε διάφορους τρόπους με τους οποίους μπορεί να γίνει ηλεκτροαπόθεση.

<table>
<thead>
<tr>
<th>Ηλεκτρολύτης</th>
<th>Διαδικασία</th>
<th>Αναφορά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υδατικό διάλυμα 0,002 M H₂PtCl₆</td>
<td>Εφαρμογή ρεύματος 10 mA για 3 sec</td>
<td>J. Electroceram. [2006] 17, 79-82</td>
</tr>
<tr>
<td>0,05 g/l PtCl₄ 0,025 M HCl</td>
<td>Εφαρμογή ρεύματος $j = 1$ mA/cm² για 3 min</td>
<td>Sol. Energy Mat. Sol. Cells 31 [1994] 481 – 488</td>
</tr>
<tr>
<td>13 g/l H₂PtCl₆ 6H₂O 45 g/l [NH₄]₂ HPO₄ 240 g/l Na₂ HPO₄ 12H₂O</td>
<td>Εφαρμογή ρεύματος $j = 0,2 – 0,5$ A/dm²</td>
<td>Principles of Electroplating and electroforming BLUM</td>
</tr>
</tbody>
</table>

Πίνακας 2: Συνθήκες ηλεκτροαπόθεσης υμενίων λευκόχρυσου

- Τεχνική αποσάθρωσης ανόδου (sputtering): Στη μέθοδο αυτή το υλικό απελευθερώνεται από την πηγή σε θερμοκρασία πολύ μικρότερη από την θερμοκρασία εξάχυσης. Το υπόστρωμα τοποθετείται σε θάλαμο κενού μαζί
με το υλικό – στόχος το οποίο θα αποσαφηνξθεί, ενώ ένα ευγενές αέριο όπως
αργό εισάγεται σε χαμηλή πίεση. Το αέριο αυτό ισορρίζεται και τα ιόντα
επιταχύνονται προς την επιφάνεια του στόχου, με αποτέλεσμα την
αποσάθρωση του στόχου σε μορφή υδρατών. Οι ατομοί συμπυκνώνονται σε
όλες τις επιφάνειες συμπεριλαμβανομένου και του υποστρώματος. Με την
μέθοδο αυτή παρασκευάζονται αδιαφανή ηλεκτρόδια λόγω μεγάλου πάχους
tου υμενίου που σχηματίζεται (περίπου 150 nm) [59]. Επίσης με την μέθοδο
αυτή παρασκευάζονται υμένια τα οποία παρουσιάζουν καλύτερη
προσκόλληση στο υπόστρωμα από την πρώτη μέθοδο [75].

- Εξάχνωση ατμών (vapor deposition) [82]: Σε αντίθεση με την προηγούμενη
μέθοδο το υλικό θερμαίνεται μέχρι τη θερμοκρασία εξάχνωσης. Στην
συνέχεια συμβαίνει συμπύκνωση των ατμών στην επιφάνεια του
υποστρώματος, με αποτέλεσμα τον σχηματισμό του φιλμ. Υπάρχουν διάφορες
παραλλαγές της μεθόδου αυτής, οι οποίες έχουν κυρίως να κάνουν με τον
τρόπο με τον οποίο επιτυγχάνεται η εξάχνωση του υλικού, όπως π.χ.
eξάχνωση με την βοήθεια δέσμης ηλεκτρονών.

- Ψεκασμός [58]: Ο τρόπος αυτός παρασκευάζει πολλές ομοιότητες
με τον πρώτο με την μόνη διαφορά ότι το διάλυμα λευκόχρυσου που
χρησιμοποιείται δεν απλώς πάνω στην αγώνη επιφάνεια, αλλά
ψεκάζεται σ’ αυτή.

Εκτός από την χρήση λευκόχρυσου έχουν προταθεί και άλλα υλικά όπως ο
άνθρακας. Ήδη από το 1996 σε εργασία των Kay and Gratzel έχει χρησιμοποιηθεί
άνθρακας σε συνδυασμό με γραφίτη προς αντικατάσταση του λευκόχρυσου, όπως
επίσης και άνθρακας σε συνδυασμό με νανοσωματίδια TiO2. Το TiO2
χρησιμοποιείται ώστε το φιλμ να είναι πιο συμπαγές. Απόδοση της τάξης του 9 %
έχει επιτευχθεί χρησιμοποιώντας αντιηλεκτρόδια με άνθρακα [83]. Σε πρόσφατη
erγασία του KOO [84] αποδεικνύεται ότι ένα αντιηλεκτρόδιο με νανοσωλήνες
άνθρακα είναι πιο σταθερό σε σύγκριση με αντιηλεκτρόδιο λευκόχρυσου,
pαρασκευασμένο με ηλεκτροαπόθεση και sputtering. Επίσης στην περίπτωση αυτή
δεν υπάρχει ανάγκη για αγώνη υπόστρωμα.
Η κατάλυση του τριωδίου μπορεί να γίνει και από αγώγια πολυμερή όπως PEDOT [poly[3,4-ethylenedioxythiophene], PPy [polypyrrole] σε αγώγιο υπόστρωμα. Το PEDOT εμφανίζει μεγάλη καταλυτική δράση, γεγονός που το καθιστά ιδανικό ως αντιελεκτρόδιο [58].

Ομοίως έχουν παρασκευαστεί και ηλεκτρόδια χρυσού [59], καθός και άλλων αδρανών – ευγενών μετάλλων όπως παλλάδιο και ρουθήνιο [43].

Προσπάθεια γίνεται επίσης και για την αντικατάσταση του γυαλιού με μεταλλικά [85] αλλά και εύκαμπτα πλαστικά υποστρώματα. Τα πλεονεκτήματα από την αντικατάσταση του γυαλιού από τέτοιας μορφής εύκαμπτα υποστρώματα είναι όχι μόνο στην μείωση του κόστους, αλλά και στη γεγονός ότι προσφέρουν μεγαλύτερη ευκολία στον τρόπο χρήσης τους και τα εύκαμπτα πλέον κελαί μπορούν να χρησιμοποιηθούν σε περισσότερες εφαρμογές [15,86].
Κεφάλαιο 2:

Ο μηχανισμός λειτουργίας μιας ευαίσθητοποιημένης ηλεκτροχημικής κυψελίδας περιγράφεται παρακάτω. Η χαρακτηριστική του διαφόροι σε σχέση με τα φ/β πυρίτιον είναι ότι η απορρόφηση του φωτός δεν έχει ως αποτέλεσμα την δημιουργία κάποιου ζεύγους ηλεκτρονίων – οπότε, αλλά την έκρηξη ηλεκτρονίων από την διεγερμένη χρωστική στην ζάντη αγωγιμότητας του ημιαγωγού.

2.1 Μηχανισμός λειτουργίας ευαίσθητοποιημένης ηλεκτροχημικής κυψελίδας:

Μια τυπική διάταξη μιας τέτοιας κυψελίδας αποτελείται από τα εξής μέρη:

a) Ένα διαφάνες αγώγιο υπόστρωμα, όπου στην αγώγιμη επιφάνεια του οποίου έχει γίνει η απόθεση ενός λεπτού υμενίου αποτελούμενο συνήθως από νανοσωματίδια TiO2. Το υμένιο αυτό διαδραματίζει το ρόλο της ανώδου.

b) Στην επιφάνεια του υμενίου του TiO2 προστροφάτε χημικά κατάλληλους ευαίσθητοποιητής, οπότε και σχηματίζεται μονομοριακό στρώμα του.

c) Ένα δεύτερο διαφάνες αγώγιο υπόστρωμα, οπού στην αγώγιμη επιφάνεια του οποίου έχει γίνει η απόθεση ενός λεπτού στρώματος συνήθως λευκόχρυσου και διαδραματίζει το ρόλο της καθόδου.

d) Τέλος μεταξύ των δύο ηλεκτροδίων παρεμβάλλεται υγρός ή στερεός ηλεκτρολύτης.

Στο παρακάτω σχήμα φαίνονται τα μέρη από τα οποία αποτελείται μια τέτοια κυψελίδα, καθώς και ορισμένα χαρακτηριστικά του υμενίου του TiO2. Το υμένιο του TiO2 αποτελείται από νανοσωματίδια με μέση διάμετρο 25 nm, σε ηλεκτρική επαφή μεταξύ τους και με το αγώγιο υπόστρωμα με τέτοιο τρόπο ώστε να σχηματίζεται ένα αρκετά πορώδες υμένιο. Στην επιφάνεια τους προστροφάται χημικά ένα μονομοριακό
Στρώμα του ευαισθητοποιητή, ενώ ο ηλεκτρολύτης εισχωρεί μέσω των πόρων του υμενίου όπου είναι δυνατόν.

Σχήμα 12: Δομή ευαισθητοποιημένης ηλεκτροχημικής κυψελίδας

Σχήμα 13: Σχηματική αναπαράσταση υμενίου διοξειδίου του τιτανίου
Όταν φως προσπίπτει στην κυψελίδα απορροφάται από τα μόρια της χρωστικής, με αποτέλεσμα την διέγερση τους. [εξίσ. 1]. Η διέγερση της χρωστικής έχει ως αποτέλεσμα την έκχυση ενός ηλεκτρονίου στην ζώνη αγωγιμότητας του TiO
2 με την παράλληλη οξείδωση της [εξίσ. 2]. Η διαδικασία της έκχυσης των ηλεκτρονίων είναι μερικές τάξεις μεγέθους πιο γρήγορη από τον χρόνο ζωής της διεγερμένης κατάστασης της χρωστικής, με αποτέλεσμα η πιθανότητα για επανασύνδεση να είναι πολύ μικρή. Η χρωστική αναγεγέννησε μέσω της αντίδρασης με το οξείδοσαναγωγικό ζεύγος του ηλεκτρολύτη, πιο συγκεκριμένα από τα ιόντα ιωδιδίου και επανέρχεται στην αρχική της κατάσταση. [εξίσ. 3] Μέσω των ηλεκτρονίων από το εξοτερικό κύκλωμα γίνεται η αναγωγή των ιόντων τριωδίου στο αντιηλεκτρόδιο.[εξίσ. 4] Τα ιόντα ιωδιδίου τα οποία καταναλώνονται στην άνοδο, παράγονται στην κάθοδο, ενώ το αντίθετο ισχύει για τα ιόντα τριωδίου. Η συνολική επομένως διαδικασία μπορεί να περιγραφεί από την εξίσωση 5, όπου φαίνεται ότι η λειτουργία της κυψελίδας είναι πλήρως ανανεώσιμη από την φύση της, αφού καμία χημική ουσία δεν καταναλώνεται ή παράγεται κατά την λειτουργία της.

Άνοδος:

Απορρόφηση φωτός: \[S + hν \rightarrow S^* \] [1]

Εισαγωγή ηλεκτρονίων: \[S^* \rightarrow S^+ + e^{-}(TiO_2) \] [2]

Αναγέννηση χρωστικής: \[2S^+ + 3I^- \rightarrow 2S + I_3^- \] [3]

Κάθοδος: \[I_3^- + 2e^-(Pt) \rightarrow 3I^- \] [4]

Κυψελίδα: \[e^-(Pt) + hν \rightarrow e^{-}(TiO_2) \] [5]

Η διαδικασία αυτή επομένως έχει ως αποτέλεσμα την απενεργοποίηση του ηλιακού φωτός σε ρεύμα. Η μέγιστη διαφορά δυναμικού σε συνθήκες φωτισμού (φωτοτάση = photovoltage) δίνεται από την διαφορά μεταξύ της ενέργειας Fermi του ημιαγωγού σε συνθήκες φωτισμού και του δυναμικού οξείδοσαναγωγής του οξείδοσαναγωγικού ζεύγους του ηλεκτρολύτη. Το ρεύμα (photocurrent) εξαρτάται
από διάφορους παράγοντες όπως από τις φασματικές και οξειδοαναγωγικές ιδιότητες της χρωστικής, από το πόσο αποτελεσματική είναι η έκχυση των φορέων και τέλος από τις ιδιότητες του ημιαγωγού όσο αφορά την συλλογή και την μεταφορά των φορέων.

Στο παρακάτω σχήμα φαίνονται οι βασικές λειτουργίες μιας ηλεκτροχημικής κυψελίδας:

2.2 Θεωρητική προσέγγιση του μηχανισμού λειτουργίας

Η ανάγκη μιας νέας θεωρητικής προσέγγισης του τρόπου λειτουργίας των ϕ/β αυτών οφείλεται στις διαφορές που παρουσιάζουν με τα συνηθισμένα ϕ/β πυριτίου, όπου γίνεται χρήση επαφής ρ – π. Οι κυρίοτερες διαφορές είναι:

1. Σε αντίθεση με τα ϕ/β πυριτίου, όπου η απορρόφηση και η μεταφορά των φορτίων γίνεται μέσα στο ιδίο υλικό, στις κυψελίδες αυτές η απορρόφηση γίνεται από τα μόρια της χρωστικής ενώ η μεταφορά των φορτίων γίνεται μέσα στον ημιαγωγό (ηλεκτρόνια) και στον ηλεκτρολύτη (οπές). Έχουμε δηλ. ένα διαχωρισμό των δύο λειτουργιών, της απορρόφησης και της μεταφοράς. Φορείς επομένως μόνο ενός είδους είναι παρόντες στον ημιαγωγό

2. Ενώ ο διαχωρισμός των φορτίων στα ϕ/β πυριτίου προκαλείται από ένα ηλεκτρικό πεδίο στην επαφή, στις ευαισθητοποιημένες ηλεκτροχημικές κυψελίδες δεν είχαμε την ύπαρξη ενός τέτοιου μεγάλης ακτίνας πεδίου, αλλά ο διαχωρισμός των φορτίων γίνεται για άλλους λόγους όπως θα δούμε και παρακάτω. Ηλεκτρικά πεδία υπάρχουν μόνο στη διεπιφάνεια ημιαγωγού – ηλεκτρολύτη με ακτίνα περίπου 1 nm, όπως και στη διεπιφάνεια ημιαγωγού – αγώγιμου υποστρώματος με λίγο μεγαλύτερη ακτίνα περίπου 15 nm [87,88].

3. Τέλος στα ϕ/β πυριτίου τα φορτία, οπές και ηλεκτρόνια, μεταφέρονται στο ιδίο υλικό, αυξάνοντας τις πιθανότητες για επανασύνδεση, ενώ στις ευαισθητοποιημένες ηλεκτροχημικές κυψελίδες τα ηλεκτρόνια μεταφέρονται μέσω του πορώδους ημιαγωγού ενώ οι οπές μέσω του ηλεκτρολύτη. Έτσι επανασύνδεση μπορεί να έχουμε μόνο στην διεπιφάνεια ημιαγωγού – ηλεκτρολύτη. Αυτό σημαίνει ότι οι απαιτήσεις που έχουμε για ένα πολύ καθαρό, χωρίς πολλές προσμίξεις και ατέλειες ημιαγωγό για την πρώτη περίπτωση μετριάζονται [1].

2.2.1 Απορρόφηση του φωτός από τα μόρια της χρωστικής

Η απορρόφηση του φωτός γίνεται αποκλειστικά και μόνο από τα μόρια της χρωστικής, αφού όπως είπαμε το TiO2 ως ημιαγωγός με ενεργειακό χάσμα στα 3,2 eV απορροφά κάτω από τα 400 nm. Οι χρωστικές με τις οποίες έχουν επιτευχθεί και οι
καλύτερες αποδόσεις αποτελούνται όπως είδαμε και στο προηγούμενο κεφάλαιο από διάφορους οργανικούς υποκαταστάτες που χρησιμοποιούνται για να πραγματοποιηθεί η χημική προσφόρση στην επιφάνεια του ημιαγωγού, αλλά και για την έκχυση των ηλεκτρονίων, όπως επίσης και από μη οργανικούς υποκαταστάτες.

Όπως φαίνεται στο σχήμα η απορρόφηση του φωτός πραγματοποιείται από τροχιακά τα οποία έχουν το κέντρο τους στους υποκαταστάτες NCS⁻. Πρόκειται για τα d τροχιακά του μετάλλου, δηλ. του ρουθενίου (Ru) στην συγκεκριμένη περίπτωση και αποτελούν τα υψηλότερα κατευθημένα μοριακά τροχιακά (HOMO). Τα ηλεκτρόνια με την απορρόφηση του φωτός διεγείρονται από τα τροχιακά αυτά σε τροχιακά τα οποία βρίσκονται στους οργανικούς υποκαταστάτες και αποτελούν τα χαμηλότερα μη κατευθημένα μοριακά τροχιακά (LUMO). Η διέγερση αυτού του τύπου είναι η MLCT (metal to ligand charge transfer).

Ο υποκαταστάτης στον οποίο καταλήγει το ηλεκτρόνιο, θα πρέπει να είναι αυτός που περιέχει την ομάδα μέσω της οποίας γίνεται η χημική προσφόρση στην επιφάνεια του ημιαγωγού, αλλά και αυτός από τον οποίο η έκχυση των ηλεκτρονίων μπορεί να γίνει πολύ γρήγορα.

Επίσης οι υποκαταστάτες NCS⁻ συμμετέχουν στην αναγέννηση της χρωστικής μετά την έκχυση των ηλεκτρονίων. Πιο συγκεκριμένα βοηθούν στην μεταφορά του ηλεκτρονίου από το οξειδοαναγωγικό ξεύγος του ηλεκτρολύτη. Γι’ αυτό οι υποκαταστάτες αυτοί θα πρέπει να έχουν κατεύθυνση προς τον ηλεκτρολύτη.
Στην συνέχεια αφού τα ηλεκτρόνια βρεθούν στο τροχιακό LUMO, εκχύνονται στην ζώνη αγωγιμότητας του ημιαγωγού, η οποία αποτελείται από d – τροχιακά ατόμων τιτανίου [23].

2.2.2 Έκχυση φορτίων και μεταφορά

Η έκχυση των ηλεκτρόνιων στην ζώνη αγωγιμότητας του ημιαγωγού αποτελεί μία από τις πιο γρήγορες χημικές διαδικασίες, αφού πραγματοποιείται μέσα σε μια κλίμακα χρόνου της τάξης μερικών picoseconds ή μερικών femtoseconds και η κβαντική απόδοση της έκχυσης των φορέων ξεπερνά το 90% [30]. Η διαδικασία της έκχυσης των ηλεκτρόνιων γίνεται πριν προλάβει επομένως η χρωστική να αποδιεγερθεί με την εκπομπή ακτινοβολίας ή με κάποιον άλλο τρόπο. Τυπικές τιμές των σταθερών αποδιέγερσης κυμαίνονται από 10^3 ως 10^7 s⁻¹, αρκετές τάξεις μεγέθους μεγαλύτερες από τις σταθερές της έκχυσης. Για αυτό το λόγο περιμένουμε και υψηλή απόδοση στην έκχυση των ηλεκτρόνων. Μπορεί επομένως αυτή η απόδοση να είναι υψηλή, αυτό δεν σημαίνει όμως ότι και όλα τα ηλεκτρόνια που εκχέονται στην ζώνη αγωγιμότητας από την χρωστική συλλέγονται στο εξωτερικό κύκλωμα, με αποτέλεσμα η πραγματική απόδοση των κυμαλίδων να είναι πολύ μικρότερη. Επιπροσθέτως και η μεταφορά των φορέων είναι αρκετά γρήγορη, αφού για την μεταφορά τους μέσα από ένα υμένιο πάχους 10 μ m υπολογίζεται ότι απαιτείται χρόνος περίπου 10 ms [30].

2.2.2 а Έκχυση – Διαχωρισμός φορέων:

Η έκχυση επομένως των ηλεκτρόνιων πραγματοποιείται με έναν πολύ υψηλό ρυθμό, ο οποίος οφείλεται αφενός στην ηλεκτρονική σύζευξη χρωστικής και ημιαγωγού και αφετέρου στην μεγάλη πυκνότητα των καταστάσεων που μπορούν να δεχθούν ηλεκτρόνια στον ημιαγωγό [30].

Ο παράγοντας εκείνος ο οποίος καθορίζει περισσότερο τον ρυθμό για την έκχυση των ηλεκτρόνιων είναι η ενεργειακή διαφορά μεταξύ της διεγερμένης στάθμης της χρωστικής και της ζώνης αγωγιμότητας του ημιαγωγού [48]. Σε μερικά επομένως συστήματα μπορεί να μεταβληθεί ο ρυθμός αυτός μεταβάλλοντας
κατάλληλα τις ενεργειακές στάθμες. Σύμφωνα με την κινητική θεωρία του Gerischer ο ρυθμός για την έκρυση των ηλεκτρονίων εξαρτάται πιο συγκεκριμένα από την επικάλυψη των ενεργειακών καταστάσεων της χρωστικής, όταν αυτή διεγερθεί, και των καταστάσεων στην ζώνη αγωγιμότητας του ημιαγωγού.

Ένας δεύτερος παράγοντας ο οποίος καθορίζει τον ρυθμό της έκρυσης είναι η εγγύτητα της διεγερμένης κατάστασης της χρωστικής με την επιφάνεια του ημιαγωγού. Μόνο επομένως μόρια χρωστικής που έχουν προσφορθεί χημικά στην επιφάνεια του ημιαγωγού μπορούν να εκχύσουν ηλεκτρόνια στα αυτόν. Γι’ αυτό άλλωστε η ευαισθητοποίηση ενός ημιαγωγού με πολλαπλά στρώματα χρωστικής δεν επιφέρει και καλύτερα αποτελέσματα στη σχέση με ένα μονομοριακό στρώμα. Έχει επίσης βρεθεί ότι αν η χρωστική έχει σχηματίσει συσσωματώματα στην επιφάνεια του ημιαγωγού, τότε ο ρυθμός έκρυσης είναι μικρότερος [89].

Όταν η χρωστική όμως διεγερθεί μπορεί να αποδιεγερθεί όχι μεταφέροντας ηλεκτρόνια στην ζώνη αγωγιμότητας του ημιαγωγού, αλλά ενέργεια. Επίσης η έκρυση των ηλεκτρονίων μπορεί να γίνει προς τον ηλεκτρολήτη, αν στον υπάρχουν διάφορα συστατικά που διαδραματίζουν το ρόλο των δεκτών ηλεκτρονίων. Οι δύο αυτές διαδικασίες μειώνουν το ρυθμό έκρυσης προς την ζώνη αγωγιμότητας.

Η επικάλυψη επομένως των ενεργειακών καταστάσεων και η εγγύτητα της χρωστικής στην επιφάνεια του ημιαγωγού αποτελούν αναγκαίες συνθήκες για την έκρυση των ηλεκτρονίων. Ο περαιτέρω διαχωρισμός των φορέων ευνοείται από την υπάρξει ενός ηλεκτροκινήτη πεδίου στην διεπιφάνεια ημιαγωγού – ηλεκτρολήτη [88].

Επειδή το TiO₂ είναι ένας ημιαγωγός τύπου – n η επιφάνεια του φορτίζεται αρνητικά, όταν έρχεται σε επαφή με τον αέρα, με κάποιο υγρό ή με κάποιο μέταλλο, λόγω παγιδεύσης ηλεκτρονίων στην επιφάνεια του. Για να διατηρηθεί η ηλεκτρική ουδετερότητα αναπτύσσεται ένα στρώμα θετικού φορτίου στο εσωτερικό του, το οποίο προκαλεί μια αλλαγή στο ηλεκτροστατικό δυναμικό και κάμη των ενεργειακών ζωνών προς τα πάνω κοντά στην επιφάνεια. Με τον τρόπο αυτό δημιουργείται μια περιοχή φορτίου χώρου, ένα εσωτερικό δηλ. ηλεκτρικό πεδίο το οποίο θα βοηθούσε στον διαχωρισμό των φορέων. Όταν όμως έχουμε νανοσωματίδια TiO₂ λόγω του πολύ μικρού τους μεγέθους δεν μπορούν να υποστηρίζουν ένα φορτίο χώρου και επίσης μετά την επαφή με τον ηλεκτρολήτη έχουμε απογόμνωση του φορτίου τους (depletion) [88]. Η απογόμνωση αυτή είναι πολύ αποτελεσματική.
αφού λόγω του πορώδους υμενίου ο ηλεκτρολύτης μπορεί να εισχωρήσει σε όλο τον όγκο του, να εξουδετερώσει σχεδόν κάθε ηλεκτρικό πεδίο και να περιορίσει την ισχύ του σε μια περιοχή διαστάσεων της τάξεως του 1 nm (κοντά στο αγάμμο υπόστρωμα) [57]. Ο διαχωρισμός των φορέων επομένως θα πρέπει να συμβαίνει για άλλους λόγους.

Μπορεί επομένως να μην υπάρχει ένα ηλεκτρικό πεδίο λόγω κάμψης των ενεργειακών ζωνών, αλλά οστόσο δημιουργείται ένα ηλεκτρικό πεδίο στην διεπιφάνεια ημιαγωγού – ηλεκτρολύτη λόγω της προσρόφησης της χρωστικής και κατιόντων από τον ηλεκτρολύτη όπου φαίνεται στο παρακάτω σχέδιο. Η προσρόφηση των μορίων της χρωστικής γίνεται συνήθως μέσω κατιόντων υδρογόνου. Τα κατιόντα αυτά, μαζί με άλλα κατίοντα που υπάρχουν στον ηλεκτρολύτη, γίνονται μέρος της επιφάνειας του διοξειδίου του τιτανίου. Το αποτέλεσμα είναι ο σχηματισμός ενός δίπολου στη διπλοστήβιδα Helmoltz μεταξύ των κατιόντων και των αρνητικών φορτίων (ιοδίδιο και χρωστική). Η πτώση του ηλεκτρικού δυναμικού στη διπλοστήβιδα Helmoltz, που έχει πάχος περίπου 1 nm [87], βοηθά στον διαχωρισμό των φορτίων αλλά και στην μείωση της πιθανότητας επανασύνδεσής τους. Η πτώση αυτή υπολογίστηκε ότι είναι περίπου 0,3 eV [57].

Σχήμα 16: Σχηματικό διάγραμμα της κατανομής φορτίων στην επιφάνεια του ημιαγωγού. Τα ορίζοντα βέλη δείχνουν την κατεύθυνση του ηλεκτρικού πεδίου εξαιτίας του δυναμικού Helmoltz [88].

Σύμφωνα με τον Gregg η ύπαρξη του ηλεκτρικού πεδίου στην διπλοστηβίδα Helmoltz δεν είναι αρκετή για τον διαχωρισμό των φορτίων. Ο διαχωρισμός επιτυγχάνεται λόγω ανακατανομής των ιόντων στον ηλεκτρολύτη μετά την έκρηξη των ηλεκτρονίων. Τα ιόντα επομένως του ηλεκτρολύτη ανακατανέμονται γύρω από
το φωτοεπαγόμενο ζεύγος ηλεκτρονίου – οπότε, με αποτέλεσμα την εξουδετέρωση
tης μεταξύ τους ηλεκτροστατικής έλξης λόγω δυνάμεων Coulomb. Η κίνηση
eπομένου των ιόντων του ηλεκτρολύτη μέσα στους πόρους του υμενίου
dιαδραματίζει ένα πολύ σημαντικό ρόλο στην διαδικασία διαχωρισμού των φορέων
[60].

2.2.2 β Μεταφορά:

Το δίκτυο των νανοσωματιδίων του ημιαγωγού χρησιμεύει όχι μόνο για να
έχουμε μια μεγάλη επιφάνεια πάνω στην οποία θα προσφορθούν τα μόρια της
χρωστικής αλλά και σαν ένα μέσο για την συλλογή και την μεταφορά των
ηλεκτρονίων. Η συλλογή και η μεταφορά των ηλεκτρονίων διευκολύνεται για δύο
κυρίως λόγους. Πρώτον επειδή επιτρέπει την πλήρη απογόνωση των
νανοσωματιδίων του ημιαγωγού κατά την επαφή με τον ηλεκτρολύτη και δεύτερον
εξαιτίας της εγγύησης του ηλεκτρολύτη με τα σωματίδια επιτυγχάνεται θεράκτιση
του φορτίου των ηλεκτρονίων, με αποτέλεσμα την πιο εύκολη μεταφορά τους [88].

Η αποτελεσματική επομένως μεταφορά των φορέων μέσω του
νανοδομημένου υμενίου, χωρίς μεγάλη πιθανότητα επανασύνδεσης δεν μπορούσε να
εξηγηθεί ικανοποιητικά από την αρχή.

Οι λόγοι ήταν πρώτον η μικρή ενδογενής αγωγιμότητα του νανοδομημένου
ημιαγωγού, δεύτερον η απουσία εσωτερικού μακροσκοπικού ηλεκτρικού πεδίου λόγω
του μικρού μεγέθους των νανοσωματιδίων, το οποίο θα βοηθούσε και στην
μεταφορά, αλλά και λόγω της ύπαρξης του ηλεκτρολύτη [89,90] και τρίτον λόγω της
πολύ μεγάλης διεπιφάνειας με τον ηλεκτρολύτη θα περίμενε κανείς να υπάρχει
μεγάλη πιθανότητα επανασύνδεσης. Τα υμένια επομένως αυτά μπορούν να
θεωρηθούν ότι αποτελούνται από ένα σύνολο ανεξάρτητων σωματιδίων μέσω των
οποίων τα ηλεκτρόνια μπορούν να περάσουν από τον ένα κρυστάλλη στον επόμενο.

Η κίνηση των ηλεκτρονίων στην ζώνη αγωγιμότητας του ημιαγωγού
συνδυάζεται με την μεταφορά ηλεκτρονίων μέσω της διεπιφάνειας ημιαγωγού –
ηλεκτρολύτη, αλλά και με την κίνηση ιόντων στον ηλεκτρολύτη, προκειμένου να
διατηρηθεί ηλεκτρική ουδετερότητα [91]. Μάλιστα η ταυτόχρονη μεταφορά
ηλεκτρονίων και ιόντων συμβαίνει ακόμα και αν η μεταξύ τους απόσταση είναι
μεγαλύτερη από το μέγεθος ενός νανοσωματιδίου του ημιαγωγού. Η μεταφορά μέσω της διεπιφάνειας και από τον ημιαγωγό στον ηλεκτρολύτη αποτελεί ανεπιθύμητη διαδικασία όπως θα δούμε και στην συνέχεια. Τα ιόντα που κινούνται στον ηλεκτρολύτη εκτός από το οξειδοαναγωγικό ζεύγος, είναι και τα θετικά ιόντα που έχουν προέλθει από το άλος του υδίου που χρησιμοποιείται για την παρασκευή του. Τα κατόντα αυτά εξουδετερώνουν το αρνητικό φορτίο των ηλεκτρονίων που εκχέονται στον ημιαγωγό, με αποτέλεσμα να μην μπορεί να δημιουργηθεί ένα μακροσκοπικό ηλεκτρικό πεδίο [30]. Επίσης και η μεταφορά των ηλεκτρονίων γίνεται πιο εύκολα, λόγω απογόνωσης του φορτίου τους από τον ηλεκτρολύτη. Ο ηλεκτρολύτης λόγω του πορώδους υμείου μπορεί να εισχωρήσει και να διαβρέξει όλο το άλο, έτσι ώστε η απογόνωση αυτή του φορτίου των ηλεκτρονίων να είναι πολύ αποτελεσματική. Η ταυτόχρονη αχώριστη κίνηση ηλεκτρονίων και ιόντων έχει ως αποτέλεσμα την παρουσία ενός κοινού συντελεστή διάχυσης, περισσότερο γνωστού ως "διπολικός" (ambipolar) [89] ή "χημικός" [92]. Ο συντελεστής διάχυσης εξαρτάται από την ένταση του προσπίπτοντος φωτός, από το πάχος και από το πόσο πορώδες είναι το υμένιο του TiO₂, από το μέγεθος των σωματιδίων του TiO₂ και την κρυσταλλικότητά τους και τέλος από την σύσταση του ηλεκτρολύτη [48].

Η μεταφορά των φορέων γίνεται επομένως κυρίως λόγω διάχυσης, αλλά όχι μόνο αυτής με την όλη διαδικασία να είναι περισσότερο πολύπλοκη. Πιο συγκεκριμένα όταν η κυψελίδα φωτιστεί δημιουργείται μια βαθμίδα στην συγκέντρωση των ηλεκτρονίων στο ηλεκτρόδιο [47]. Μάλιστα από πειράματα που έχουν γίνει με την χρήση φασματοσκοπιαίς ακτίνων laser έχει διαπιστωθεί ότι τα ηλεκτρόνια τα οποία εκχέονται από την χρωστική δεν παγιδεύονται στην επιφάνεια του ημιαγωγού, αλλά εισέρχονται στο κύριο όγκο του [23].

Ένας τρόπος για να κατανοήσουμε την μεταφορά των ηλεκτρονίων από σωματίδιο σε σωματίδιο του ημιαγωγού είναι να δούμε την κίνηση αυτή σαν να περνάει τα ηλεκτρόνια από επιφανειακές παγίδες διαφορετικού βάθους. Κάθε ηλεκτρόνιο που εκχέεται αποδείχει το άλο που βρισκόταν ήδη εκεί και έτσι επιτυγχάνεται η μεταφορά τους [57]. Αυτές οι παγίδες δεν είναι παρά εντοπισμένες ενεργειακές καταστάσεις ακριβώς κάτω από την ζώνη αγωγιμότητας του ημιαγωγού και παίζουν ένα σημαντικό ρόλο στην μεταφορά των ηλεκτρονίων. Πιο συγκεκριμένα οι παγίδες αυτές βρίσκονται 0,5 eV κάτω από την ζώνη αγωγιμότητας [93] και η
ενέργεια τους παρουσιάζει μία εκθετική κατανομή [89]. Η ακριβής προέλευση των παγιδών αυτών δεν είναι ακριβώς γνωστή. Μάλλον οφείλονται σε στρώματα από άμορφο διοξείδιο του τιτανίου, προσμίζεις οξυγόνου (oxygen defects), ατέλειες μεταξό των σωματιδίων και ότι τους περιβάλλει χημικά [94].

Ο συντελεστής διάχυσης των ηλεκτρόνιων εξαρτάται από την θέση της στάθμης Fermi των ηλεκτρόνιων σε συνθήκες φωτισμού. Κάτω από συνθήκες χαμηλού φωτισμού η συγκέντρωση των ηλεκτρόνιων στην ζώνη αγωγιμότητας είναι χαμηλή, με αποτέλεσμα μόνο βαθιές παγίδες να καταλαμβάνονται. Για να ξεφύγουν τα ηλεκτρόνια από αυτές τις βαθιές παγίδες απαιτείται ενέργεια μεγαλύτερη από kBT (όπου kB η σταθερά του Boltzmann) σε θερμοκρασία δωματίου, γεγονός που σημαίνει ότι τα ηλεκτρόνια αυτά δεν μπορούν να ξεφύγουν [93]. Αρα δεν μπορούν να συμμετέχουν στην μεταφορά των φορέων και ο συντελεστής διάχυσης είναι μικρός. Αυξάνοντας όμως την ένταση του φωτός αυξάνει η ενέργεια της στάθμης Fermi και ενώ οι βαθιές παγίδες είναι γεμάτες στην κατάσταση ισορροπίας, αρχίζουν να συμμετέχουν και οι ρηχές παγίδες στην κίνηση των ηλεκτρόνιων με αποτέλεσμα να έχουμε πιο μεγάλο συντελεστή διάχυσης. Με αυτό τον τρόπο το βάθος των παγιδών επηρεάζει την τιμή του συντελεστή διάχυσης. Ένα μέρος επομένως των ηλεκτρόνιων που εκχύνονται παγιδεύεται στις παγίδες αυτές, ενώ τα υπόλοιπα διαχέονται στην ζώνη αγωγιμότητας και ενώ αυτά που παγιδεύονται στις βαθιές παγίδες δεν μπορούν να συμμετέχουν, για αυτά που παγιδεύονται σε ρηχές παγίδες δεν ισχύει κάτι τέτοιο. Η μέση συγκέντρωση των μεταφερόμενων ηλεκτρόνιων είναι περίπου ένα ηλεκτρόνιο ανά νανοσωματιδίο διοξείδιου του τιτανίου [93]. Όταν τα ηλεκτρόνια εκχύνονται μία σειρά από γεγονότα εξασφαλίζει ότι αυτά θα κατανεμηθούν με τέτοιο τρόπο στα διαθέσιμα νανοσωματίδια ώστε να έχουμε την παραπάνω μέση συγκέντρωση.

Μόνο στην περίπτωση όπου η στάθμη Fermi των ηλεκτρόνιων είναι πολύ κοντά στην ζώνη αγωγιμότητας και οι παγίδες είναι γεμάτες, μπορούμε να θεωρήσουμε ότι η κίνηση των ηλεκτρόνιων είναι ελεύθερη [30].

Κατά τη διάχυση τα ηλεκτρόνια διατηρούν το υψηλό τους ηλεκτροχημικό δυναμικό , το οποίο ισούται με την ενέργεια της στάθμης Fermi του ημιαγωγού υπό συνθήκες φωτισμού (Multiple trapping mechanism) [90].

Τα φωτοδιεγευόμενα ηλεκτρόνια οδηγούνται μέχρι το αγώγημα υπόστρωμα από τη βαθμίδα χημικού δυναμικού που δημιουργείται λόγω της αύξηση της
συγκέντρωσης των ηλεκτρονίων (λόγω της φωτοδιέγερσης) στο TiO$_2$ σε σχέση με την επαφή με το υπόστρωμα [57,95]. Πιο συγκεκριμένα το quasi Fermi level των ηλεκτρονίων, το οποίο είναι το ίδιο για το υπόστρωμα και τον ημιαγωγό σε κατάσταση ισορροπίας, γίνεται πιο αρνητικό στον ημιαγωγό με την έκρηξη των ηλεκτρονίων από την χρωστική. Λόγω της διαφορετικής φάσης στην οποία βρίσκονται τα ηλεκτρόνια και οι οπές όταν δημιουργούνται, η παραπάνω βαθμίδα του χημικού δυναμικού είναι αρκετά μεγάλη, ώστε ουσιαστικά σ’ αυτή να οφείλεται η μεταφορά τους και όχι στην ύπαρξη ενός μακροσκοπικού ηλεκτρικού πεδίου, το οποίο εξουδετερώνεται από τον ηλεκτρολύτη [60,87]. Στα φ/β πυριτίου ισχύει ακριβώς το αντίθετο, δηλ. η βαθμίδα του χημικού δυναμικού δεν διαδραματίζει σημαντικό ρόλο, αφού ηλεκτρόνια και οπές δημιουργούνται στην ίδια φάση, σε όλο τον όγκο του υλικού και όχι σε μια στενή περιοχή γύρω από την διεπιφάνεια. Η μεταφορά επομένως στηρίζεται στην ύπαρξη ενός ηλεκτρικού πεδίου στην επαφή ρ – η. Για αυτό άλλωστε στα φ/β αυτά η τάση ανοικτού κυκλώματος καθορίζεται από το εσωτερικό ηλεκτρικό πεδίο.

Βέβαια υπάρχουν και αυτοί που υποστηρίζουν την ύπαρξη ενός ηλεκτρικού πεδίου στο υσινίου του TiO$_2$, εξαιτίας του οποίου μάλιστα ο συντελεστής διάχυσης μπορεί να αυξηθεί κατά 10% [89,91]. Η ύπαρξη αυτού του ηλεκτρικού πεδίου οφείλεται στην αλλαγή του άκρου της ζώνης (band – edge shift), η οποία προκαλείται λόγω της φόρτισης των νανοσωματίδιον του TiO$_2$. Μια εμπεριστατωμένη περιγραφή για την μεταφορά των φορέων θα πρέπει να λαμβάνει υπόψη της τόσο την μεταφορά λόγω διάχυσης, όσο και λόγω της ύπαρξης κάποιου ηλεκτρικού πεδίου.

Ηλεκτρικό πεδίο υπάρχει οστόσο και στην διεπιφάνεια ημιαγωγού – υποστρώματος. Το δυναμικό της επαφής αυτής καθορίζεται από την διαφορά μεταξύ του έργου εξαγωγής του υποστρώματος και του δυναμικού οξειδωδαναγωγής του ηλεκτρολύτη, αλλά περιορίζεται εντός μιας ακτίνας περίπου 20 nm από την διεπιφάνεια λόγω θωράκισης από τον ηλεκτρολύτη. Σύμφωνα λοιπόν με κάποιες ερευνητικές ομάδες ένα τέτοιο ηλεκτρικό πεδίο θα καθορίζει και την μεταφορά των φορέων στην διεπιφάνεια με το υπόστρωμα, όχι όμως και στον κύριο όγκο του TiO$_2$, όπου δεν υπάρχει κάποιο ηλεκτρικό πεδίο. Ο ρόλος βέβαια αυτού του ηλεκτρικού
πεδίου σχετικά με το πόσο σημαντική είναι η συνεισφορά του στην μεταφορά των φορέων αμφιβολείται [95].

Η μορφολογία του υμενίου επηρεάζει την μεταφορά των φορέων. Βρέθηκε ότι η μεταφορά ηλεκτρονίων σε στρώματα ρουτιλίου είναι μια τάξη μεγέθους μικρότερη από ότι σε στρώματα ανατάσεων [89], λόγω μιας καλής διασύνδεσης μεταξύ των σωματιδίων στην περίπτωση του ρουτιλίου. Μάλιστα όσο μικρότερη είναι η επιφάνεια της επαφής μεταξύ των νανοσωματιδίων, τόσο αναπτελεσματική είναι και η μεταφορά. Η μεταφορά επίσης επηρεάζεται και από το αν το υμένιο είναι πολύ πορώδες ή όχι. Μάλιστα όσο περισσότερο πορώδες είναι το υμένιο, τόσο μεγαλύτερη είναι και η διαδρομή των ηλεκτρονίων μέχρι το αγώγιμο υπόστρωμα όπου και συλλέγονται. Μεγαλύτερη όμως διαδρομή θα έχει ως αποτέλεσμα πιο αργή μεταφορά, αλλά και μεγαλύτερη πιθανότητα επανασύνδεσης [89].

Εξίσου όμως σημαντική με την μεταφορά των ηλεκτρονίων μέσω του ημιαγωγού είναι και η μεταφορά των οπών (1+) μέσω του ηλεκτρολύτη. Η μεταφορά των οπών προς το αντιηλεκτρόδιο οφείλεται αποκλειστικά και μόνο στην διαφορά του χημικού δυναμικού. Μέσα στον ηλεκτρολύτη δεν μπορεί να υπάρξει κάποιο ηλεκτρικό πεδίο, αλλά παρόλο που η κίνηση των οπών είναι αποτελεσματική [95].

2.2.3 Επανασύνδεση φορέων

Η επανασύνδεση των ηλεκτρονίων και των οπών που δημιουργούνται με την απορρόφηση του φωτός αποτελεί βασικό μειονέκτημα για όλους τους τύπους των φ/θ. Στις ευαίσθητοποιημένες ηλεκτροχημικές κυψελίδες όπου ηλεκτρόνια και οπές βρίσκονται σε διαφορετικές φάσεις, επανασύνδεση συμβαίνει μόνο στις διεπιφάνειες μεταξύ των διαφορετικών φάσεων.

Μπορούμε να διακρίνουμε δύο διαφορετικούς μηχανισμούς με τους οποίους πραγματοποιείται η επανασύνδεση των φορέων. Ο πρώτος περιλαμβάνει την απευθείας επανασύνδεση των ηλεκτρονίων της ζώνης αγωγιμότητας του ημιαγωγού με την οξειδωμένη χρωστική και ο δεύτερος περιλαμβάνει την επανασύνδεση με ιόντα στον ηλεκτρολύτη.

Ο πρώτος μηχανισμός εννοείται όταν βρισκόμαστε κοντά σε συνθήκες ανοικτού κυκλώματος [88]. Επειδή όμως η αναγέννηση της χρωστικής από τα ιόντα

61
I^-, τα οποία έχουν υψηλή συγκέντρωση, πραγματοποιείται αρκετά πιο γρήγορα, η επανασύνδεση με τα ηλεκτρόνια της ζώνης αγωγιμότητας δεν είναι τόσο σημαντική [62]. Επίσης η επανασύνδεση του ηλεκτρονίου με την οξειδωμένη χρωστική πραγματοποιείται μέσω ενός εντοπισμένου δ τροχιακού του ρουθυνίου, του οποίου η ηλεκτρονική συγγένεια με την ζώνη αγωγιμότητας του TiO_2 είναι μικρή και γίνεται ακόμα μικρότερη λόγω της χωρικής συστολής της κυματοσυνάρτησης με την οξειδώση της χρωστικής. Επειδή επομένως η ηλεκτρονική συγγένεια είναι μία με δύο τάξεις μικρότερη για την επανασύνδεση με την οξειδωμένη χρωστική, άρα και η μεταφορά $θ$ είναι κατά το ίδιο ποσοστό μικρότερη σε σχέση με την έκρυση των ηλεκτρονίων στην ζώνη αγωγιμότητας [30].

Όσο αφορά την επανασύνδεση με τα ιόντα του ηλεκτρολύτη, εκτός από τα ιόντα τριωδίου και τα ιόντα I_2^- μπορούν να διαδραματίσουν τον ρόλο του δέκτη ηλεκτρονίων. Η επανασύνδεση όμως με τα ιόντα I_2^- μπορεί να πραγματοποιηθεί μόνο σε υψηλές εντάσεις φωτός, με αποτέλεσμα κάτω από συνθηκομένες συνθήκες ακτινοβολίας για την λειτουργία των ϕ/β αυτών να είναι πιο σημαντική η επανασύνδεση με το τριώδιο [96], η οποία περιγράφεται από την παρακάτω αντίδραση:

$$I_3^- + 2e^- \rightarrow I^-$$

Η παραπάνω αντίδραση χαρακτηρίζει ουσιαστικά την ανάποδη μεταφορά των ηλεκτρονίων (back electron transfer).

Ο δεύτερος μηχανισμός επανασύνδεσης επομένως είναι πιο σημαντικός, μπορεί να συμβεί μόνο στην διεπιφάνεια ημιαγωγού – ηλεκτρολύτη και τότε μόνο όταν το ηλεκτρόνιο μπορεί να φθάσει μέσω φαινομένου σήραγγας στο τριώδιο και να έχουμε μ’ αυτόν τον τρόπο επανασύνδεση. Για να φθάσει όμως το ηλεκτρόνιο θα πρέπει να διανύσει μια απόσταση μικρότερη των 3 nm. Η απόσταση αυτή είναι πολύ μικρότερη από το μέγεθος των νανοσωματιδίων του ημιαγωγού (περίπου 20 nm), γεγονός που σημαίνει ότι η πιθανότητα να διανύσει αυτή την απόσταση το ηλεκτρόνιο θα εξαρτάται και από την επιφάνεια του ημιαγωγού. Επειδή η επιφάνεια του ημιαγωγού είναι πολύ μεγάλη, θα περίμενε κανείς εξαιτίας της επανασύνδεσης η
απόδοση των φ/β αυτών να είναι πολύ χαμηλή. Ένας λόγος που πιθανόν να μην συμβαίνει αυτό είναι ότι οι οπές έχουν αρνητικό φορτίο, γεγονός που μειώνει τον ρυθμό της επανασύνδεσης εξαιτίας της μείωσης της ενεργού διατομής σύλληψης [88].

Επανασύνδεση όμως με τα ιόντα τριωδίου μπορεί να έχουμε και στην περίπτωση όπου ο ηλεκτρολυτής έρθει σε επαφή με την αργόγημη επιφάνεια του υποστρώματος, εξαιτίας του γεγονότος ότι τα υμένια του TiO₂ είναι αρκετά πορώδη. Από πειράματα όμως που έχουν γίνει έχει αποδειχτεί ότι το φαινόμενο αυτό δεν είναι τόσο πολύ σημαντικό [88,97], ιδιαίτερα στην περίπτωση του οξειδοαναγωγικού ζεύγους Γ / Γ₃ και όταν δεν βρισκόμαστε σε συνήθεις ανοικτού κυκλώματος. Η κυριότερη επομένως τοποθέτηση στην οποία γίνεται επανασύνδεση αποτελεί η διεπιφάνεια ημιαγωγού – ηλεκτρολύτη, με την προϋπόθεση πάντα ότι το οξειδοαναγωγικό ζεύγος που χρησιμοποιείται είναι το Γ / Γ₃ [62].

Στο παρακάτω σχήμα σαίνονται παραστατικά οι δύο αυτοί μηχανισμοί επανασύνδεσης.

Σχήμα 17: Τρόποι επανασύνδεσης

Οι χρόνοι για την επανασύνδεση των ηλεκτρονίων κυμαίνονται μεταξύ μερικών picoseconds έως μικρά milliseconds ή έως και μερικά λεπτά, ανάλογα με την ένταση της ακτινοβολίας. Το μεγάλο αυτό εύρος στους χρόνους επανασύνδεσης

63
οφείλεται στον τρόπο με τον οποίο γίνεται η μεταφορά των ηλεκτρονίων. Η μεταφορά τους γίνεται μέσω παγίδων όπως είδαμε προηγουμένως, δηλ. μέσω εντοπισμένων καταστάσεων στην επιφάνεια του υμιαγογού και με ενέργειες κάτω από την ζώνη αγογιμότητας του ημιαγογού. Τα ηλεκτρόνια όπως είδαμε εκχέονται στην ζώνη αγογιμότητας του ημιαγογού και διαχέονται σ’ αυτή. Παγιδεύονται όμως και ο χρόνος που απαιτείται για την αποδέσμευση τους από τις παγίδες είναι διαφορετικός, λόγω διαφορετικού βάθους. Η αποδέσμευση γίνεται λόγω θερμικής ενεργοποίησης (Thermal activation). Αφού αποδεσμευτούν διαχέονται εκ νέου στην ζώνη αγογιμότητας μέχρι να παγιδευτούν ξανά. Ο ρυθμός επανασύνδεσης εξαρτάται επομένως από την κατάληψη αυτών των παγίδων, η οποία μπορεί να ρυθμίσει αλλάζοντας την ένταση της φωτεινής πηγής, την σύσταση του ηλεκτρολύτη ή εφαρμόζοντας κάποιο εξωτερικό ηλεκτρικό πεδίο [90]. Όσο δηλ. μεγαλύτερος είναι ο χρόνος που οι φορείς είναι παγιδευμένοι, τόσο μεγαλύτερη είναι και η πιθανότητα επανασύνδεσης. Η παγίδευση των φορέων συμβαίνει στην επιφάνεια, ενώ η διάρκειά τους γίνεται μέσω του κύριου όγκου του ημιαγογού. Ο ρυθμός επανασύνδεσης είναι ανάλογος του τετραγώνου της συγκέντρωσης των ηλεκτρονίων [89], όπως και ανάλογος του τετραγώνου της συγκέντρωσης του τριωδίου σύμφωνα με κάποιους από τους μηχανισμούς που έχουν προταθεί [62]. Ο ρυθμός της επανασύνδεσης των φορέων έχει βρεθεί ότι εξαρτάται ακόμα από την ισχύ της διέγερσης I_{ex} [90].

Η επίδραση διαφόρων παραγόντων, όπως η δομή της χρονικής, η ένταση του φωτός και η εφαρμογή ενός ηλεκτρικού πεδίου στους χρόνους επανασύνδεσης αναλύονται από τον Katoh [90].

Έχουν προταθεί διάφοροι μηχανισμοί με τους οποίους πραγματοποιείται η επανασύνδεση. Σύμφωνα με τον πρώτο μηχανισμό που προτάθηκε η επανασύνδεση πραγματοποιείται μέσω της αντίδρασης 2 ηλεκτρονίων από την ζώνη αγογιμότητας του ημιαγογού και του τριωδίου. Αν επομένως υπάρχουν παγίδες φορέων μέσα στο ενεργειακό χάος του ημιαγογού, θα πρέπει να βρίσκονται στην επιφάνεια του TiO$_2$. Οι ενέργειές τους δεν επηρεάζουν τον ρυθμό επανασύνδεσης, ο οποίος προκύπτει ανάλογος του τετραγώνου της συγκέντρωσης των ηλεκτρονίων [98].

Ο παραπάνω όμως μηχανισμός δεν μπορεί να εξηγηθεί πρόσφατα αποτελέσματα σχετικά με τον χρόνο ζωής των ηλεκτρονίων. Ο δεύτερος μηχανισμός που έχει προταθεί πάλι αναφέρεται σε επανασύνδεση μέσω επιφανειακών παγίδων,
αλλά τώρα ο ρυθμός επανασύνδεσης εξαρτάται από την ενέργειά τους. Με την αύξηση της συγκέντρωσης των ηλεκτρονίων, γίνεται εφικτή η κατάληψη πιο βαθιών παγίδων με αποτέλεσμα την εξάρτηση του χρόνου ζωής των ηλεκτρονίων από την συγκέντρωσή τους. Η κατάληψη πιο βαθιών παγίδων έχει ως αποτέλεσμα η διάρκεια των φορέων να γίνεται πιο γρήγορα. Τότε η πιθανότητα να συναντήσουν κάποιο σημείο επανασύνδεσης (recombination site) είναι μεγαλύτερη, με αποτέλεσμα πιο γρήγορη επανασύνδεση [89]. Η αύξηση της συγκέντρωσης των ηλεκτρονίων επιτυγχάνεται με την αύξηση της έντασης του φωτός.

Η εξάρτηση του χρόνου ζωής των ηλεκτρονίων από την ένταση του φωτός μπορεί να εξηγηθεί από την εξάρτηση του συντελεστή διάρκειας των ηλεκτρονίων από την συγκέντρωσή τους. Μεγαλύτερος συντελεστής διάρκειας για μεγαλύτερες συγκεντρώσεις ηλεκτρονίων μπορεί να εξηγηθεί λόγω του μεγαλύτερου αριθμού ηλεκτρονίων στην ζώνη αγωγιμότητας από ότι στις παγίδες. Άρα μεγαλύτερη συγκέντρωση ηλεκτρονίων στην ζώνη αγωγιμότητας θα είχε και ως αποτέλεσμα μεγαλύτερη πιθανότητα επανασύνδεσης.

Συμπεραίνουμε επομένως ότι μεγαλύτερη συγκέντρωση ηλεκτρονίων έχει ως αποτέλεσμα μεγαλύτερο συντελεστή διάρκειας, άρα πιο γρήγορη διάρκεια και άρα μεγαλύτερη πιθανότητα επανασύνδεσης [97].

2.3 Λόγοι δημιουργίας φωτοδυναμικού – Τάση ανοικτού κυκλώματος:

Το φωτοδυναμικό για οποιοδήποτε φ/β συσκευή εξαρτάται από την διαφορά στα έγγα εξαγωγής των ηλεκτροδίων, μεταξύ των οποίων μετράται η τάση, κατά την διάρκεια του φωτισμού. Λόγω αυτής της διαφοράς δυναμικού σε συνθήκες φωτισμού, ένα μακροσκοπικό ηλεκτρικό πεδίο οδηγεί τους φορείς στα αντίστοιχα ηλεκτρόδια. Στην περίπτωση των ευανθητοποιημένων ηλεκτροχημικών κυπελλίδων, το φωτοδυναμικό αντιστοιχεί στην διαφορά μεταξύ της ενέργειας Fermi του ημιαγωγού σε συνθήκες φωτισμού και του δυναμικού οξείδοαναγωγής του ηλεκτρολύτη και δημιουργείται λόγω του χωρικού διαχωρισμού των εγχείδων από την χρωστική ηλεκτρονίων από τις οπές [95]. Πρακτικά η στάθμη της ενέργειας Fermi του ημιαγωγού είναι πολύ κοντά στο κάτω άκρο της ζώνης αγωγιμότητάς του.
Η διαφορά δυναμικού $ΔV$ που μετράται με την βοήθεια του βολτομέτρου δίνεται από την σχέση:

$$qΔV = Δη_ε = Δμ_ε + qΔφ$$

όπου $η_ε$ και $μ_ε$ το ηλεκτροχημικό και το χημικό δυναμικό αντίστοιχα του ηλεκτρονίου, $φ$ το ηλεκτρικό (γαλβανοστατικό) δυναμικό και q το φορτίο του ηλεκτρονίου. Σε κατάσταση ισορροπίας απουσία φωτός πρέπει κανονικά να ισχύει $ΔV = 0$, επειδή $Δμ_ε = - qΔφ$. Κατά τον φωτισμό λόγω αύξησης της συγκέντρωσης των ηλεκτρονίων στην ζώνη αγωγιμότητας του ημιαγωγού έχουμε μια μεταβολή του χημικού δυναμικού με αποτέλεσμα $ΔV \neq 0$ επειδή $Δμ_ε \neq - qΔφ$ [88].

Ως τάση ανοικτού κυκλώματος (V_{OC}) ορίζεται η μέγιστη τάση που μπορεί να μετρηθεί στα άκρα μια $μ/β$ κυψελίδας, όταν η αντίσταση του εξωτερικού κυκλώματος είναι άπειρη σε κατάσταση φωτισμού, δηλ. όταν δεν έχουμε ρεύμα στο εξωτερικό κύκλωμα. Η τάση ανοικτού κυκλώματος αναπαριστά την μέγιστη διαφορά για την ελεύθερη ενέργεια Gibbs μεταξύ ηλεκτρόδιου εργασίας και αντιηλεκτροδίου [48]. Στην περίπτωση των ηλεκτροχημικών κυψελίδων η διαφορά μεταξύ quasi Fermi level των ηλεκτρονίων στο TiO_2 και quasi Fermi level των οπόν στον ηλεκτρολύτη, καθορίζει ένα πάνω όριο για την τάση ανοικτού κυκλώματος, αφού αυτή η διαφορά αλλά και το γεγονός ότι ηλεκτρόνια και οπές δημιουργούνται σε διαφορετικές φάσεις, οδηγεί τους φορείς σε διαφορετικές κατευθύνσεις. Η πραγματική τιμή της τάσης ανοικτού κυκλώματος βεβαιωθεί είναι μικρότερη από αυτή την διαφορά λόγω επανασύνδεσης φορέων, υπερτάσσει στα ηλεκτρόδια κτλ. Το quasi Fermi level των ηλεκτρονίων σε κατάσταση φωτισμού καθορίζεται από την απόδοση της μετατροπής του φωτός από την χρωστική, την κβαντική απόδοση της έκρηξης των ηλεκτρονίων και το χρόνο για την επανασύνδεση είτε με τα μόρια της χρωστικής είτε με τις οπές στον ηλεκτρολύτη [89]. Άρα από τους παραπάνω παράγοντες θα εξαρτάται έμμεσα και το φωτοδυναμικό.

Η τάση ανοικτού κυκλώματος αυξάνεται λοιπόν λογαριθμικά με την ένταση του φωτός [95] λόγω αύξησης της συγκέντρωσης των ηλεκτρονίων. Επίσης αυξάνεται με την αύξηση του λόγου Γ/Γ_1, λόγω μείωσης της πιθανότητας επανασύνδεσης με την οξειδωμένη χρωστική λόγω αναγωγής της από τα ιόντα ιωδίδιου [88]. Γιατί εκτός παράγοντας που επηρεάζει τη νίκε υπολογίζουμε.
κυκλώματος είναι το πάχος του υμενίου του TiO₂. Αυξανομένου του πάχους η τάση μειώνεται λόγω αύξησης της συγκέντρωσης των κέντρων επανασύνδεσης [99]. Για υμένια με μεγάλο πάχος το φωτοδυναμικό εξαρτάται και από την μεριά που προσπίπτει η ηλιακή ακτινοβολία, αν δηλ. προσπίπτει από την μεριά του υποστρώματος ή την μεριά του ηλεκτρολύτη [99]. Το φωτοδυναμικό επίσης επηρεάζεται από την ακτινοβολία του ηλεκτρολύτη και μάλιστα αυξάνεται για μεγαλύτερης ακτίνας κατόντα. Ο Liu απέδσζε την εξάρτηση αυτή στην θετική αλλαγή της άκρης της ζώνης αγωγιμότητας, η οποία έχει ως αποτέλεσμα την αύξηση της δύναμης για την έκχυση των ηλεκτρονίων, άρα και μεγαλύτερο ρεύμα, αλλά μείωση της τάσης. Η τάση ορίζεται ως η διαφορά μεταξύ της άκρης της ζώνης αγωγιμότητας και του δυναμικού οξείδωσης του ηλεκτρολύτη. Αρα μετατόπιση της ζώνης αγωγιμότητας προς τα κάτω θα έχει ως αποτέλεσμα την μείωση της παραπάνω διαφοράς, άρα και του φωτοδυναμικού. Υποθυμίζουμε ότι σύμφωνα με την ηλεκτροχημική κλίμακα το κάτω άκρο της ζώνης αγωγιμότητας είναι αρνητικό και γίνεται περισσότερο αρνητικό όσο μετατοπίζεται προς τα πάνω.

Μετατόπιση της άκρης της ζώνης αγωγιμότητας μπορεί να έχουμε και λόγω διαφορετικού pH του ηλεκτρολύτη. Η έκχυση των ηλεκτρονίων είναι πιο αποτελεσματική σε έξινο περιβάλλον, άρα μικρότερο φωτοδυναμικό [48]. Επίσης η παγίδευση φορέων στο υμένιο έχει ως αποτέλεσμα μεγαλύτερο φωτοδυναμικό.

2.4 Φωτόρευμα – Ρεύμα βραχυκυκλώσεως

Η δημιουργία του φωτορεύματος οφείλεται και αυτό στην μεταβολή του ηλεκτροχημικού δυναμικού, ως αποτέλεσμα της απορρόφησης του φωτός. Η απορρόφηση του φωτός έχει ως αποτέλεσμα την δημιουργία ενός ζεύγους ηλεκτρονίου – οπής σε κάθε σωματιδίου TiO₂. Υποθέτοντας ότι η μεταφορά ενός είδους φορέα προς τον ηλεκτρολύτη (π.χ. για τις οπές) γίνεται πιο γρήγορα από την διαδικασία της επανασύνδεσης, λόγω του άλλου είδους φορέα (π.χ. τα ηλεκτρώνα) μπορεί να δημιουργηθεί μια βαθμίδα στο ηλεκτροχημικό δυναμικό μεταξύ του σωματιδίου που γίνεται η δημιουργία του ζεύγους και της επαφής με το υπόστρωμα [
back contact]. Λόγω επομένως της βαθμίδας αυτής τα ηλεκτρόνια μπορούν να μεταφερθούν μέσω των σωματιδίων του TiO\textsubscript{2} και να συλλεχτούν ως ρεύμα [100].

Μικρό φωτόρευμα έχουμε λόγω μικρού συντελεστή μετατροπής προσπιπτόντων φωτονίων σε ηλεκτρικό ρεύμα (IPCE). Ο συντελεστής IPCE μπορεί να εκφραστεί ως το γινόμενο τριών επιμέρους συντελεστών: του συντελεστή απόδοσης για την μετατροπή του φωτός που χαρακτηρίζει την χρωστική, του συντελεστή έκχυσης των ηλεκτρονίων και του συντελεστή για την συλλογή των φορέων στο εξωτερικό κύκλωμα. Οι παράγοντες που επηρεάζουν τους επιμέρους συντελεστές περιγράφονται από τον Lagemaat [89,101]. Ο κάθε ένας από τους παράγοντες αυτούς επηρεάζει και τον συνολικό συντελεστή IPCE, άρα και το φωτόρευμα.

Ο συντελεστής IPCE [102] εξαρτάται από το μήκος κύματος της προσπιπτούσας ακτινοβολίας. Η εξάρτησή του δίνεται με την βοήθεια του παρακάτω τύπου και είναι παρόμοια με το φάσμα απορρόφησης της χρωστικής που χρησιμοποιείται.

\[
IPCE (\%) = \frac{1,24 \times 10^3 \times \text{πυκνότητα φωτορεύματος} \left(\frac{pA}{cm^2} \right)}{\text{μήκος κύματος (nm)} \times \text{ένταση του φωτός} \left(\frac{W}{cm^2} \right)}
\]

Όπως το φωτοδυναμικό και το φωτόρευμα εξαρτάται από το πάχος του υμείου. Μεγαλύτερο πάχος θα έχει ως αποτέλεσμα το ηλεκτρόνιο να πρέπει να διανύσει και μεγαλύτερη απόδοση μέχρι να συλλεχθεί. Μεγαλύτερη όμως απόδοση θα έχει ως αποτέλεσμα και μεγαλύτερη πιθανότητα επανασύνδεσης, αρα μικρότερο φωτόρευμα. Από την άλλη μεριά πολύ λεπτό υμένιο θα έχει ως αποτέλεσμα την μη αποτελεσματική απορρόφηση του φωτός, λόγω π.χ. λιγότερων κέντρων σκέδασης του φωτός. Άρα για την επίτευξη υψηλού φωτορεύματος υπάρχει ένα βέλτιστο πάχος για το υμένιο. Επίσης το φωτόρευμα εξαρτάται από πόσο καλή ή όχι είναι η ηλεκτρική σύνδεση των νανοσωματιδίων του ημιαγωγού και από την κινητικότητα των ιόντων στον ηλεκτρολύτη. Η κινητικότητα των ιόντων στον ηλεκτρολύτη εξαρτάται εκτός από τον συντελεστή διάχυσης, το ιζόδες του διαλύτη και από την δομή του πορώδους υμείου [91]. Ακόμα παράγοντες οι οποίοι μειώνουν την πιθανότητα επανασύνδεσης
των φορέων επιδρούν θετικά στο φωτόρευμα. Π.χ. έχει βρεθεί ότι η προσθήκη 4 – tert – butylpyridine στην σύνθεση του ηλεκτρολύτη μείωνε τα κέντρα επανασύνδεσης με αποτέλεσμα την αύξηση του φωτορεύματος. Επίσης η επεξεργασία του υμενίου με TiCl₄ βελτιώνει την μεταφορά των φορέων μέσω του πορώδους υμενίου λόγω καλύτερης σύνδεσης μεταξύ των σωματιδίων. Η καλύτερη σύνδεση μεταξύ των σωματιδίων έχει ως αποτέλεσμα την μείωση της πιθανότητας επανασύνδεσης [32,103].

Το φωτόρευμα συνδέεται άμεσα με τον αριθμό των μορίων της χρωστικής που έχουν προσφορεθεί χημικά στην επιφάνεια του υμενίου. Όσο μεγαλύτερη είναι η επιφάνεια για την προσφορή, τόσο μεγαλύτερο και το ρεύμα. Γι αυτό το λόγο υμένια από ρουτήλιο παρουσιάζουν μικρότερο φωτόρευμα από τα αντίστοιχα του ανατάση λόγω μικρότερης ενεργού επιφάνειας ανά μονάδα όγκου στην περίπτωση του ρουτήλιου για υμένια με το ίδιο πάχος [104]. Για τον ίδιο ακριβώς λόγο και το πορώδες επηρεάζει το φωτόρευμα. Μεγάλοι πόροι έχουν σαν αποτέλεσμα μικρότερη εσωτερική επιφάνεια. Όμως οι πόροι δεν μπορεί να είναι και πάρα πολύ μικροί, γιατί τότε τα ιόντα του ηλεκτρολύτη δεν θα μπορούν να εισχωρήσουν μέσα στο υμενίο, έχοντας αρνητική επίπτωση στην λειτουργία της κυψελίδας. Το μικρό πορώδες επηρεάζει αρνητικά και το φωτοδυναμικό, αλλά όχι σε τόσο μεγάλο βαθμό όπως το φωτόρευμα [32].

Ρεύμα βραχυκυκλώσεως (I_{SC}) είναι το μέγιστο φωτόρευμα που μπορεί να μετρηθεί κάτω από συνθήκες μηδενικής αντίστασης (πρακτικά ελάχιστης) του εξωτερικού κυκλώματος. Το ρεύμα βραχυκυκλώσεως αυξάνεται γραμμικά με την ένταση του φωτός, ενώ μειώνεται όπως και η τάση ανοικτού κυκλώματος αυξανόμενου του πάχους του υμενίου. Το ρεύμα βραχυκυκλώσεως αυξάνεται με την μείωση του grain size του υμενίου [105], καθώς και με την θερμοκρασία στην οποία γίνεται η ανάπτυξη του υμενίου. Η θερμοκρασία της ανάπτυξης επηρεάζει το ρεύμα βραχυκύκλωσης λόγω μεγαλύτερου μήκους διάχυσης των φορέων με την αύξηση της θερμοκρασίας. Το μήκος διάχυσης (L) των φορέων είναι ανάλογο του συντελεστή διάχυσης D και του χρόνου ζωής (τ) των φορέων μέχρι να επανασυνδεθούν και υπολογίζεται από τον τύπο L = \sqrt{D \times \tau}. Λόγω καλύτερης ηλεκτρικής επαφής των σωματιδίων, αλλά και μείωσης της πυκνότητας των κέντρων επανασύνδεσης με την
αύξηση της θερμοκρασίας ο συντελεστής διάχυσης και ο χρόνος ζωής αυξάνουν, με
αποτέλεσμα την αύξηση και του μήκους διάχυσης [106].

Ο συντελεστής απόδοσης ενός φ/β στοιχείου υπολογίζεται με την υπόθεση της
παρακάτω σχέσης:

\[
\eta = \frac{I_{MPP} \times V_{MPP}}{P_{inc}} = FF \frac{V_{OC} \times I_{SC}}{I_{inc} \times A}
\]

όπου F.F. είναι ο παράγων πληρότητας, \(I_{MPP} \) και \(V_{MPP} \) το ρεύμα και η τάση για το
σημείο της μέγιστης ισχύος που παράγει το φ/β, \(P_{inc} \) η ισχύς της προσπίπτουσας
ακτινοβολίας, \(I_{inc} \) η ένταση της προσπίπτουσας ακτινοβολίας και \(A \) η επιφάνεια του
φ/β.

Ο παράγων πληρότητας συνδέεται άμεσα με την ύπαρξη εσωτερικών
αντιστάσεων στην κυψελίδα, όπως η αντίσταση στην διεπιφάνεια υποστρώματος –
υμενίου, αντίσταση λόγω της κίνησης των ιόντων στον ηλεκτρολύτη, αντίσταση στις
επαφές κ.τ.λ. Όσο μεγαλύτερος είναι ο παράγων πληρότητας τόσο μικρότερες είναι
και οι εσωτερικές αντιστάσεις.

Όλοι οι παράγοντες εκείνοι που επηρεάζουν κάποιο από τα μεγέθη της
παραπάνω σχέσης, επηρεάζουν και την απόδοση της κυψελίδας.

Έχει προταθεί από τον ITO [107] και άλλους ότι για την σωστή μέτρηση της
απόδοσης της κυψελίδας κρίνεται απαραίτητη η ύπαρξη μιας μάσκας μπροστά από
την κυψελίδα με άνοιγμα λίγο μεγαλύτερο από την ενεργό επιφάνειά της. Με τον
τρόπο αυτό τόσο η άμεση όσο και η διάχυτη ακτινοβολία απορροφούνται από την
κυψελίδα, αλλά δεν γίνεται και υπερέκτιμη κυρίως του ρεύματος βραχυκύκλωσης.

Στην παρακάτω γραφική παράσταση φαίνονται οι χαρακτηριστικές καμπύλες
I – V και P – V, οι οποίες προκύπτουν από τα πειραματικά δεδομένα και χαράζονται
κάθε φορά για τον υπολογισμό της απόδοσης μιας κυψελίδας.
Γείγκα 36:

Γραφική παράσταση 1: Χαρακτηριστικές καμπύλες δείγματος 36

<table>
<thead>
<tr>
<th>Αριθμός δείγματος</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/01</td>
<td></td>
</tr>
<tr>
<td>A (cm²)</td>
<td>0,92</td>
</tr>
<tr>
<td>V_{oc} (V)</td>
<td>0,527</td>
</tr>
<tr>
<td>I_{sc} (mA)</td>
<td>0,720</td>
</tr>
<tr>
<td>V_{MP} (V)</td>
<td>0,327</td>
</tr>
<tr>
<td>I_{MP} (mA)</td>
<td>0,510</td>
</tr>
<tr>
<td>F.F</td>
<td>0,44</td>
</tr>
<tr>
<td>η</td>
<td>0,27 %</td>
</tr>
</tbody>
</table>

Πίνακας 3: Χαρακτηριστικά δείγματος 36
Κεφάλαιο 3

3.1 Υλικά που χρησιμοποιήθηκαν για την παρασκευή των κυψελίδων

Παρακάτω περιγράφονται τα υλικά τα οποία χρησιμοποιήθηκαν στην παρούσα διπλωματική.

3.1.1 Υποστρώματα:

Τα υποστρώματα που χρησιμοποιήθηκαν, τόσο για το ηλεκτρόδιο του TiO$_2$ όσο και για το αντιηλεκτρόδιο, ήταν γνωστά στη μία πλευρά των οποίων εχει γίνει απόδειξη ενός πολύ λεπτού στρώματος οξειδίου του κασσιέτρου με προσμείξεις ιόντων φθορίου (SnO$_2$:F$^-$), μετατρέποντάς την με αυτό τον τρόπο σε αγώγημα. Η αντίσταση των υποστρώματων αυτών, όπως μετρήθηκε στο εργαστήριο με την τεχνική Van der Pauw, είναι 16,7 Ω/cm. Επίσης η διαπερατότητά τους στο ορατό είναι 80%, η οποία μετρήθηκε επίσης στο εργαστήριο με την βοήθεια φασματογράφου. Τα χαρακτηριστικά αυτά φαίνονται και στον παρακάτω πίνακα.

<table>
<thead>
<tr>
<th>Ονομασία</th>
<th>Πάχος</th>
<th>Διαπερατότητα</th>
<th>Αντίσταση</th>
</tr>
</thead>
<tbody>
<tr>
<td>K - glass</td>
<td>0,38 cm</td>
<td>80%</td>
<td>16,7 Ω/cm</td>
</tr>
</tbody>
</table>

Πίνακας 4: Ιδιότητες υποστρώματων

3.1.2 Υμένιο TiO$_2$:

Για την παρασκευή των υμενίων χρησιμοποιήθηκε έτοιμη νανοδομημένη σκόνη TiO$_2$, με την εμπορική ονομασία Degussa P – 25. Τα χαρακτηριστικά της σκόνης αυτής, όπως δίνονται από την εταιρεία, φαίνονται στον παρακάτω πίνακα. Η σκόνη αυτή αποτελείται από μίγμα ανατάσης και ρουτηλίου με ανάλογα 80% και 20%
παρασκευή των υμενίων χρησιμοποιήθηκαν ακόμη αποσταγμένο νερό, ακετυλακετόνη [CH₃COCH₂COCH₃] και το επιφανειαρατικό υγρό Triton X – 100 [4 – [C₈H₁₇]C₆H₄[OCH₂CH₂]ₙOH, n = 10].

3.1.3 Άλλα χημικά:

Για την παρασκευή του ηλεκτρολύτη χρησιμοποιήθηκε υδιούχο κάλιο (KI), ιώδιο (I₂) και ο διαλύτης ήταν propylene carbonate (C₄H₈O₃). Επίσης για το αντιηλεκτρόδιο χρησιμοποιήθηκε διάλυμα H₂PtCl₆ σε ισοπροπανόλη [CH₃]CHOH.

Τέλος χρησιμοποιήθηκε χαλκοταινία για να γίνουν οι επαφές των κυψέλες με το εξωτερικό κύκλωμα, ενώ για το σφράγισμα χρησιμοποιήθηκαν σιλικόνη ή μεταλλικά clumps σε συνδυασμό με κυκλικά o – rings. Επίσης ως αντιηλεκτρόδιο χρησιμοποιήθηκε και κομμάτι από καθαρό λευκόχρυσο, όπως επίσης και γραφίτης.
3.2 Παρασκευή κυψελίδων

Η διαδικασία παρασκευής των κυψελίδων περιλαμβάνει αρκετά επιμέρους στάδια [108-115].

1. Καθαρισμός υποστρομάτων: Ο καθαρισμός των γυάλινων υποστρομάτων πραγματοποιήθηκε με την διαδοχική έκπλυσή τους με σαπούνι και νερό της βρύσης και στη συνέχεια με οινόπνευμα και αποσταγμένο νερό. Μετά από αυτό το στάδιο ακολούθησε ανόπτηση στους 150°C για τουλάχιστον μισή ώρα. Για περαιτέρω καθάρισμα χρησιμοποιήθηκε και συσκευή με υπερήχους. Το πρώτο στάδιο του καθαρισμού αποσκοπεί στην απομόκρυση κυρίως της σκόνης και άλλων ενδεχομένως υπολειμμάτων εξαιτίας κυρίως της συσκευασίας τους και του τρόπου αποθήκευσής τους. Με το δεύτερο στάδιο του καθαρισμού αφαιρείται κυρίως άλατα και οργανικές ουσίες, όπως κόλλες και λίπη, από την επαφή με τα χέρια μας. Το δεύτερο δηλ. στάδιο αποσκοπεί στον πιο λεπτομερή καθαρισμό των υποστρομάτων. Η αφαίρεση ολοκληρώνεται με την ανόπτηση, όπου οι διάφορες οργανικές ουσίες αποσυνθέτονται – καίγονται. Χρησιμοποιούνται την συσκευή των υπερήχων επιτυγχάνεται ο καθαρισμός σε μικροσκοπικό πλέον επίπεδο.

2. Παρασκευή διαλύματος: Σε πορσελάνινο γουδί προστέθηκαν 3 g νανοδομημένης σκόνης TiO2. Αφού προστεθεί δ/μα ακετυλακετόνης σε αποσταγμένο νερό [10% v/v], ξεκινούμε το άλεσμα. Κατά τη διάρκεια του αλέσματος προστίθεται σταδιακά συνολικά 4 ml αποσταγμένο νερό καθώς και μερικές σταγόνες επιφανειαραστικού υγρού Triton X – 100. Μετά από άρκετη ώρα αλέσματος το διάλυμα είναι έτοιμο για απόθεση στο υπόστρωμα. Με την προσθήκη της ακετυλακετόνης επιτυγχάνεται η διάσπαση των συσσωματωμάτων του TiO2 που προϊόντος στην σκόνη, ενώ παράλληλα μειώνεται η χρόνου πήκτωσης του δ/τος. Κάποιοι έχουν δείξει ότι η αύξηση της ποσότητας της ακετυλακετόνης ή κάποιου ανάλογου υλικού (surfactant) στο μίγμα έχει σαν αποτέλεσμα την αύξηση του περίπου του υμενίου [9]. Η προσθήκη νερού βοηθά στον έλεγχο του ιξώδους του διαλύματος [116], ενώ το συνεχές άλεσμα κατά τη διάρκεια της παρασκευής βοηθά εκτός από την
ανάμεξη των υλικών και στην παρασκευή ομογενούς και ομοιόμορφης πάστας. Τέλος το Triton X – 100 προστίθεται για να μειωθεί η επιφανειακή τάση του νερού, ώστε το ύπλωμα της πάστας να μπορεί να γίνει πιο εύκολα και μάλλον δεν παίζει κάποιο ρόλο στη διάταξη των νανοσωματιδίων [117].

Επίσης η προσθήκη του Triton X – 100 μείωσε τις ρωμές (cracks) που προκαλούνται στο υμένιο από την εξάτμιση των υγρών συστατικών του μίγματος [118]. Το στάδιο αυτό αποτελεί το πιο σημαντικό στάδιο της όλης διαδικασίας, αφού η παρασκευή δ/τος με τις επιθυμητές ιδιότητες διενεργείται σημαντικά την επίστρωσή του στο υπόστρωμα, άλλα και τα υμεία που παρασκευάζονται έχουν τις επιθυμητές ιδιότητες.

3. Παρασκευή ηλεκτροδίον TiO₂: Όταν το διάλυμα είναι έτοιμο γίνεται η απόθεση του στην αγώγη μπλεφρό του υποστρώματος με την τεχνική doctor – blade. Αφού γίνει πρώτα ο έλεγχος της αγώγης επιφάνειας με την χρήση ενός πολύμετρου, χρησιμοποιείται μονωτική ταινία για την δημιουργία μάσκας, ώστε το υμείο του TiO₂ να έχει τις επιθυμητές διαστάσεις.

Επιπροσθέτως η χρήση της μονωτικής ταινίας επιτρέπει τον έμμεσο έλεγχο του πάχους του υμείου, αφού λειτουργεί ως οδηγός πάνω στον οποίο γλιστρά η λεπίδα με την οποία γίνεται η επίστρωσή και η περιοχή που καλύπτεται θα χρησιμοποιηθεί στην συνέχεια για την ηλεκτρική επαφή με το εξωτερικό κύκλωμα. Τέλος η μονωτική ταινία χρησιμοποιείται για την σταθεροποίηση του υποστρώματος κατά τη διαδικασία της επίστρωσης. Στην συνέχεια στη μία άκρη της μάσκας γίνεται απόθεση μικρής ποσότητας του διαλύματος και με τη χρήση λεπίδας ή χρησιμοποιώντας ένα γυάλινο καλαμάκι γίνεται η επίστρωση του διαλύματος γλιστρώντας πάνω στη μονωτική ταινία. Στα παρακάτω σχήματα φαίνεται η παραπάνω διαδικασία:
Σχήμα 2: Παρασκευή μάσκας και σταθεροποίηση του υποστρώματος πριν την απόθεση

Σχήμα 3: Απόθεση του μήματος
Το πάχος του τελικού υμενίου καθορίζεται τόσο από το πάχος της μονωτικής
tαινίας, από την ποσότητα του διαλύματος που εναποτίθεται αρχικά πριν την
επίστρωση [119] και από την συγκέντρωσή του [14]. Παρατηρήθηκε ότι πιο
λεπτά υμένια παρασκευάζονταν με αραιό μίγμα και όταν η ποσότητα που
αποτίθεται αρχικά είναι μικρή. Όταν στεγνώσει το υμένιο του TiO2
αφαιρούνται οι μονωτικές ταινίες και γίνεται η εισαγωγή των υμενίων στον
φούρνο. Στον φούρνο παραμένουν για μισή ώρα στους 450 °C. Αυτή η
dιαδικασία της ανάπτυξης είναι πολύ σημαντική για την αποδοτική λειτουργία
tων κυψελίδων. Κατά την διάρκεια της ανάπτυξης συμβαίνει αλλαγή στο
μέγεθος, στο σχήμα και στην διάταξη των νανοσωματιδίων του TiO2 [24].
Έχουμε επομένως αύξηση του ύγκου των νανοσωματιδίων. Το σημαντικότερο
όμοιο που επιτυγχάνεται είναι η ηλεκτρική επαφή μεταξύ των
νανοσωματιδίων, αλλά και με το αγώγιμο υπόστρωμα. Επίσης έχει
παρατηρηθεί ότι συμβαίνει και αποσύνθεση (κάψυμο) των διάφορων
οργανικών ουσιών που χρησιμοποιήθηκαν για την παρασκευή του υμενίου
[120-121], και γι’ αυτό άλλωστε χρησιμοποιείται. Λόγω της αποσύνθεσης των
οργανικών ουσιών τα υμένια από αδιαφανή πριν μπου στον φούρνο,
αποκτούν ένα σκούρο καφετί χρώμα όταν η θερμοκρασία φτάσει στους 300 °C
περίπου, ενώ στην συνέχεια μέχρι η θερμοκρασία να σταθεροποιηθεί στους
450 °C αποκτούν την αρχική τους ύψη. Ανάπτυξη σε ακόμα υψηλότερη
θερμοκρασία θα είχε καταστροφικές συνέπειες τόσο για το γυάλινο
υπόστρωμα όσο και για το ίδιο υμένιο, λόγω μετατροπής του ανατάσης σε
ρουτήλιο. Ομοίως η εισαγωγή των γυαλίων στο φούρνο ή η εξαγωγή τους
όταν αυτός βρίσκεται σε υψηλή θερμοκρασία έχει καταστροφικά
αποτελέσματα αφού τα γυαλιά μπορεί να σπάσουν. Γι’ αυτό η εισαγωγή των
γυαλίων πρέπει να γίνεται σε χαμηλότερες θερμοκρασίες, κάτω από 100 °C,
όπως επίσης και η εξαγωγή τους. Η συνολική διάρκεια της ανάπτυξης
ξεκινούσε τις 2 ώρες. Από την άλλη μεριά η ανάπτυξη σε μικρότερες
θερμοκρασίες θα είχε ως αποτέλεσμα την μείωση της προσκόλλησης στο
υπόστρωμα, της ηλεκτρικής επαφής μεταξύ των σωματιδίων του διαστημικού
του τιτανίου και της χημικής προσομοίωσης των μορίων της χρωστικής [120].
4. Εμποτισμός σε δ/μα χρωστικής: Ο εμποτισμός επιτυγχάνεται με την βύθιση των υμενίων ενώ είναι ακόμα ζεστά (80 °C) σε διάλυμα χρωστικής, τουλάχιστον για 12h σε κλειστό χώρο. Τα διαλύματα που χρησιμοποιήθηκαν ήταν διαλύματα ροδαμίνης και πράσινο του μαλαχίτη σε καθαρή αιθανόλη. Με τον εμποτισμό επιτυγχάνεται ο σχηματισμός ενός μονομοριακού στρώματος χρωστικής πάνω στα νανοσωματίδια TiO2. Μετά το πέρας του παραπάνω χρονικού διαστήματος τα υμένια αποσύρονται από το δ/μα της χρωστικής και αφού εκπλυθούν με καθαρή αιθανόλη για να φύγει η περίσσεια της χρωστικής είναι έτοιμα για χρήση. Η άμεση χρήση των υμενίων ενδείκνυται. Τέλος σύμφωνα με τον Παπαγεωργίου με την χημική προσφορήσεις της χρωστικής μειώνεται το ποσότητα του υμενίου κατά 30% [28].

5. Παρασκευή αντιηλεκτροδίου: Ως υπόστρωμα για την παρασκευή του αντιηλεκτροδίου χρησιμοποιήθηκε K – glass. Στην αρχή επιφάνεια του K – glass απλώθηκε μικρή ποσότητα δ/τος 5mM H2PtCl6 σε ισοπροπανόλη. Στην συνέχεια πραγματοποιούταν ανόπτηση στους 400°C για 15 min. Επίσης σε κάποιες κυψελίδες ως αντιηλεκτρόδιο χρησιμοποιήθηκε κομμάτι λευκόχρυσο, ώστε να είναι πιο συγκρίσιμα μεταξύ τους τα αποτελέσματα. Τέλος με την βοήθεια μολυβιού με μαλακή μύτη παρασκευάστηκαν ηλεκτρόδια με στρώμα γραφίτη [81].

6. Παρασκευή ηλεκτρολύτη: Ο ηλεκτρολύτης που χρησιμοποιήθηκε ήταν δ/μα KI και I2 σε propylene carbonate. Οι συγκεντρώσεις που χρησιμοποιήθηκαν φαίνονται στον παρακάτω πίνακα.

<table>
<thead>
<tr>
<th></th>
<th>KI</th>
<th>I2</th>
<th>Διαλύτης</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ηλεκτρολύτης 1 [H1]</td>
<td>0,5 M</td>
<td>0,05 M</td>
<td>Propylene carbonate</td>
</tr>
<tr>
<td>Ηλεκτρολύτης 2 [H2]</td>
<td>0,3 M</td>
<td>0,03 M</td>
<td>Propylene carbonate</td>
</tr>
</tbody>
</table>

Πίνακας 6: Συγκεντρώσεις δ/τον ηλεκτρολύτη
7. Σφράγισμα: Για το σφράγισμα χρησιμοποιήθηκαν μεταλλικοί σωματίδια, δυο για κάθε κυψελίδα, ενώ σε ελάχιστες περιπτώσεις χρησιμοποιήθηκε και σιλικόνη.

Η τελική κυψελίδα είχε την παρακάτω μορφή:

Σχήμα 4: Ηλεκτροχημική κυψελίδα
3.3 Παρασκευή κυψελίδων με μη νανοδομημένη σκόνη TiO₂

Οι πρώτες κυψελίδες παρασκευάστηκαν χρησιμοποιώντας μη νανοδομημένη σκόνη TiO₂. Οι αναλυσείς που χρησιμοποιήθηκαν και ο τρόπος παρασκευής είναι ακριβώς ο ίδιος με αυτόν που περιγράφεται παραπάνω με την μόνη διαφορά ότι η ποσότητα της σκόνης ήταν 1,5 g. Στην παρακάτω εικόνα βλέπουμε την δομή ενός τέτοιου υμείου με την βοήθεια ηλεκτρονικού μικροσκοπίου σάρωσης.

Εικόνα 5: Επιφάνεια υμείου με μη νανοδομημένη σκόνη

Είναι φανερή η ύπαρξη μεγάλων συσσωματωμάτων TiO₂ με μέγεθος μερικών μικρομέτρων. Τα υμένια που παρασκευάστηκαν με την σκόνη αυτή ήταν αδιαφανή και λευκά λόγω του μεγάλου μεγέθους των σωματιδίων από τα οποία αποτελούνται. Το μέγαλο μέγεθος των σωματιδίων σκεδάζει πολύ αποτελεσματικά το φως με αποτέλεσμα άνω να μην μπορεί να διεισδύσει και τα υμένια να είναι αδιαφανή. Το παρατεταμένο άλεσμα στο γουδί αλλά και η προσθήκη μεγαλύτερης ποσότητας ακτινοληκτόνης δεν ήταν ικανή για την περαιτέρω διάσπαση των συσσωματωμάτων, έτσι ώστε να προκύψουν διαφανή υμένια. Επίσης τα υμένια αυτά δεν είχαν καλή πρόσφυση στο υπόστρωμα, παρόλο την προσθήκη του Triton X – 100.

Με την βοήθεια προφιλομέτρου μετρήθηκε το πάχος αυτών των υμείων. Από το γράφημα που παίρνουμε με την βοήθεια του προφιλομέτρου μπορούμε να έχουμε και κάποια ένδειξη σχετικά με την τραχύτητα της επιφάνειας.
Γραφική παράσταση 2: Μεταβολή του ύψους της επιφάνειας του υμενίου

Γραφική παράσταση 3: Μεταβολή του ύψους της επιφάνειας του υμενίου
Το πάχος των υμενίων είναι περίπου 2 μμ για το πρώτο υμένιο, ενώ είναι λίγο μικρότερο για το δεύτερο υμένιο, περίπου 1,5 μμ. Το γεγονός ότι τα υμένια αυτά ήταν αδιαφανής οφείλεται ξεκάθαρα στο μέγεθος των σωματιδίων και όχι στο πάχος τους, το οποίο είναι αρκετά μικρό, σε σύγκριση με την βιβλιογραφία. Οι έντονες κορυφές οφείλονται στα μεγάλα συσσωματώματα τα οποία διακρίνονται και στη φωτογραφία απ' το SEM. Όσο αφορά την επιφάνεια των υμενίων είναι αρκετά τραχιά. Το μεγαλύτερο πάχος στην άκρη του υμενίου οφείλεται στον τρόπο παρασκευής των υμενίων με την χρήση της μάσκας. Λόγω της ύπαρξης της μονωτικής ταινίας συμβαίνει συσσώρευση της πάστας, με αποτέλεσμα μεγαλύτερο πάχος στην αρχή του υμενίου. Το γεγονός αυτό παρατηρήθηκε και σε άλλα δείγματα τα οποία παρασκευάστηκαν. Παρόλο τα μειονεκτήματα αυτών των υμενίων όπως αδιαφάνεια, μη καλή πρόσφυση στο υπόστρωμα κ.τ.λ. οι αντίστοιχες κυψελίδες λειτούργησαν, αν και η απόδοσή τους ήταν πάρα πολύ μικρή. Η χρωστική που χρησιμοποιήθηκε για την ενασθητοποίηση των υμενίων αυτών ήταν πράσινο το μαλαχίτη, ενώ χρησιμοποιήθηκε ο – ring για την παρασκευή των κυψελίδων καθώς και μεταλλικά clumps για το σφράγισμα. Το αντιηλεκτρόδιο τέλος ήταν κομμάτι από λευκόχρυσο του οποίου η μία άκρη είχε βεβιαστεί μέσα στον ηλεκτρολύτη και η άλλη χρησιμοποιήθηκε για να γίνει η ηλεκτρική επαφή με το εξωτερικό κύκλωμα.

Παρακάτω βλέπουμε κάποιες χαρακτηριστικές καμπύλες I – V κυψελίδων που παρασκευάστηκαν με την χρήση αυτών των υμενίων.

Γραφική παράσταση 4: Χαρακτηριστικές καμπύλες I – V
Γραφική παράσταση 5: Χαρακτηριστικές καμπύλες I – V

Λόγω του πολύ μικρού φωτοεύρωματος η μέτρησή του ήταν αρκετά δύσκολη, με αποτέλεσμα οι τιμές του ρεύματος να παρουσιάζουν μεγάλο σφάλμα. Επίσης οι κυψελίδες αυτές παρουσίαζαν υψηλές εσωτερικές αντίστάσεις, γεγονός το οποίο φαίνεται από την μορφή των καμπύλων I – V. Η απόδοσή των κυψελίδων αυτών και διάφορα επιμέρους χαρακτηριστικά τους φαίνονται στο παρακάτω πίνακα. Παρόλο τα προβλήματα που παρουσίαζαν οι κυψελίδες αυτές, η απόδοσή τους ήταν φυσικά πάρα πολύ μικρή αλλά σχετικά σταθερή. Παρατηρούμε επίσης ότι την δεύτερη φορά που μετρήθηκαν έδωσαν λίγο καλύτερα αποτελέσματα από την πρώτη φορά. Το γεγονός αυτό παρατηρήθηκε και σε άλλα δείγματα.
<table>
<thead>
<tr>
<th>Αριθμός δείγματος</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18/12/06</td>
<td>19/12/06</td>
</tr>
<tr>
<td>Α (cm²)</td>
<td>1,13</td>
<td>1,13</td>
</tr>
<tr>
<td>V<sub>oc</sub> (mV)</td>
<td>211</td>
<td>220</td>
</tr>
<tr>
<td>I<sub>sc</sub> (μA)</td>
<td>8,5</td>
<td>7,8</td>
</tr>
<tr>
<td>V<sub>MP</sub> (mV)</td>
<td>115</td>
<td>131</td>
</tr>
<tr>
<td>I<sub>MP</sub> (μA)</td>
<td>4,8</td>
<td>4,3</td>
</tr>
<tr>
<td>F.F</td>
<td>0,3</td>
<td>0,33</td>
</tr>
<tr>
<td>η</td>
<td>0,17 * 10<sup>-3</sup> %</td>
<td>0,18 * 10<sup>-3</sup> %</td>
</tr>
</tbody>
</table>

Πίνακας 7: Χαρακτηριστικά δείγματος 2

<table>
<thead>
<tr>
<th>Αριθμός δείγματος</th>
<th>7</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12/12/06</td>
<td>15/12/06</td>
</tr>
<tr>
<td>Α (cm²)</td>
<td>1,13</td>
<td>1,13</td>
</tr>
<tr>
<td>V<sub>oc</sub> (mV)</td>
<td>181</td>
<td>198</td>
</tr>
<tr>
<td>I<sub>sc</sub> (μA)</td>
<td>4,5</td>
<td>4,4</td>
</tr>
<tr>
<td>V<sub>MP</sub> (mV)</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>I<sub>MP</sub> (μA)</td>
<td>2,4</td>
<td>2,7</td>
</tr>
<tr>
<td>F.F</td>
<td>0,35</td>
<td>0,36</td>
</tr>
<tr>
<td>η</td>
<td>0,09 * 10<sup>-3</sup> %</td>
<td>0,1 * 10<sup>-3</sup> %</td>
</tr>
</tbody>
</table>

Πίνακας 8: Χαρακτηριστικά δείγματος 7
3.4 Παρασκευή κυψελίδων με νανοδομημένη σκόνη TiO₂

Στην συνέχεια παρασκευάστηκαν κυψελίδες χρησιμοποιώντας νανοδομημένη σκόνη (Degussa P – 25). Μελετήθηκαν διάφοροι παράγοντες οι οποίοι επηρέαζουν την απόδοση των κυψελίδων όπως το πάχος του υμενίου, η συγκέντρωση του δ/τος της χρωστικής και ο χρόνος παραμονής του δ/τος σε κλειστό δοχείο μέχρι να πραγματοποιηθεί η απόθεσή του στο υπόστρωμα. Επίσης δοκιμάστηκαν διαφορετικές χρωστικές, καθώς και διαφορετικά αντιηλεκτρόδια. Στην παρακάτω εικόνα βλέπουμε την δομή ενός τέτοιου υμενίου με την βοήθεια ηλεκτρονικού μικροσκοπίου σάρωσης.

Εικόνα 6: Επιφάνεια υμενίου με νανοδομημένη σκόνη

Το υμένιο αποτελείται από μικρότερα σωματίδια TiO₂ και είναι περισσότερο πορώδες από τα προηγούμενα, γεγονός που οφείλεται στην διαφορετική σκόνη που χρησιμοποιήθηκε για την παρασκευή του.

Επίσης στην παρακάτω γραφική βλέπουμε ενδεικτικά την μεταβολή του ύψους της επιφάνειας των υμενίων και το πάχος τους, όπως προκύπτουν με την βοήθεια του προφιλομέτρου.
Γραφική παράσταση 6: Μεταβολή του ύψους της επιφάνειας των υμενίων με νανοδομημένη σκόνη

Τα υμένια αποτελούνται από λιγότερα συσσωματώματα και έχουν πιο λεία επιφάνεια. Στα δείγματα 36 και 37 η επιφάνεια είναι ακόμα περισσότερο λεία, γεγονός που οφείλεται στο διαφορετικό δ/μα ακετυλακτόνης που χρησιμοποιήθηκε. Το δ/μα ακετυλακτόνης που χρησιμοποιήθηκε ήταν δηλαδή πιο φρέσκο.

3.4.1 Μεταβολή της απόδοσης με το πάχος του υμενίου:

Ένας από τους παράγοντες που έχει βρεθεί ότι επηρεάζει την απόδοση είναι το πάχος του υμενίου του ΤιΟ2. Κυψελίδες με λεπτότερα υμένια παρουσιάζουν υψηλότερη κβαντική απόδοση, ενώ κυψελίδες με πιο παχία υμένια παρουσιάζουν υψηλότερο ρεύμα σκότους [122]. Ο λόγος είναι η αύξηση της πιθανότητας επανασύνδεσης των φορέων με την αύξηση του πάχους. Τόσο το ρεύμα όσο και η τάση επηρεάζονται από το πάχος. Όσο μεγαλύτερο είναι το πάχος του υμενίου, τόσο μεγαλύτερη είναι και η διαδρομή του ηλεκτρονίου μέχρι να συλλεχθεί στην κάθοδο, με αποτέλεσμα μεγαλύτερη πιθανότητα επανασύνδεσης. Με άλλα λόγια ο ρυθμός επανασύνδεσης των φορέων είναι μεγαλύτερος από τον ρυθμό με τον οποίο
δημιουργούνται στην περίπτωση των υμείων με μεγαλύτερο πάχος, με αποτέλεσμα την μείωση του χρόνου ζωής των φορέων [99]. Μάλιστα σύμφωνα με τον Gomez το φωτοδυναμικό μειώνεται μέχρι μια ορισμένη τιμή και στην συνέχεια παραμένει σταθερό με την επιπέδου αύξηση του πάχους. Επίσης όσο μεγαλύτερο το πάχος του υμείου, τόσο λιγότερο διαφανή είναι και τα υμένια. Φυσικά αν τα υμένια θα είναι διαφανή ή όχι εξαρτάται σε μεγαλύτερο βαθμό από το μέγεθος των σωματιδίων της χρησιμοποιούμενης σκόνης. Ακόμα όμως και με την νανοδομημένη σκόνη Degussa P – 25 μπορούν να παρασκευαστούν αδιαφανή υμένια, όταν αυτά έχουν μεγάλο πάχος.

Επειδή έχει όπως θα δούμε παρακάτω μεγάλη σημασία αν τα δείγματα ήταν από φρέσκο μίγμα ή όχι, τα δείγματα που συγκρίνονται έχουν παρασκευαστεί από το ίδιο μίγμα και έχουν ψηθεί κάτω από τις ίδιες συνθήκες. Ανήκουν δηλ. στην ίδια παρτίδα δειγμάτων.

Δείγματα 23 – 24:

![Graph 7: Characteristic I – V curves of samples 23 and 24](image)

Γραφική παράσταση 7: Χαρακτηριστικές καμπύλες I – V των δειγμάτων 23 και 24

To δείγμα 23 είναι πιο χοντρό από το δείγμα 24.
Το δείγμα 24 δίνει ελαφρώς καλύτερη τάση, σε συμφωνία με αυτό που περιμένουμε και καλύτερο ρεύμα το οποίο μπορεί να οφείλεται και στο διαφορετικό αντιπλεκτρόδιο.

Γραφική παράσταση 8: Μεταβολή του ύψους της επιφάνειας των δειγμάτων 23 και 24
Δείγματα 36 – 38:

Γραφική παράσταση 9: Χαρακτηριστικές καμπύλες I – V δειγμάτων 36 και 38

<table>
<thead>
<tr>
<th></th>
<th>Δείγμα 36</th>
<th>Δείγμα 38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ (cm²)</td>
<td>0,92</td>
<td>0,76</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O – ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Ροδαμίνη καινούργια</td>
<td>Ροδαμίνη καινούργια</td>
</tr>
<tr>
<td>Αντιηλεκτρόδιο</td>
<td>Κανονικό</td>
<td>Κανονικό</td>
</tr>
<tr>
<td>Λαστικά σχόλια</td>
<td>Τοιχικά παρτίδα δειγμάτων</td>
<td></td>
</tr>
<tr>
<td>Πάχος υμενίου</td>
<td>7,5 μμ</td>
<td>≈10 μμ</td>
</tr>
<tr>
<td>η</td>
<td>0,13 %</td>
<td>0,13 %</td>
</tr>
</tbody>
</table>

Πίνακας 10: Επιμέρους χαρακτηριστικά δειγμάτων 36 και 38
Η διαφορά μεταξύ των δυο αυτών δειγμάτων είναι πάρα πολύ μικρή, με το δείγμα 36 να δίνει ελαφρώς καλύτερη τάση.

![Graph](image)

Σχετικά ερωτήματα:

Παραδείγματα αποτελέσματα:

Παρακάτω βλέπουμε κάποια αποτελέσματα όπου κυμαλίδες με μικρότερη μέγιστη πάχος έδωσαν καλύτερα αποτελέσματα. Επίσης δίνονται οι λόγοι για τους οποίους έχουμε καλύτερα αποτελέσματα.
Δείγμα 22 – 23:

Γραφική παράσταση 11: Χαρακτηριστικές καμπύλες I – V δειγμάτων 22 και 23

<table>
<thead>
<tr>
<th>Αντικείμενο</th>
<th>Δείγμα 22</th>
<th>Δείγμα 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Α (cm²)</td>
<td>0,785</td>
<td>0,565</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O – ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Παλιά ροδαμίνη</td>
<td>Παλιά ροδαμίνη</td>
</tr>
<tr>
<td>Αντιπελεκτρόδιο</td>
<td>Κανονικό</td>
<td>Κανονικό</td>
</tr>
<tr>
<td>Λοιπά σχόλια</td>
<td>Τα δείγματα 22 και 23 παρασκευάστηκαν από το ίδιο μείγμα και την ίδια χρονική στιγμή</td>
<td></td>
</tr>
<tr>
<td>Πάχος υμένιου</td>
<td>10 μm</td>
<td>15 μm</td>
</tr>
<tr>
<td>η</td>
<td>8,3 * 10⁻³ %</td>
<td>0,038 %</td>
</tr>
</tbody>
</table>

Πίνακας 11: Επιμέρους χαρακτηριστικά δειγμάτων 22 και 23
Το δείγμα 23 ήταν πιο χοντρό, αλλά έδωσε πολύ καλύτερα αποτελέσματα. Το αποτέλεσμα οφείλεται στο καλύτερο χρωματισμό του 23 σε σχέση με το 22 και στον τρόπο παρασκευής των υμενίων.

Δείγματα 27 – 28 – 31:

Граφική παράσταση 12: Χαρακτηριστικές καμπύλες Ι – Β δειγμάτων 27, 28 και 31

<table>
<thead>
<tr>
<th></th>
<th>Δείγμα 27</th>
<th>Δείγμα 28</th>
<th>Δείγμα 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Α (cm²)</td>
<td>1,13</td>
<td>1</td>
<td>1,07</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O – ring</td>
<td>O – ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Παλιά ροδαμίνη</td>
<td>Παλιά ροδαμίνη</td>
<td>Παλιά ροδαμίνη</td>
</tr>
<tr>
<td>Αντι-εκτρόδιο</td>
<td>Κανονικό</td>
<td>ίδιο κομμάτι πλατίνας με το 31</td>
<td>Κομμάτι πλατίνα</td>
</tr>
<tr>
<td>Λοιπά σχόλια</td>
<td>Τα δείγματα 27 και 31 παρασκευάστηκαν από το ίδιο μείγμα, διαφορετική χρονική στιγμή</td>
<td>Τα δείγματα 28 και 27 παρασκευάστηκαν από το ίδιο μείγμα και την ίδια χρονική στιγμή</td>
<td></td>
</tr>
</tbody>
</table>
Πίνακας 12: Επιμέρους χαρακτηριστικά δειγμάτων 27, 28 και 31

<table>
<thead>
<tr>
<th>Πάχος υμενίου</th>
<th>15 μμ</th>
<th>15 μμ</th>
<th>6 μμ</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>0,05 %</td>
<td>0,011%</td>
<td>0,04 %</td>
</tr>
</tbody>
</table>

Το δείγμα 27 δίνει καλύτερα αποτελέσματα από ότι το δείγμα 31 αν και είναι πιο παχύ. Ο λόγος είναι ότι το δείγμα 27 παρασκευάστηκε με φρέσκο μίγμα. Διαπιστώνουμε δηλ. ότι ο παράγοντας του πάχους δεν επηρεάζει τόσο πολύ την απόδοση όσο οι ιδιότητες του μίγματος από το οποίο προκύπτει το υμένιο. Το γεγονός επίσης ότι το πάχος δεν επηρεάζει τόσο πολύ την απόδοση, μπορεί να οφείλεται στην πολύ χαμηλή απόδοση των κυψελίδων μας [99]. Το ίδιο διαπιστώνουμε και από την σύγκριση των δειγμάτων 27 και 28, τα οποία μπορεί να έχουν περίπου το ίδιο πάχος αλλά το 27 έδωσε πολύ καλύτερα αποτελέσματα. Οι λόγοι είναι οι διαφορετικές ιδιότητες του υμενίου όπως αυτές προκύπτουν κατά την διάρκεια της απόθεσης και το διαφορετικό αντιηλεκτρόδιο. Σημαντικό ρόλο τέλος διαδραματίζει και η ποσότητα της χρωστικής που έχει προσφορθεί στην επιφάνεια του υμενίου.

Επίσης το δείγμα 31 δίνει σαφώς καλύτερα αποτελέσματα από το 28, αν και παρασκευάστηκε μεταγενέστερη χρονική στιγμή. Αρα το δείγμα 28 έδειξε άσχημα αποτελέσματα, χωρίς αυτό να οφείλεται στο πάχος του υμενίου ή στον χρόνο παραμονής του μίγματος στο δοχείο, αφού παρασκευάστηκε με φρέσκο μίγμα όπως και το 27.

3.4.2 Μεταβολή της απόδοσης με την συγκέντρωση της χρωστικής:

Κατά την διάρκεια της διπλωματικής εργασίας παρασκευάστηκε δύο φορές δ/μα χρωστικής. Παρακάτω βλέπουμε τις διαφορές που προέκυψαν από την χρήση των δύο δ/των.
Δείγματα 29 – 31:

Γυρική παράσταση 13: Χαρακτηριστικές καμπύλες I – V δειγμάτων 29 και 31

<table>
<thead>
<tr>
<th></th>
<th>Δείγμα 29</th>
<th>Δείγμα 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19 – 10</td>
<td>26 – 10</td>
</tr>
<tr>
<td>Α (cm²)</td>
<td>0,75</td>
<td>1,07</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O – ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Νέα ροδαμίνη</td>
<td>Παλιά ροδαμίνη</td>
</tr>
<tr>
<td>Αντιηλεκτρόδιο</td>
<td>Κανονικό</td>
<td>Κομμάτι πλατίνα</td>
</tr>
<tr>
<td>Λοιπά σχόλια</td>
<td>Τίδα παρτίδα δειγμάτων</td>
<td></td>
</tr>
<tr>
<td>Πάχος υμενίου</td>
<td>Δεν μετρήθηκε</td>
<td>6 μμ</td>
</tr>
<tr>
<td>η</td>
<td>0,17 %</td>
<td>0,028 %</td>
</tr>
</tbody>
</table>

Πίνακας 13: Επιμέρους χαρακτηριστικά δειγμάτων 29 και 31

Η μεγάλη διαφορά οφείλεται στο δ/μα χρωστικής. Το δείγμα 31 παρόλο που έχει μεγαλύτερο εμβαδόν, άρα θα έπρεπε να δίνει και μεγαλύτερη τάση και ρεύμα,
οστόσο εμφανίζει μεγάλη διαφορά λόγω του δ/τος χρωστικής. Το παλιό δ/μα ροδαμίνης είχε χρησιμοποιηθεί για την ευαισθητοποίηση αρκετών υμενίων, οπότε μπορεί να είχε διάφορες προσομετρίες από τα υμένια που είχαν διαλυθεί κατά την διάρκεια της ευαισθητοποίησης, έστω και ελάχιστα, λόγω μη καλής προσκόλλησης στο υπόστρωμα. Επίσης λόγω του τρόπου αποθήκευσής του πρέπει το πρώτο δ/μα χρωστικής να είχε προσφορίσει ποσότητα νερού, υ’ αυτό άλλωστε είχε χάσει και λίγο από το αρχικό έντονό του χρώμα. Το νέο δ/μα χρωστικής που παρασκευάστηκε αποθηκεύθηκε σε δοχείο το οποίο έκλεινε ερμητικά, μέσα σε κλειστό χώρο. Το δ/μα πλέον δεν εξατμίζοταν και δεν χρειαζόταν έτσι η προσθήκη καθαρής αιθανόλης κάθε φορά για την αναπλήρωση της ποσότητας που είχε εξατμιστεί. Ο χρόνος για τον εμποτισμό των υμενίων ήταν ο ίδιος και με τα δύο δ/τα. Παρατηρούμε επομένως το δ/μα χρωστικής να είναι καλά φυλαγμένο από τις εξωτερικές συνθήκες και να χρησιμοποιηθεί για την ευαισθητοποίηση λίγων υμενίων. Παρακάτω βλέπουμε παρόμοια αποτελέσματα.

Deίγματα 26 – 30:

Γραφική παράσταση 14: Χαρακτηριστικές καμπύλες I – V δειγμάτων 26 και 30
<table>
<thead>
<tr>
<th></th>
<th>Δείγμα 26</th>
<th>Δείγμα 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 – 10</td>
<td>22 – 10</td>
</tr>
<tr>
<td>Α (cm²)</td>
<td>1</td>
<td>0,85</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O – ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Παλιά ροδαμίνη</td>
<td>Νέα ροδαμίνη</td>
</tr>
<tr>
<td>Αντιηλεκτρόδιο</td>
<td>Κανονικό</td>
<td>Τόιο κανονικό</td>
</tr>
<tr>
<td>Λοιπά σχόλια</td>
<td>Τόια παρτίδα δειγμάτων</td>
<td></td>
</tr>
<tr>
<td>Πάχος υμενίου</td>
<td>η</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,013 %</td>
<td>0,03 %</td>
</tr>
</tbody>
</table>

Πίνακας 14: Επιμέρους χαρακτηριστικά δειγμάτων 26 και 30

Δείγμα 27 – 29:

Γραφική παράσταση 15: Χαρακτηριστικές καμπύλες I – V δειγμάτων 27 και 29
Πίνακας 15: Επιμέρους χαρακτηριστικά δειγμάτων 27 και 29

<table>
<thead>
<tr>
<th>Δείγμα 27</th>
<th>Δείγμα 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 – 10</td>
<td>22 – 10</td>
</tr>
</tbody>
</table>

Α (cm²)	1	0,78
Σφράγισμα	O – ring	O – ring
Χρωστική	Παλαί ροδαμίνη	Νέα ροδαμίνη
Αντιπελαγός	Κανονικό	Κανονικό
Λοιπά σχόλια	(Φρέσκο)	ίδιο μίγμα αλλά παρασκευάστηκαν διαφορετικές χρονικές στιγμές
Πάχος υμενίου	≥ 15 μμ	
η	0,039 %	0,096 %

Το 27 παρόλο που είναι φρέσκο δίνει χειρότερα αποτελέσματα. Αρα αντίθετα με το πάχος του υμενίου, φαίνεται ότι η ευαισθητοποίηση με την χρωστική υπερτερεί του παράγοντα του χρόνου παραμονής του μίγματος.

3.4.3 Μεταβολή της απόδοσης με τον χρόνο παραμονής του μίγματος μέχρι την απόθεση στο υπόστρωμα:

Το μίγμα το οποίο προέκυπτε με την διαδικασία που περιγράφηκε παραπάνω, δεν χρησιμοποιούταν όλο για την απόθεση, αλλά χρησιμοποιούταν μόνο όσο χρειαζόταν για την παρασκευή ενός συγκεκριμένου αριθμού υμενίων. Το υπόλοιπο φυλασσόταν σε δοχείο το οποίο έκλεινε ερυθρικά, ώστε να αποφεύγεται η εξάτμιση ποσότητας νερού και ακετυλακτόνης. Με την προσθήκη μικρής ποσότητας νερού, ακετυλακτόνης και μερικών σταγόνων Triton X – 100 το μείγμα επανερχόταν στην αρχική του κατάσταση και ήταν έτοιμο πάλι για την απόθεσή του. Διαπιστώθηκε όμως ότι οι κυψελίδες οι οποίες προέκυπταν χρησιμοποιούντας μίγμα το οποίο είχε φυλαχθεί για αρκετό καιρό, ήταν από ύποψη απόδοσης χειρότερες σε σχέση με τις κυψελίδες εκείνες που είχαν παρασκευαστεί με φρέσκο μίγμα για το υμένιο. Παρακάτω βλέπουμε κάποιες χαρακτηριστικές καμπύλες I – V κυψελίδων που παρασκευάστηκαν τόσο με φρέσκο μίγμα, όσο και με μίγμα το οποίο είχε φυλαχθεί.
Για να γίνει περισσότερο κατανοητή η παραπάνω διαπίστωση γίνεται σύγκριση μεταξύ κυψελίδων με παρόμοια χαρακτηριστικά, όπως φαινεται και με τον πίνακα που ακολουθεί κάθε φορά.

Δείγματα 26 – 27:

Παρασκευάστηκαν με τον ίδιο τρόπο, ψήθηκαν μαζί στον ίδιο φούρνο και την ίδια μέρα μόνο που το δείγμα 26 ήταν από την σκόνη που είχε περισσέψει από προηγούμενη φορά. Μετρήθηκε το πάχος των υμενίων με την βοήθεια προφιλομέτρου, ενώ με την βοήθεια ηλεκτρονικού μικροσκοπίου σάρωσης (SEM) είδαμε την επιφάνεια υμενίων με παρόμοια χαρακτηριστικά με τα υμένια που παρασκευάστηκαν τα δείγματα 26 και 27.

Графикη παράσταση 16: Χαρακτηριστικές καμπύλες I – V δειγμάτων 26 και 27
Πίνακας 16: Επιμέρους χαρακτηριστικά δειγμάτων 26 και 27

Προφιλόμετρο:

Γραφική παράσταση 17: Μεταβολή του ύψους της επιφάνειας των υμενίων 26 και 27
Στην παραπάνω γραφική βλέπουμε την μεταβολή του ύψους της επιφάνειας των υμενίων TiO₂ από τα οποία παρασκευάστηκαν τα δείγματα 26 και 27. Προφανώς το δείγμα 26 έχει πιο λεπτό υμένιο από το δείγμα 27. Οι υψηλές κορυφές αντιστοιχούν σε συσσωματώματα τα οποία συναντά η ακίδα του προφιλομέτρου κατά την διάρκεια της σάρωσης. Τα συσσωματώματα αυτά φαίνονται καθαρά στις εικόνες παρακάτω.

Εικόνες από το ηλεκτρονικό μικροσκόπιο σάρωσης (SEM):

Η εικόνα του αριστερού υμενίου αντιστοιχεί σε υμένιο το οποίο παρασκευάστηκε από το ίδιο μείγμα όπως το υμένιο του δείγματος 26, ενώ η εικόνα του δεξιού υμενίου παρασκευάστηκε με παρόμοιο τρόπο με το υμένιο του δείγματος 27.

Εικόνα 7: Εικόνες από το ηλεκτρονικό μικροσκόπιο σάρωσης (SEM)

Τόσο από τις εικόνες του ηλεκτρονικού μικροσκοπίου, όσο και από το προφιλόμετρο είναι φανερό ότι τα υμένια τα οποία παρασκευάστηκαν με το υπόλειμμα του μίγματος έχουν πολύ πιο τραχιά επιφάνεια, η οποία οφείλεται στην ύπαρξη πολλών περισσότερων συσσωματωμάτων TiO₂. Τα συσσωματώματα σχηματίζονται κατά την διάρκεια της παραμονής του μίγματος στο δοχείο και δεν διασπώνται με την προσθήκη της ακετυλακετόνης αλλά και με το ψελικοπάνισμα στο
γουδί. Λόγω της ύπαρξης των συσσωματωμάτων το πορώδες του υμενίου μειώνεται, με αποτέλεσμα τόσο ο ηλεκτρολύτης όσο και τα μόρια της χρωστικής να μην μπορούν να εισχωρήσουν αποτελεσματικά. Το φαινόμενο είναι πιο έντονο για τα μόρια της χρωστικής, επειδή έχουν μεγαλύτερο ύγκο από τα ιόντα του ηλεκτρολύτη. Άρα μικρότερος αριθμός μορίων προσφοράς χημικά στην επιφάνεια του ημιαγωγού, ενώ η μεταφορά των ηλεκτρονίων πραγματοποιείται πιο δύσκολα, αφού ο ηλεκτρολύτης δεν μπορεί να εισχωρήσει παντού και να έχουμε πλήρη απογόνωση του φορτιού των ηλεκτρονίων. Οι δύο αυτοί παράγοντες επηρεάζουν περισσότερο το ρεύμα, όπως βλέπουμε και από τις χαρακτηριστικές καμπύλες I – V. Επίσης δεν φαίνεται ο χρόνος παραμονής να επηρεάζει την σταθερότητα των κυψελίδων. Τέλος τα ‘φρέσκα’ υμένια παρουσιάζουν περισσότερες ρωγμές από τα υμένια με παλιά σκόνη.

Παρακάτω βλέπουμε παρόμοια συμπεριφορά και από την σύγκριση και άλλων δειγμάτων. Πάντα η χαρακτηριστική καμπύλη που αντιστοιχεί σε μεγαλύτερη τάση και ρεύμα αντιστοιχεί σε κυψελίδα με υμένιο από πιο φρέσκο μήγα.

Δείγματα 26 – 24:

![Graph](image)

Γραφική παράσταση 18: Χαρακτηριστικές καμπύλες I – V δειγμάτων 24 και 26

101
Το δείγμα 24 παρασκευάστηκε απευθείας, ενώ το δείγμα 26 παρασκευάστηκε αφού το μήγιμα έμεινε στο κλειστό δοχείο για περίπου 3 μήνες.
Γραφική παράσταση 19: Μεταβολή του ύψους της επιφάνειας των υμενίων 24 και 26

Χαρακτηριστικά φαίνεται πάλι ότι το υμένιο από το φρέσκο μήγμα έχει πιο λεία επιφάνεια. Παρόλο που το δείγμα 24 έχει πιο παχύ υμένιο δίνει καλύτερα αποτελέσματα. Αρα ο παράγοντας του χρόνου παραμονής του μήγματος είναι πιο ισχυρός από το πάχος του υμενίου.
Δείγματα 27 – 31 – 33:

Γραφική παράσταση 20: Χαρακτηριστικές καμπύλες I – V δειγμάτων 27, 31 και 33

<table>
<thead>
<tr>
<th></th>
<th>Δείγμα 27</th>
<th>Δείγμα 31</th>
<th>Δείγμα 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Α (cm²)</td>
<td>1,13</td>
<td>1,07</td>
<td>1,1</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O – ring</td>
<td>O – ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Παλιά ροδαμίνη</td>
<td>Παλιά ροδαμίνη</td>
<td>Παλιά ροδαμίνη</td>
</tr>
<tr>
<td>Αντιηλεκτρόδιο</td>
<td>Κανονικό</td>
<td>Κομμάτι πλατίνα</td>
<td>Κομμάτι πλατίνα</td>
</tr>
<tr>
<td>Λοιπά σχόλια</td>
<td>ίδιο μίγμα, αλλά διαφορετικές μέρες</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Πέχος υμένιου</td>
<td>15 μμ</td>
<td>Δεν μετρήθηκε</td>
<td>Δεν μετρήθηκε</td>
</tr>
<tr>
<td>η</td>
<td>0,052%</td>
<td>0,045%</td>
<td>0,043%</td>
</tr>
</tbody>
</table>

Πίνακας 18: Επιμέρους χαρακτηριστικά δειγμάτων 27, 31 και 33
Από τα παραπάνω δείγματα, το δείγμα 27 παρασκευάστηκε με φρέσκο μίγμα, το δείγμα 31 [10/10] μετά από λίγες μέρες και το δείγμα 33 [22/10] μετά από ακόμα περισσότερες. Η διαφορά μεταξύ 31 και 33 δεν είναι τόσο μεγάλη, γιατί παρασκευάστηκαν με μικρή χρονική διαφορά [12 ημέρες]. Παρόλο αυτό η απόδοση του δείγματος 33 έπεσε πάρα πολύ τις επόμενες μέρες σε σχέση με το δείγμα 31. Άρα ο χρόνος παραμονής του δείγματος επηρεάζει και την σταθερότητα και είναι προφανώς πιο χαρακτηριστικός όσο ο χρόνος παραμονής αυξάνεται.

Δείγματα 29 – 34:

![Graph](image-url)

Γραφική παράσταση 21: Χαρακτηριστικές καμπύλες I – V δείγμάτων 29 και 34

<table>
<thead>
<tr>
<th></th>
<th>Δείγμα 29</th>
<th>Δείγμα 34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Α (cm²)</td>
<td>0,75</td>
<td>0,93</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O – ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Νέα ροδαμίνη</td>
<td>Νέα ροδαμίνη</td>
</tr>
<tr>
<td>Αντιελεκτρόδιο</td>
<td>Κανονικό</td>
<td>Κανονικό</td>
</tr>
</tbody>
</table>
Πίνακας 19: Επιμέρους χαρακτηριστικά δειγμάτων 29 και 34

<table>
<thead>
<tr>
<th>Λοιπά σχόλια</th>
<th>Όχι καλός χρωματισμός</th>
<th>Χρωματισμός έντονος στις άκρες</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>0,17 %</td>
<td>0,06 %</td>
</tr>
</tbody>
</table>

Η μεγάλη διαφορά οφείλεται τόσο στον μεγάλο χρόνο παραμονής του μίγματος, όσο και στον καλύτερο χρωματισμό του δείγματος 34

Δείγμα 12 – 18:

Γραφική παράσταση 22: Χαρακτηριστικές καμπύλες δειγμάτων 12 και 18

<table>
<thead>
<tr>
<th>Λεπίδα (cm²)</th>
<th>Δείγμα 12 01/06</th>
<th>Δείγμα 18 21/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Α (cm²)</td>
<td>1,15</td>
<td>0,66</td>
</tr>
<tr>
<td>Σφράγιση</td>
<td>Σιλικόνη</td>
<td>Σιλικόνη</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Malachite green</td>
<td>Malachite green</td>
</tr>
<tr>
<td>Αντιπελεκτρόδιο</td>
<td>Κομμάτι πλατίνα</td>
<td>Κομμάτι πλατίνα</td>
</tr>
</tbody>
</table>
Πίνακας 20: Επιμέρους χαρακτηριστικά δειγμάτων 12 και 18

Στα τελευταία αυτά δείγματα χρησιμοποιήθηκε η χρωστική πράσινο του μαλαχίτη. Η διαφορά δεν είναι τόσο έντονη λόγω της μικρής επιφάνειας του δείγματος 18 (σχεδόν η μισή). Επίσης επειδή χρησιμοποιήθηκε σιλικόνη για το σφράγισμα η απόσταση μεταξύ των αντιηλεκτροδίων δεν είναι η ίδια, με αποτέλεσμα η σύγκριση να μην είναι πολύ καλή. Γι’ αυτό προτιμήθηκε η χρήση του o – ring για τα περισσότερα δείγματα.

3.4.4 Μεταβολή της απόδοσης με το αντιηλεκτρόδιο:

Ενας από τους παράγοντες που διαδραματίζει σημαντικό ρόλο στην λειτουργία μια ηλεκτροχημικής κυψελίδας είναι οι ιδιότητες του αντιηλεκτροδίου. Δοκιμάστηκαν τρία διαφορετικά είδη αντιηλεκτροδίων. Το πρώτο που δοκιμάστηκε ήταν κομμάτι από λευκόχρυσο (πλατίνα), το οποίο είχε βυθιστεί μέσα στον ηλεκτρολύτη. Η ηλεκτρική επαφή με το εξωτερικό κύκλωμα γινόταν με την άκρη που βρισκόταν έξω από τον ηλεκτρολύτη. Στην συνέχεια παρασκευάστηκαν αντιηλεκτρόδια με βάση την βιβλιογραφία και αποτελούνταν ουσιαστικά από ένα λεπτό υμένιο λευκόχρυσο πάνω σε αγώγιο υπόστρωμα και μετέπειτα παρασκευάστηκαν ηλεκτρόδια από γραφίτη. Παρακάτω βλέπουμε τις αλλαγές που παρατηρήθηκαν λόγω χρήσης διαφορετικών αντιηλεκτροδίων.
Δείγμα 27:

Γραφική παράσταση 23: Χαρακτηριστικές καμπύλες I – V δείγματος 27

<table>
<thead>
<tr>
<th></th>
<th>Δείγμα 27 08/10</th>
<th>Δείγμα 27 09/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Α (cm²)</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O - ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Παλιά ροδαμίνη</td>
<td>Παλιά ροδαμίνη</td>
</tr>
<tr>
<td>Αντηλεκτρόδιο</td>
<td>Κανονικό</td>
<td>Κομμάτι πλατίνα</td>
</tr>
<tr>
<td>Λοιπά σχόλια</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Πάχος υμενίου</td>
<td>15 – 18 μm</td>
<td>Τίδιο</td>
</tr>
<tr>
<td>η</td>
<td>0,032%</td>
<td>0,033%</td>
</tr>
</tbody>
</table>

Πίνακας 21: Επιμέρους χαρακτηριστικά δείγματος 27
Επιλέξθηκε να χρησιμοποιηθεί αρχικά κομμάτι από λευκόχρυσο για απλοποίηση της διαδικασίας παρασκευής, αλλά επειδή ήταν και ένας έμμεσος τρόπος για να αξιολογηθούν τα ηλεκτρόδια από υμένιο λευκόχρυσο. Επίσης η χρήση κομματιού από λευκόχρυσο βοηθούσε στο να συγκρίθονταν διαφορετικές κυψελίδες σχετικά με άλλους παράγοντες οι οποίοι επηρεάζουν την απόδοση, όπως το πάχος του υμενίου, ο χρόνος παραμονής του μίγματος κ.τ.λ. γιατί τα ηλεκτρόδια από υμένιο λευκόχρυσο δεν είχαν πάντα τις ίδιες ιδιότητες, λόγω του τρόπου παρασκευής τους.

Το γεγονός όμως ότι έχουμε παραπλήσια αποτελέσματα δείχνει ότι η παρασκευή του κανονικού αντιηλεκτροδίου δεν ήταν αποτελεσματική, τουλάχιστον όσο περιμέναμε για την βελτίωση της απόδοσης. Επειδή το υμένιο του λευκόχρυσου έχει μεγαλύτερη επιφάνεια από το κομμάτι του λευκόχρυσου, αφού κάλυπτε όλο το υπόστρωμα, περιμένουμε μεγαλύτερη ενεργία επιφάνεια για την κατάλυση της αναγωγής του τριωδίου, άρα και μεγαλύτερη απόδοση. Από την άλλη μεριά το φως που προσπίπτει στο κομμάτι λευκόχρυσο σκεδάζετε, με αποτέλεσμα να έχουμε μια δεύτερη ευκαιρία για την απορρόφηση του φωτός από τα μόρια της χρωστικής. Ίσως σε αυτό να οφείλεται και η καλή λειτουργία του. Επίσης επειδή η κατανάλωση ενεργειών επηρεάζει την κατάλυση του κανονικού, μπορεί να διαλυθεί κατά την επαφή του με τον ηλεκτρολύτη, γεγονός του οποίου θα είχε αρνητικές συνέπειες όπως εξήγησε και ο Αρκαντώ. Η χρήση βέβαια ενός κομματιού από λευκόχρυσο έχει ως αποτέλεσμα την αύξηση του κόστους της κυψελίδας και φυσικά δεν προτείνετε η χρήση του.

Η σύγκριση για το δείγμα 27 έγινε την επόμενη μέρα, ενώ για το δείγμα 28 την ίδια μέρα. Ο ηλεκτρολύτης που χρησιμοποιήθηκε ήταν ψυκτικός τόσο με το κομμάτι του λευκόχρυσου, όσο και με το κανονικό.
Δείγμα 28:

Γείγκα 28: Υαξαθηεξηζηηθέο θακπχιεο

Γραφική παράσταση 24: Χαρακτηριστικές καμπύλες I – V δείγματος 28

<table>
<thead>
<tr>
<th></th>
<th>Δείγμα 28</th>
<th>Δείγμα 28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11/10</td>
<td>11/10</td>
</tr>
<tr>
<td>Α (cm²)</td>
<td>1,1</td>
<td>1</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O - ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Παλιά ροδαμίνη</td>
<td>Παλιά ροδαμίνη</td>
</tr>
<tr>
<td>Αντιηλεκτρόδιο</td>
<td>Κανονικό</td>
<td>Κομμάτι πλατίνα</td>
</tr>
<tr>
<td>Λουτά σχόλια</td>
<td>Ο ηλεκτρολύτης είναι φρέσκος και στις δύο περιπτώσεις</td>
<td></td>
</tr>
<tr>
<td>Πάχος υμενίου</td>
<td>Τόδιο</td>
<td></td>
</tr>
<tr>
<td>Η</td>
<td>0,011 %</td>
<td>0,01%</td>
</tr>
</tbody>
</table>

Πίνακας 22: Επιμέρους χαρακτηριστικά δείγματος 28
Η διαφορά στο ρεύμα θα ήταν μικρότερη αν είχαμε το ίδιο εμβαδόν

Δείγμα 32:

![Graph](image)

Γραφική παράσταση 25: Χαρακτηριστικές καμπύλες δείγματος 32

<table>
<thead>
<tr>
<th></th>
<th>Δείγμα 32 29/10</th>
<th>Δείγμα 32 29/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Α (cm²)</td>
<td>0,94</td>
<td>0,94</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O – ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Νέα ροδαμίνη</td>
<td>Νέα ροδαμίνη</td>
</tr>
<tr>
<td>Αντιηλεκτρόδιο</td>
<td>Γραφίτης</td>
<td>Κανονικό</td>
</tr>
<tr>
<td>Δοπά σχόλια</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Πάχος υμενίου</td>
<td>5 – 7 μμ</td>
<td>ίδιο</td>
</tr>
<tr>
<td>η</td>
<td>0,02 %</td>
<td>0,04 %</td>
</tr>
</tbody>
</table>

Πίνακας 23: Επιμέρους χαρακτηριστικά δείγματος 32
Στο δείγμα αυτό χρησιμοποιήθηκε αντιηλεκτρόδιο από γραφίτη. Με την
βοήθεια ενός μολυβδίου με μαλακή μύτη αποτέθηκε ένα πολύ λεπτό στρώμα γραφίτη
στην αγώγη επιφάνεια του υποστρώματος. Το θετικό ήταν ότι το στρώμα γραφίτη
dεν διαλύθηκε τελείως κατά την επαφή του με τον ηλεκτρολύτη. Μπορεί να
dιαλύθηκε μια μικρή ποσότητα, αλλά τουλάχιστον με το μάτι δεν ήταν προφανές.
Επειδή όμως το δείγμα δεν έδινε καλά αποτελέσματα, παρόλο που το πάχος του
υμενίου ήταν μικρό και ο εμποτισμός του έγινε στο νέο δ/μα χημικής, η κακή
απόδοση οφείλεται στο αντιηλεκτρόδιο. Για να διαπιστωθεί αυτό το δείγμα
ξανασυναρμολογήθηκε χρησιμοποιώντας αντιηλεκτρόδιο από λευκόχρυσο. Από τις
παραπάνω γραφικές βλέπουμε ότι το αντιηλεκτρόδιο από γραφίτη όντως επηρεάζει
tην απόδοση. Η αναγωγή του τριωδίου δεν είναι αποτελεσματική παρουσία γραφίτη
στο αντιηλεκτρόδιο με αποτέλεσμα την αύξηση των εσωτερικών αντιστάσεων, όπως
φαίνεται από την μορφή των χαρακτηριστικών καμπύλων I – V. Φαίνεται ότι η
υπέρταση για την αναγωγή του τριωδίου είναι μεγαλύτερη στην περίπτωση του
γραφίτη, με αποτέλεσμα μικρότερη φωτοεπαγόμενη τάση. Επίσης η διάλυση έστω
και μικρής ποσότητας γραφίτη και η διάχυση του στο υμένιο του TiO₂ έχει ως
αποτέλεσμα την αύξηση της πιθανότητας επανασύνδεσης των ηλεκτρονιών από την
ζώνη αγωγιμότητας του ημιαγωγού με τα ιόντα τριωδίου, αφού ο γραφίτης λειτουργεί
ως καταλύτης για την παραπάνω διαδικασία. Το ίδιο ισχύει όταν χρησιμοποιείται και
λευκόχρυσος, αλλά το υμένιο του λευκόχρυσου είναι πιο καλά προσφορισμένο στην
επιφάνεια του υποστρώματος από ότι το υμένιο του γραφίτη. Συμπεραίνουμε
επομένως ότι ο γραφίτης δεν είναι τόσο αποτελεσματικός για την κατάλυση της
αναγωγής του τριωδίου.

3.4.5 Μεταβολή της απόδοσης με το χρόνο:

Παρακάτω βλέπουμε τις πιο χαρακτηριστικές γραφικές που δείχνουν την
μεταβολή των τιμών τάσης και ρεύματος των κυψελίδων με το χρόνο. Υπήρξαν
βέβαια και περιπτώσεις όπου οι μεταβολές δεν μπορούσαν να εξηγηθούν, δηλ. είχαμε
ανοιχτός σε μέρα σε μέρα. Οι μεταβολές αυτές μπορεί να οφείλονται σε
σφάλματα κατά την διάρκεια των μετρήσεων όπως όχι καλές ηλεκτρικές επαφές στο
κύκλωμα, σφάλματα των οργάνων μέτρησης, όχι καλό σφάλμασμα των κυψελίδων, μη καλή τους ευθυγράμμιση με το φως του λαμπτήρα κ.τ.λ.

Δείγμα 23:

Γραφική παράσταση 26: Χαρακτηριστικές καμπύλες I – V του δείγματος 23

Γραφική παράσταση 27: Χαρακτηριστικές καμπύλες I – V του δείγματος 23
Η διαφορά μεταξύ πρώτης και δεύτερης μέρας μετρήσεων δεν είναι μεγάλη, αλλά την τρίτη μέρα των μετρήσεων η πτώση ήταν μεγαλύτερη [04/08]. Η μεγάλη αυτή διαφορά ίσως οφείλεται και σε κάποιο λάθος κατά την διάρκεια των μετρήσεων, όπως μικρή μετακίνηση του λαμπτήρα με αποτέλεσμα την αλλαγή της έντασης του προσπέπτοντος φωτός σε σύγκριση με τις προηγούμενες ημέρες. Τα σετ μετρήσεων αναφέρονται στο ίδιο δείγμα, με το δεύτερο όταν η κυψελίδα ξαναγεμίστηκε με ηλεκτρολύτη.

Δείγμα 24:

Γραφική παράσταση 28: Χαρακτηριστικές καμπύλες I – V του δείγματος 24

Περίπτωση ανώμαλης συμπεριφοράς με την τελευταία μέρα των μετρήσεων να δίνει καλύτερα από τις προηγούμενες δύο μέρες αποτελέσματα, όσο αφορά τις τιμές τάσης και έντασης ρεύματος.
Γραφική παράσταση 29: Χαρακτηριστικές καμπύλες I – V του δείγματος 24

Γραφική παράσταση 30: Χαρακτηριστικές καμπύλες I – V του δείγματος 24
Στις περιπτώσεις αυτές τις δύο πρώτες μέρες είχαμε αύξηση των τιμών τάσης και ρεύματος, με την τρίτη μέρα να έχουμε το μέγιστο της απόδοσης. Η κυψελίδα χρειάζόταν κάποιον χρόνο ορίσμανσης μέχρι να δώσει την μέγιστη απόδοση. Η συμπεριφορά αυτή μπορεί να οφείλεται στον χρόνο που χρειάζεται ο ηλεκτρολύτης να διαβρέξει όλη την επιφάνεια του υμένιου, ακόμη και αυτή έξω από τα όρια του o – ring. Η συμπεριφορά αυτή ίσως αποτελεί μια ένδειξη για το πόσο πορώδες είναι το υμένιο, αν θεωρήσουμε ότι η συμπεριφορά γίνεται κανονική από την στιγμή που διαβρέχεται όλο το υμένιο. Στο δείγμα αυτό είχαμε μεγάλη επιφάνεια του υμενίου έξω από το o – ring. Η γρήγορη επίσης εξάτμιση του διαλύτη μπορεί να αποτελεί μία ένδειξη για το πορώδες του υμενίου.

Δείγμα 26:

Γραφική παράσταση 31: Χαρακτηριστικές καμπύλες I – V του δείγματος 26
Φυσιολογική συμπεριφορά μείωσης της απόδοσης με τον χρόνο. Επίσης παρατηρούμε χαρακτηριστικά ότι η ένταση του ρεύματος μειώνεται, ενώ παράλληλα αυξάνεται η τάση για λόγους που εξηγούνται παρακάτω.

Δείγμα 27:

Γραφική παράσταση 32: Χαρακτηριστικές καμπύλες I – V του δείγματος 27

Χαρακτηριστική μεταβολή των τιμών της έντασης του ρεύματος και της τάσης. Παρατηρούμε πάλι χαρακτηριστικά την παράλληλη μείωση της έντασης του ρεύματος και την αύξηση της τάσης.
Γραφική παράσταση 33: Χαρακτηριστικές καμπύλες I – V του δείγματος 31

Στο δείγμα αυτό δεν είχαμε τις υψηλότερες τιμές τάσης και ρεύματος την πρώτη μέρα των μετρήσεων, αλλά την δεύτερη. Στην συνέχεια η πτώση ήταν η αναμενόμενη. Η συμπεριφορά αυτή οφείλεται στο μικρό πορώδες, με αποτέλεσμα ο ηλεκτρολύτης να μην διαβρέχει όλη την επιφάνεια του υμενίου από την πρώτη μέρα και γι’ αυτό έχουμε καλύτερη συμπεριφορά την δεύτερη μέρα των μετρήσεων.
Δείγμα 32:

Γραφική παράσταση 34: Χαρακτηριστικές καμπύλες I – V του δείγματος 32

Στο δείγμα αυτό δεν είχαμε τις υψηλότερες τιμές έντασης και ρεύματος την πρώτη μέρα των μετρήσεων, αλλά την δεύτερη. Στην συνέχεια η πτώση ήταν η αναμενόμενη. Παρόμοια συμπεριφορά με το δείγμα 31 που παρασκευάστηκαν με το ίδιο μείγμα και ψήφισαν με τον ίδιο τρόπο. Γενικότερα τα δείγματα από την ίδια παρτίδα παρουσίαζαν την ίδια συμπεριφορά μεταξύ τους, όσο αφορά την μεταβολή τους με το χρόνο.
Δείγμα 35:

Γραφική παράσταση 35: Χαρακτηριστικές καμπύλες I – V του δείγματος 35

Η πτώση μεταξύ πρώτης και δεύτερης φοράς μετρήσεων είναι πάρα πολύ μεγάλη. Ο λόγος είναι ότι λόγω παρασιτικών αντιστάσεων στο κύκλωμα, η τιμή της ιδιαίτερης αντίστασης δεν είναι 0,15 Ohm, αλλά μεγαλύτερη με αποτέλεσμα να έχει γίνει υπερεκτίμηση του ρεύματος στις 27/11.

Γενικά συμπεράσματα:

Όλες οι κυψελίδες με υμένια από φρέσκο δείγμα παρουσιάζουν την ίδια συμπεριφορά (23 – 27 – 35). Τα δείγματα 29, 31 και 32 ως δεύτερη πράξη, δίνουν καλύτερα αποτελέσματα την δεύτερη μέρα των μετρήσεων. Δηλ. την πρώτη μέρα η απόδοση είναι μικρότερη. Τα δείγματα όμως 33 και 34 είναι αρκετά σταθερότερα ώστε να υποστηρίζουμε ότι φτάει ο χρόνος παραμονής του μίγματος για την μεταβολή με το χρόνο και εμφανίζουν την ίδια συμπεριφορά μεταξύ τους. Το 24 δεν ακολουθεί την συμπεριφορά του 23 λόγω του μεγαλύτερου υμενίου, αν και ανήκουν
στην ίδια παρτίδα. Το δείγμα 26 παρουσιάζει καλή συμπεριφορά σχετικά με τον χρόνο παραμονής ως προς την σταθερότητά του. Τα 21 και 22 έχουν ανώμαλη συμπεριφορά αν και φρέσκα. Η σύγκριση για την μεταβολή με τον χρόνο αναφέρετε κυρίως από την στεγή που η διαδικασία των μεταχειρήσεων είχε να κάνει με το φίλτρο νερού. Περισσότερες λεπτομέρειες θα δούμε παρακάτω. Οι μορφές των καμπύλων ήταν και καλύτερες. Η εξαγωγή συμπερασμάτων με τον χρόνο απαιτεί επαναλήψεις συνθήκες μεταξύ των μετρήσεων. Οι διαφορές μεταξύ των τιμών τάσης και έντασης ρεύματος θα ήταν μικρότερες από μέρα σε μέρα αν η ποσότητα του ηλεκτρολύτη παρέμενε σταθερή και δεν εξατμιζόταν. Δηλ. πάλι θα είχαμε μείωση στην απόδοση, αλλά όχι τόσο χαρακτηριστικές διαφορές μεταξύ των καμπύλων I – V. Αρα θα πρέπει να έχουμε πάντα υπόψη μας τον παρέχοντα του εμβαδού της ενεργού επιφάνειας για την συστή σύγκριση των καμπύλων I – V. Τέλος να τονίσουμε το γεγονός ότι όλα τα δείγματα από την ίδια παρτίδα παρουσίαζαν την ίδια συμπεριφορά.

Ο σημαντικότερος λόγος για την μείωση της απόδοσης με τον χρόνο είναι η υποβάθμιση της χρωστικής (degradation) [51]. Οι χρωστικές που χρησιμοποιήθηκαν δεν αντέχουν σε πολλούς κύκλους οξείδωσης με αποτέλεσμα την μείωση της απόδοσης της κυψελίδας, αφού το φάσμα που πέρτει επάνω δεν είναι δυνατόν να αξιοποιηθεί τόσο αποτελεσματικά όπως αρχικά. Η υποβάθμιση της χρωστικής μπορεί να οφείλεται σε απόλυτα του υποκαταστάτη (ligand), γενικότερα και ίσως όχι στην περίπτωση μας, στην διάλυση της χρωστικής στον ηλεκτρολύτη, όπως θα δούμε παρακάτω, και στον σχηματισμό συσταματομάτων μορίων χρωστικής [123].

Η αλλαγή της σύστασης του ηλεκτρολύτη είναι ένας άλλος σημαντικός λόγος για την μείωση της απόδοσης. Λόγω του ατελώς σφραγίσματος της κυψελίδας με το o – ring, ο ηλεκτρολύτης εξατμιζόταν και παράλληλα μπορούσε να εισχωρήσει μέσα στην κυψελίδα αέρας και υδρατμοί. Η παρουσία οξυγόνου και υδρατμικών έχει ως αποτέλεσμα τον σχηματισμό ιότον I0⁻³ κατά την αναγωγή της χρωστικής και όχι ιόντον τριωδίου, με αποτέλεσμα την μείωση της συγκέντρωσης των τελευταίων [51]. Η μείωση της συγκέντρωσης των ιότον τριωδίου έχει ως αποτέλεσμα την αύξηση της εσωτερικής αντίστασης της κυψελίδας, αφού λιγότερα πλέον ιόντα τριωδίου μπορούν να αναχθούν στο αντιηλεκτρόδιο. Υγιλότερες θερμοκρασίες εισοδούν την παραπάνω διαδικασία [124]. Λόγω υψηλής θερμοκρασίας μπορεί να συμβεί ακόμη και αποκαρβοξυλίση του δ/τη μας [125]. Μείωση επίσης της συγκέντρωσης των
ιόντων τριωδίου μπορεί να συμβεί λόγω αντίδρασης με το διαλύτη, που στην προκειμένη περίπτωση ήταν propylene carbonate [109]. Τέλος επειδή λιγότερα μόρια χρωστικής εκχέουν ηλεκτρόνια στη ζώνη αγιωγιμότητας του ημιαγωγού, λιγότερα ιόντα ιωδίδιο οξειδώνονται προς ιόντα τριωδίου.

Το φωτοδυναμικό μεταβάλλεται αντιστρόφως ανάλογα με το λογάριθμο της συγκέντρωσης των ιόντων τριωδίου και γι' αυτό αυξάνεται.

Ακόμα η παρουσία οξυγόνου λόγω του αέρα στην κυψελίδα μπορεί να έχει ως αποτέλεσμα την αντίδραση με ηλεκτρόνια της ζώνης αγιωγιμότητας προς τον σχηματισμό υπεροξείδιου παρουσία νερού, με αποτέλεσμα την μείωση του ρεύματος [123]. Η παρουσία του οξυγόνου και μόνο μπορεί να έχει επίπτωση αρνητικής συνέπειας, λόγω της οξειδώσεως που μπορεί να προκαλέσει σε διάφορα οργανικά συστατικά της κυψελίδας.

Η ανάπτυξη επιφανειακών καταστάσεων (surface states), δηλ. ενεργειακών καταστάσεων λόγω κάτω από την ζώνη αγιωγιμότητας του ημιαγωγού, αποτελεί έναν ακόμη λόγο για την μείωση της απόδοσης. Προκειται ουσιαστικά για ιόντα Ti4+ που βρίσκονται στην επιφάνεια των σωματιδίων του TiO2. Εξαιτίας των καταστάσεων αυτών αυξάνεται η πιθανότητα επανασύνδεσης των ηλεκτρονίων της ζώνης αγιωγιμότητας με τα ιόντα τριωδίου με αποτέλεσμα την μείωση του ρεύματος. Οι καταστάσεις αυτές ουσιαστικά λειτουργούν ως παγίδες των ηλεκτρονίων, με αποτέλεσμα την αύξηση της τάσης αλλά και τη μείωση του ρεύματος, αφού η μεταφορά των ηλεκτρονίων γίνεται πιο δύσκολα πλέον.

Οι παράγοντες που επηρεάζουν θετικά το φωτοδυναμικό, επιδρούν αντίστροφα στο φωτόρευμα. Η αύξηση του φωτοδυναμικού οφείλεται στην αύξηση της ενεργειακής διαφοράς μεταξύ ζώνης αγιωγιμότητας του ημιαγωγού και δυναμικού οξειδοαναγωγής του ζεύγους Γ/Ι5`, με αποτέλεσμα την αντίστοιχη μείωση της ενεργειακής διαφοράς μεταξύ ζώνης αγιωγιμότητας του ημιαγωγού και ενέργειας της διεγερμένης χρωστικής. Αρα έχουμε μείωση του συντελεστή έκχυσης των ηλεκτρονίων, δηλ. μείωση του ρεύματος.

Τέλος η μείωση της καταλυτικής δράσης του αντιηλεκτροδίου για την αναγωγή του τριωδίου με το πέρασμα του χρόνου, λόγω διάλυσης μικρής ποσότητας λευκόχρυσου, μπορεί να εξηγηθεί τόσο την αύξηση της τάσης, όσο και τη μείωση της έντασης του ρεύματος. Ιόντα τριωδίου συσσωρεύονται στο αντιηλεκτρόδιο, αφού η
αναγωγή τους από τα ηλεκτρόνια του εξωτερικού κυκλώματος καθυστερεί λόγω της μείωσης της καταλυτικής δράσης του στρώματος λευκόχρυσου στο αντιηλεκτρόδιο. Αποτέλεσμα αυτής της συσσώρευσης είναι η αύξηση της τάσης. Η προσρόφηση της ποσότητας του λευκόχρυσου είτε στο υπόστρωμα (SnO₂:F), είτε στο υμένιο του TiO₂ έχει ως αποτέλεσμα την αύξηση της πιθανότητας επανασύνδεσης και την μεταβολή των ηλεκτροχημικών ιδιοτήτων του υμενίου.

3.4.6 Μεταβολή της απόδοσης λόγω χρήσης διαφορετικής χρωστικής:

Για την ευαισθητοποίηση των υμενίων χρησιμοποιήθηκαν δύο διαφορετικές χρωστικές: ροδαμίνη και πράσινο του μαλαχίτη. Τα αποτελέσματα με τη ροδαμίνη ήταν πολύ καλύτερα. Ο λόγος είναι ότι η καλή προσρόφηση των μορίων του πράσινου του μαλαχίτη στην επιφάνεια του TiO₂ με αποτέλεσμα την μεγαλύτερη διάλυση της κατά την επαφή με τον ηλεκτρολύτη. Επίσης σημαντικό ρόλο διαδραματίζει και το διαφορετικό φάσμα απορρόφησης των δύο χρωστικών όπως είδαμε στο πρώτο κεφάλαιο και οι διαφορετικές φυσικοχημικές ιδιότητες όσο αφορά την οξείδωση τους από τον ηλεκτρολύτη. Το μικρότερο ρεύμα στην περίπτωση όπου η ευαισθητοποίηση έγινε με το πράσινο του μαλαχίτη, φανερώνει την χαμηλή απόδοση στην έκχυση ηλεκτρονίων.
Γραφική παράσταση 36: Χαρακτηριστικές καμπύλες $I - V$ δειγμάτων 35, 38 και 39

<table>
<thead>
<tr>
<th>Δείγμα 35</th>
<th>Δείγμα 38</th>
<th>Δείγμα 39</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/11</td>
<td>11/01</td>
<td>04/12</td>
</tr>
<tr>
<td>Λ (cm²)</td>
<td>0,84</td>
<td>0,71</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O – ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Ροδαμίνη καινούργια</td>
<td>Ροδαμίνη καινούργια</td>
</tr>
<tr>
<td>Αντιηλεκτρόδιο</td>
<td>Κανονικό</td>
<td>Κανονικό</td>
</tr>
<tr>
<td>Λοιπά σχόλια</td>
<td>Ίδια παρτίδα δειγμάτων</td>
<td></td>
</tr>
<tr>
<td>Πάχος υμενίου</td>
<td>Δεν μετρήθηκε</td>
<td>≈10 μm</td>
</tr>
<tr>
<td>η</td>
<td>0,09 %</td>
<td>0,15 %</td>
</tr>
</tbody>
</table>

Πίνακας 24: Επιμέρους χαρακτηριστικά δειγμάτων 35, 38 και 39
Το δείγμα με το πράσινο του μαλαχίτη ήταν το καλύτερο μεταξύ αυτών που παρασκευάστηκαν με τη συγκεκριμένη χρωστική, όπως φαίνεται στην παρακάτω γραφική παράσταση.

Γραφική παράσταση 37: Χαρακτηριστικές καμπύλες Ι – Β δειγμάτων 19 και 39

<table>
<thead>
<tr>
<th></th>
<th>Δείγμα 19</th>
<th>Δείγμα 39</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21/06</td>
<td>04/12</td>
</tr>
<tr>
<td>Α (cm²)</td>
<td>1,13</td>
<td>0,96</td>
</tr>
<tr>
<td>Σφράγισμα</td>
<td>O - ring</td>
<td>O – ring</td>
</tr>
<tr>
<td>Χρωστική</td>
<td>Πράσινο του μαλαχίτη</td>
<td>Πράσινο του μαλαχίτη</td>
</tr>
<tr>
<td>Αντιηλεκτρόδιο</td>
<td>Κανονικό</td>
<td>Κανονικό</td>
</tr>
<tr>
<td>Λοιπά σχόλια</td>
<td>Διαφορετική παρτίδα δειγμάτων</td>
<td></td>
</tr>
<tr>
<td>Πάχος υμενίου</td>
<td>Δεν μετρήθηκε</td>
<td>≈10 μμ</td>
</tr>
<tr>
<td>η</td>
<td>0,0032 %</td>
<td>0,035 %</td>
</tr>
</tbody>
</table>

Πίνακας 25: Επιμέρους χαρακτηριστικά δειγμάτων 19 και 39
3.4.7 Μεταβολή της απόδοσης λόγω διάλυσης της χρωστικής:

Κοινό χαρακτηριστικό όλων των κυψελίδων που παρασκευάστηκαν ήταν η μείωση της απόδοσης με τον χρόνο. Στην κυψελίδα αυτή φαίνεται χαρακτηριστικά η πτώση του ρεύματος και της τάσης μεταξύ 01/06 και 05/06. Στις 08/06 πριν μετρηθεί ξανά, η κυψελίδα γεμίστηκε με φρέσκο ηλεκτρολύτη και έδωσε καλύτερα αποτελέσματα από ότι στις 05/06. Στην συνέχεια φυσικά η απόδοση μειώθηκε, παρά τον φρέσκο ηλεκτρολύτη.

Γραφική παράσταση 38: Χαρακτηριστικές καμπύλες I – V δείγματος 12

Η συμπεριφορά αυτή, δηλ. η αύξηση στην απόδοση λόγω αλλαγής του ηλεκτρολύτη, παρατηρήθηκε κυρίως στις κυψελίδες εκείνες που χρησιμοποιήθηκε για την ευασθητοποίησή τους πράσινο του μαλαχίτη και οφείλεται στην διάλυση της χρωστικής στον ηλεκτρολύτη. Η διάλυση αυτή έχει ανεπιθύμητες παρενέργειες, όπως μεγαλύτερη απορρόφηση του φωτός από τον ηλεκτρολύτη λόγω και των διαλυμένων σε αυτόν μορίων χρωστικής. Τα μόρια της χρωστικής δισειρούνται λόγω της απορρόφησης του φωτός, αλλά επειδή δεν βρίσκονται σε επαφή με το διοξείδιο του τιτανίου αποδισειρούνται χωρίς να συμβεί έκχυση ηλεκτρονίων. Επομένως λόγω
λιγότερης αξιοποίησης του ηλιακού φωτός, η απόδοση είναι χαμηλότερη. Έχουμε δηλ. μείωση του συντελεστή IPCE.

Η διάλυση της χρωστικής φαίνεται χαρακτηριστικά και από τις παρακάτω εικόνες, με την δεξιά εικόνα να αντιστοιχεί στην κυψελίδα μετά το ξαναγέμισμα με τον ηλεκτρολύτη.

Εικόνα 8: Η κυψελίδα 12 πριν (αριστερά) και μετά (δεξιά) την αλλαγή του ηλεκτρολύτη

Την ίδια συμπεριφορά έχουμε και στα παρακάτω δείγματα:
Γραφική παράσταση 39: Χαρακτηριστικές καμπύλες I – V του δείγματος 13

Γραφική παράσταση 40: Χαρακτηριστικές καμπύλες I – V του δείγματος 14
Γραφική παράσταση 41: Χαρακτηριστικές καμπύλες I - V του δείγματος 19

Σε όλες τις γραφικές ο φρέσκος ηλεκτρολύτης αναφέρεται σε μεταγενέστερη χρονική στιγμή. Επίσης το δείγμα 19 αποσυναρμολογήθηκε και ξαναβοθίστηκε στην χροστική. Γι’ αυτό και η μεγαλύτερη διαφορά στις γραφικές.

Στο παρακάτω δείγμα το υμένιο δεν ξεπλύθηκε με αιθανόλη μετά την ευαισθητοποίηση. Το αποτέλεσμα ήταν η περίσσεια της χροστικής να διαλυθεί κατά την επαφή με τον ηλεκτρολύτη και ενώ την πρώτη μέρα των μετρήσεων η απόδοση ήταν 0,27 %, στην συνέχεια έπεσε στο μισό της απόδοσης. Η μεταβολή στον χρωματισμό ήταν εμφανής με το μάτι.
Γραφική παράσταση 42: Χαρακτηριστικές καμπύλες I – V δείγματος 36

Γενικά παρατηρούμε ότι η τάση είναι αυτή που επηρεάζεται περισσότερο από την προσθήκη του φρέσκου ηλεκτρολύτη, ενώ το ρεύμα παραμένει περίπου σταθερό. Άρα η μεταβολή της απόδοσης με τον φρέσκο ηλεκτρολύτη δεν πρέπει να οφείλεται στην αλλαγή της εσωτερικής αντίστασης, αφού το ρεύμα παραμένει σχεδόν σταθερό. Η μεταβολή θα πρέπει να οφείλεται στην αλλαγή της συγκέντρωσης του οξειδωναγωγικού ζεύγους, η οποία έχει μεταβληθεί λόγω της διάλυσης της χρωστικής. Για να μειωθεί η ποσότητα της χρωστικής που διαλύεται, τα υμένια άρχισαν να εξελίσσονται με καθαρή αιθανόλη. Η διάλυση της χρωστικής οφείλεται στην μη καλή χημική προσφόρηση στην επιφάνεια του TiO₂. Το γεγονός αυτό οφείλεται στην έλλειψη κάποιας καρβοξυλομάδας ή κάποιας υδροξυλομάδας στο μόριο του πράσινου του μαλαχίτη, η οποία θα βοηθήσει στην χημική προσφόρηση. Η προσφόρηση της ροδαμίνης στην επιφάνεια του TiO₂ ήταν καλύτερη, λόγω ύπαρξης μίας καρβοξυλομάδας.
3.4.8 Μεταβολή της απόδοσης με την ενεργό επιφάνεια του υμενίου:

Όπως είδαμε στην διαδικασία παρασκευής των κυψελίδων χρησιμοποιήθηκαν μονωτικές ταινίες για την δημιουργία μιας μάσκας πάνω στο γυαλί πριν γίνει η επίστρωση. Με τον τρόπο αυτό τα υμένια τα οποία παρασκευάστηκαν δεν είχαν ακριβώς τις διαστάσεις του o – ring, αλλά λίγο μεγαλύτερες και επιπλέον δεν είχαν κυκλικό σχήμα. Παρατηρήθηκε ότι η μεταβολή της επιφάνειας του υμενίου έχει από το o – ring επηρέαζε την απόδοση όπως φαινεται από τις παρακάτω χαρακτηριστικές καμπύλες I – V.

Γραφική παράσταση 43: Χαρακτηριστικές καμπύλες I – V δειγμάτων 14 και 16

Η κυψελίδα 16 είναι η ίδια κυψελίδα με την 14, μόνο πού το υμένιο έχει ξυστεί ώστε να έχει τις διαστάσεις του o – ring. H μεταβολή της απόδοσης οφείλεται στο γεγονός ότι η επιφάνεια του υμενίου ξύστηκε ώστε να έχει ακριβώς τις διαστάσεις του o – ring. Βέβαια χρησιμοποιήθηκε φρέσκος ηλεκτρολύτης, αλλά η επίδραση του στην συγκεκριμένη κυψελίδα δεν είναι τόσο σημαντική, όπως είδαμε προηγουμένως.
Γραφική παράσταση 44: Χαρακτηριστικές καμπύλες Ι – Β δειγμάτων 13 και 15

Την ίδια ακριβώς συμπεριφορά βλέπουμε και σε αυτή την γραφική παράσταση. Στην περίπτωση βέβαια αυτή το υμένιο αφού ξύστηκε ξαναβυθίστηκε στο δ/μα της χρωστικής, ενώ χρησιμοποιήθηκε νέο αντιελεκτρόδιο. Αρα στην προκειμένη περίπτωση στην αύξηση της απόδοσης παίζουν ρόλο και άλλοι παράγοντες, εκτός από την επιφάνεια του υμενίου.

Εικόνα 9: Κυψελίδα 14 όπου φαίνεται χαρακτηριστικά η χρήση του κομματιού από λευκόχρυσο ως αντιελεκτρόδιο

Στην παραπάνω εικόνα φαίνεται η κυψελίδα 14 πριν το έξοδο της επιφάνειας του υμενίου. Η μείωση της απόδοσης, όταν το υμένιο έχει μεγαλύτερες διαστάσεις από το o – ring, οφείλεται στην μεγαλύτερη εσωτερική αντίσταση. Ο ηλεκτρολύτης διαβρέχει όλο το υμένιο, αφού αυτό είναι πορώδες. Επίσης όλο το υμένιο έχει ευαισθητοποιηθεί με την χρωστική. Αρα απορρόφηση του φωτός συμβαίνει από όλη
την επιφάνεια του υμενίου. Η αναγέννηση της χρωστικής είναι όμως περισσότερο
αποτελεσματική μόνο μέσα στην περιοχή του o – ring, η οποία βρίσκεται και σε
άμεση επαφή με το αντιελεκτρόδιο. Επίσης η περιοχή έξω από το o – ring βρίσκεται
σε συνεχή επαφή με τον ατμοσφαιρικό αέρα, με αποτέλεσμα το υμένιο να χάνει την
πρόσφυσή του με το υπόστρωμα μετά από λίγο χρονικό διάστημα. Το υμένιο λοιπόν
χωρίζεται σε δύο περιοχές, με την μία να λειτουργεί καλύτερα από την άλλη. Η
συνολική απόδοση όμως καθορίζεται από την περιοχή που δεν λειτουργεί σωστά.
Επίσης ο ηλεκτρολύτης εξατμίζεται πιο εύκολα με αυτόν τον τρόπο. Λόγω του
πορώδους υμενίου ο ηλεκτρολύτης διαβρέχεται όλο το υμένιο, έρχεται όμως σε άμεση
επαφή με τον αέρα και εξατμίζεται πιο γρήγορα. Ωστόσο ο πορώδος είναι το
υμένιο, τόσο πιο γρήγορα εισχωρεί μέσω των πόρων ο ηλεκτρολύτης, με αποτέλεσμα
να εξατμίζεται πιο γρήγορα.

3.5 Μετρήσεις με ηλιακό φως:

Τα δείγματα τα οποία παρασκευάστηκαν τους καλοκαιρινούς μήνες
μετρήθηκαν τόσο μέσα στο εργαστήριο με την βοήθεια τεχνητού φωτισμού, όπως και
τα υπόλοιπα, αλλά και με ηλιακό φως. Οι εξωτερικές μετρήσεις πραγματοποιήθηκαν
στην ταράτσα του κτιρίου Φυσικής. Με ηλιακό φως μετρήθηκαν επίσης και άλλα
dείγματα όταν το επέτρεπαν οι εξωτερικές συνθήκες. Σε όλες τις περιπτώσεις οι τιμές
του ρεύματος και της τάσης που μετρήθηκαν με το φως του ήλιου ήταν μεγαλύτερες.
Το γεγονός αυτό οφείλεται αφενός μεν στην μεγαλύτερη ένταση της προσπίπτουσας
ακτινοβολίας στην περίπτωση του ήλιου σε μερικές περιπτώσεις [δείγματα 27 και
μετά], αλλά και στην διαφορετική φασματική κατανομή μεταξύ της ακτινοβολίας
του ήλιου και του λαμπτήρα. Ακόμα όμως και στην περίπτωση μεγαλύτερης έντασης
από το λαμπτήρα, ξανά τα αποτελέσματα ήταν καλύτερα στον ήλιο. Η απορρόφηση
του ηλιακού φωτός είναι πιο αποτελεσματική, επειδή η φασματική του κατανομή
tαιριάζει καλύτερα στο φάσμα απορρόφησης των χρωστικών και χρωσμοποιηθηκαν.
Ο λαμπτήρας που χρησιμοποιήθηκε για τις εσωτερικές μετρήσεις ήταν ένας
λαμπτήρας πυρακτόσεως των 50 W. Αρχικά η κυψελίδα φωτιζόταν απευθείας με το
φως του λαμπτήρα. Επειδή όμως ο λαμπτήρας εκπέμπει έντονα στο υπόρθρο, μεγάλο
μέρος της ακτινοβολίας δεν ήταν χρήσιμο για ενεργειακή μετατροπή, αφού οι χρωστικές δεν μπορούν να απορροφήσουν στο υπέρυθρο. Επίσης ως αποτέλεσμα της έντονης ακτινοβολίας του λαμπτήρα στο υπέρυθρο ήταν η αύξηση της θερμοκρασίας της κυψέλης. Η αύξηση της θερμοκρασίας έχει ως αποτέλεσμα την μείωση της συγκέντρωσης των ιόντων τριώδιον. Γι’ αυτούς τους λόγους αποφασίστηκε η χρήση ενός φίλτρου νερού, το οποίο τοποθετήθηκε μεταξύ λαμπτήρα και δείγματος. Με τον τρόπο αυτό μειώθηκε η ένταση της προσπίπτουσας ακτινοβολίας και άλλαξε η φαινομενική της κατανομή, αφού μεγάλο μέρος της ακτινοβολίας στην ερυθρή περιοχή του φάσματος απορροφούταν από το φίλτρο. Αποτέλεσμα της αλλαγής αυτής στον τρόπο που παράγαμε τις μετρήσεις ήταν η αύξηση των αποδόσεων των κυψέλιδων με τεχνητό φωτισμό και η βελτίωση της μορφής των χαρακτηριστικών καμπύλων I – V. Βέβαια στην βελτίωση της μορφής των καμπύλων βοήθησε και η μείωση των εσωτερικών αντιστάσεων λόγω καλύτερης παρασκευής των κυψέλιδων. Η διαφορά τέλος μεταξύ των αποδόσεων με ηλιακό και με τεχνητό φως μειώθηκε αισθητά, γεγονός που μας δείχνει ότι όντως πλέον οι εσωτερικές συνθήκες προσομοιάζουν καλύτερα τις εξωτερικές συνθήκες.

Δείγμα 21:

Γραφική παράσταση 45: Χαρακτηριστικές καμπύλες I – V δείγματος 21
Δείγμα 23:

Γραφική παράσταση 46: Χαρακτηριστικές καμπύλες I – V δείγματος 23

Γραφική παράσταση 47: Χαρακτηριστικές καμπύλες I – V δείγματος 23
Δείγμα 24:

Γραφική παράσταση 48: Χαρακτηριστικές καμπύλες I – V δείγματος 24

Γραφική παράσταση 49: Χαρακτηριστικές καμπύλες I – V δείγματος 24
Γραφική παράσταση 50: Χαρακτηριστικές καμπύλες I – V δείγματος 24

Γραφική παράσταση 51: Χαρακτηριστικές καμπύλες I – V δείγματος 24
Γραφική παράσταση 52: Χαρακτηριστικές καμπύλες I – V δείγματος 24

Δείγμα 27:

Γραφική παράσταση 53: Χαρακτηριστικές καμπύλες I – V δείγματος 27
Γραφική παράσταση 54: Χαρακτηριστικές καμπύλες I – V δείγματος 27

Δείγμα 29:

Γραφική παράσταση 55: Χαρακτηριστικές καμπύλες I – V δείγματος 29
Γραφική παράσταση 56: Χαρακτηριστικές καμπύλες I – V δείγματος 29

Δείγμα 30:

Γραφική παράσταση 57: Χαρακτηριστικές καμπύλες I – V δείγματος 30
Φίλτρο στις εσωτερικές μετρήσεις χρησιμοποιήθηκε για τα δείγματα 27, 29 και 30, οπότε και η διαφορά μεταξύ των αποδόσεων μειώθηκε αισθητά.

3.6 Γενικά συμπεράσματα

3.6.1 Πειραματική διαδικασία:

Όσο αφορά τη διαδικασία των μετρήσεων η χρήση του φίλτρου του νερού κρίνεται επιβεβλημένη. Με την χρήση του φίλτρου ένα μεγάλο μέρος της υπέρυθρης ακτινοβολίας της λάμπας απορροφάται, με αποτέλεσμα να μην αυξάνεται σημαντικά η θερμοκρασία της κυψέλης κατά την διάρκεια των μετρήσεων. Η αύξηση της θερμοκρασίας έχει αρνητικές συνέπειες στην απόδοση των κυψελίδων λόγω πιο χρήσιμης εξάτμισης του ηλεκτρολύτη, αλλά και λόγω της επιτάχυνσης αντιδράσεων μέσα στον ηλεκτρολύτη, με τις οποίες αλλάζει η σύσταση του. Αλλαγή της σύστασης του ηλεκτρολύτη, όπως η μείωση της συγκέντρωσης των ιόντων τριοδίου έχει σαν αποτέλεσμα τη μεταβολή τόσο του φωτοδυναμικού, όσο και του φωτορεύματος. Η ένταση της ακτινοβολίας που προσπίπτει στην κυψέλη επομένως μειώνεται με αποτέλεσμα την αύξηση του παράγοντα πληρότητας.

Ένας ακόμη λόγος υπέρ της χρήσης του φίλτρου είναι ότι το βατόμετρο που χρησιμοποιήθηκε για την μέτρηση της έντασης της λάμπας επηρεάζεται σε μεγάλο βαθμό από τη θερμότητα που εκπέμπεται από αυτή. Πάλι η χρήση του φίλτρου μειώνει το ποσό θερμότητας που δέχεται το βατόμετρο, με αποτέλεσμα η ένδειξη για την ένταση της ακτινοβολίας να είναι πιο αξιόπιστη. Προσοχή χρειάζεται τέλος ώστε το σύστημα λάμπα, φίλτρο, κυψέλη να είναι ευθυγραμμισμένο και να φωτίζεται όλη η επιφάνεια του υμενίου.

Για την χάραξη της καμπύλης I – V έχουμε καλύτερα αποτελέσματα όταν για την μέτρηση του ρεύματος χρησιμοποιούμε κάποια ιδιακή αντίσταση, οπότε από την πτώση της τάσης στα άκρα της υπολογίζεται το ρεύμα, και όχι όταν χρησιμοποιούμε αμπέρμετρο.

Για το ρόλο της ιδιακής αντίστασης αρχικά χρησιμοποιήθηκε μία αντίσταση των 0,15 Ω και στη συνέχεια μία αντίσταση των 0,56 Ω. Η αλλαγή κρίθηκε
απαραίτητη όταν διαπιστώθηκε ότι με την άντισταση των 0,15 Ω γινόταν μια υπερεκτίμηση του ρεύματος, αφού λόγω αντιστάσεων επαφών η τιμή της αντίστασης ήταν πρακτικά μεγαλύτερη από 0,15 Ω. Επίσης οι επαφές της πρώτης αντίστασης δεν ήταν πολύ καλές, με αποτέλεσμα οποιαδήποτε αλλαγή της θέσης της κατά τη διάρκεια των μετρήσεων να μεταβάλλει πολύ τις ενδείξεις των οργάνων.

Για το ρόλο του μεταβλητού φορτίου η χρήση ροοστάτη με το επιθυμητό εύρος τιμών (0 Ω – 40 kΩ) δίνει χαμηλότερη απόδοση, λόγω μεγαλύτερων εσωτερικών αντιστάσεων του ροοστάτη. Γι’ αυτό προτιμήθηκε η χρήση μειονομένων αντιστάσεων.

3.6.2 Συμπεράσματα από τον τρόπο παρασκευής:

Οι αναλογίες των συστατικών είναι καθορισμένες. Επειδή όμως τα υμένια τα οποία παρασκευάζουν παρουσίαζαν μικρό πορώδες και πολλές ρογμές, σύμφωνα με τις φωτογραφίες από το ηλεκτρονικό μικροσκόπιο σάρωσης, θα πρέπει να προστεθεί ισχυρότερη σύσταση για την αύξηση του πορώδους και μεγαλύτερη σύσταση Triton X – 100 για την μείωση των ρογμών. Οι ρογμές αναπτύσσονται ουρέως κατά τη διάρκεια του στεγνώματος των υμενίων, πριν αυτά τοποθετηθούν στο φούρνο. Επίσης τα υμένια από την τελευταία παρτίδα είχαν πολύ πιο λεία επιφάνεια λόγω του φρέσκου δ/τος ακετυλακετόνης που χρησιμοποιήθηκε. Η πρόσφυση των υμενίων στο υπόστρωμα είναι επίσης ικανοποιητική.

Η απόδειξη του μίγματος θα πρέπει να γίνεται αμέσως μετά την παρασκευή του και όταν αυτό έχει την κατάλληλη πυκνότητα, ώστε τα υμένια που θα προκύψουν να είναι διαφανή. Αν τα υμένια που θα προκύψουν είναι διαφανή ή όχι εξαρτάται αρχικά από το μέγεθος των συμμετοχών που απαρτίζουν τη σκόνη. Φυσικά η παρουσία συσσωματωμάτων χειροτερεύει την κατάσταση. Ακόμα όμως και με την νανοδομημένη σκόνη Degussa P – 25 μπορούν να παρασκευαστούν αδιαφανείς υμένια. Αρα ένας ακόμη παράγοντας που διαδραματίζει κάποιο ρόλο είναι η συγκέντρωση του μίγματος. Αφού επομένως προστεθεί άλλη η συστάση του νερού και το μίγμα αποκτήσει την επιθυμητή συγκέντρωση, θα πρέπει να γίνει αμέσως η απόδειξη στα υποστρώματα πριν προλάβει το μίγμα να γίνει πιο παχύρευστο λόγω εξάτμισης του νερού και της ακετυλακετόνης.
Η αποθήκευσή του μίγματος σε κλειστό δοχείο έχει ως αποτέλεσμα την δημιουργία συσσωματώματος από σωματίδια του TiO₂, τα οποία δε διασπώνται με την ακτινοληθή και το ψυκτικόπανσα στο γουδί. Η παρουσία μεγάλων συσσωματώματος στο υμένιο έχει ως αποτέλεσμα την μείωση των πόρων, με αποτέλεσμα να μην είναι αποτελεσματική η ευαίσθητηποίηση του υμενίου, όπως επίσης και η είσοδος των ιόντων του ηλεκτρολύτη. Ακόμη η τραχύτητα της επιφάνειας των υμενίων αυξάνεται Η απόδοση των κυψελίδων επομένως μειώνεται αλλά η μεταβολή της απόδοσης με το χρόνο φαίνεται να μην έχει κάποια σχέση με το γεγονός αν τα υμένια έχουν παρασκευαστεί από ‘φρέσκο’ ή όχι μίγμα. Κυψελίδες με υμένια από όχι φρέσκο μίγμα ήταν μερικές φορές πολύ πιο σταθερές σε σχέση με κυψελίδες με υμένια από φρέσκο μίγμα.

Γεγονός είναι πάντως ότι κυψελίδες από την ιδία παρτίδα δειγμάτων παρουσίαζαν παρόμοια αποτελέσματα. Επειδή η ανόπτηση των υμενίων γίνονταν με παραπλήσιες συνθήκες, η παρόμοια συμπεριφορά μπορεί να εξηγηθεί μόνο λόγω του ιδίου μίγματος που χρησιμοποιούταν και του ιδίου τρόπου απόθεσης των υμενίων.

Ο σημαντικότερος λόγος για τη χωμηλή απόδοση των κυψελίδων ήταν η μη αποτελεσματική ευαίσθητηποίηση του υμενίου, όπως επίσης και η διάλυση της χρωστικής κατά την επαφή του υμενίου με τον ηλεκτρολύτη. Η μη αποτελεσματική ευαίσθητηποίηση των υμενίων οφείλεται στην έλλειψη κάποιας υδροξυλομάδας ή κάποιας καρβοξυλομάδας μέσω της οποίας θα γίνει η χημική προσαρμογή στην περίπτωση του πράσινου του μαλαχήτη. Η ύπαρξη μίας μόνο καρβοξυλομάδας στο μόριο της ροδαμίνης έχει ως αποτέλεσμα η ευαίσθητηποίηση να γίνει πιο αποτελεσματική, αλλά πάλι φαίνεται ότι δεν είναι αρκετή. Η μη καλή ευαίσθητηποίηση των υμενίων μπορεί να οφείλεται και στις ιδιότητες του ιδίου του διαλύματος της χρωστικής. Η απορρόφηση υδρατμών από την ατμόσφαιρα κυρίως, καθώς και η χρήνη του για την ευαίσθητηποίηση πολλών υμενίων μειώνει την αποτελεσματικότητά του. Γι’ αυτό το λόγο η αποθήκευση του δ’τος της χρωστικής σε κλειστό δοχείο ώστε να αποφεύγεται η εξάτμιση της αιθανόλης αλλά και η απορρόφηση υδρατμών κρίνεται απαραίτητη.

Η διάλυση της χρωστικής επομένως ήταν χαρακτηριστική σε πολλές περιπτώσεις τόσο για τη ροδαμίνη, όσο και για το πράσινο του μαλαχήτη. Η αφαίρεση της επιπλέον χρωστικής με το ξέπλυμα του υμενίου με αιθανόλη μειώνει την
ποσότητα που διαλύεται στον ηλεκτρολύτη. Τα μόρια της χρωστικής που βρίσκονται
dιαλυμένα στον ηλεκτρολύτη απορροφούν φως, αλλά επειδή δεν βρίσκονται σε
επαφή με το υμένιο δεν μπορούν να εκχύουν ηλεκτρόνια στην ζώνη αγωγιότητας
tου ημιαγωγού. Η αλλαγή του ηλεκτρολύτη είχε ως αποτέλεσμα σχεδόν πάντα την
αύξηση της απόδοσης σε σχέση με το παλιό ηλεκτρολύτη, ο οποίος είχε διαλυμένα
μέσα του μόρια χρωστικής.

Η χαμηλή απόδοση των κυψελίδων οφείλεται και στις αυξημένες εσωτερικές
αντιστάσεις. Η απόσταση μεταξύ των ηλεκτροδίων ήταν 1,5 με 2 mm, ενώ θα έπρεπε
κανονικά να είναι μερικά μικρόμετρα, λόγω της χρήσης του ρίγος. Η χρήση του ρίγος
είχε το πλεονέκτημα της πιο εύκολης παρασκευής της κυψελίδας, αλλά και ο
ίδιος ο τρόπος παρασκευής να είναι ο ίδιος για όλα τα δείγματα.

Όσο αφορά το χώρο το υμένιο, η πρόσφυση του ήταν ικανοποιητική και στις
περισσότερες περιπτώσεις ήταν αρκετά διαφάνες. Επειδή όμως η επιφάνεια του ήταν
μεγαλύτερη συνήθως από αυτή που κάλυπτε το ρίγος, η μετατροπή ήταν από
το ρίγος ερχόταν σε άμεση επαφή με τον ατμοσφαιρικό αέρα με αποτέλεσμα την
πιο γρήγορη εξάτμιση του ηλεκτρολύτη και την εύσοδο αέρα μέσα στην κυψελίδα. Η
eξάτμιση του ηλεκτρολύτη ήταν κοινό χαρακτηριστικό όλων των κυψελίδων αλλά με
dιαφορετικό ρυθμό κάθε φορά, γεγονός που οφείλεται στο διαφορετικό πορώδες των
υμενίων. Γρήγορη εξάτμιση συνεπάγεται και μεγάλο πορώδες. Η παρουσία οξυγόνου
cαι υδρατών έχει ως αποτέλεσμα τον σχηματισμό ιόντων IO₃⁻ κατά την αναγωγή της
χρωστικής και όχι ιόντων τριωδίου, με αποτέλεσμα την μείωση της συγκέντρωσης
των τελευταίων. Το φωτοδυναμικό εξαρτάται από την συγκέντρωση των ιόντων
tριωδίου και μάλιστα αντιστρόφως ανάλογα με την συγκέντρωσή τους. Η μείωση της
συγκέντρωσης των ιόντων τριωδίου έχει ως αποτέλεσμα την αύξηση της εσωτερικής
αντίστασης της κυψελίδας, αφού λιγότερα πλέον ιόντα τριωδίου μπορούν να
αναχθούν στο αντιηλεκτρόδιο. Υψηλότερες θερμοκρασίες ευνοούν την παραπάνω
dιαδικασία.

Ακόμα η παρουσία οξυγόνου λόγω του αέρα στην κυψελίδα μπορεί να έχει ως
αποτέλεσμα την αντίδραση με ηλεκτρόνια της ζώνης αγωγιότητας προς τον
σχηματισμό υπεροξείδίου παρουσία νερού, με αποτέλεσμα την μείωση του ρεύματος.
Η παρουσία του οξυγόνου και μόνο μπορεί να έχει επίσης αρνητικές συνέπειες, λόγω
της οξείδωσης που μπορεί να προκαλέσει σε διάφορα όργανικά συστατικά της κυψελίδας.

Ο δ/της ο οποίος χρησιμοποιήθηκε δεν ήταν αποτελεσματικός στην διάλυση του KI, παρόλο την αλλαγή της συγκέντρωσης αλλά και την εφαρμογή θέρμανσης προκειμένου να αυξηθεί η διαλυτότητα. Οι κυψελίδες στις οποίες χρησιμοποιήθηκε ο ηλεκτρολύτης με τη μικρότερη συγκέντρωση σε KI και I₂ έδωσαν μεν υψηλότερες αποδόσεις, αλλά οι υψηλότερες αποδόσεις οφείλονται σε συνδυασμό παραγόντων και όχι αποκλειστικά στη συγκέντρωση του ηλεκτρολύτη. Αλλα μειονεκτήματα του ηλεκτρολύτη μας ήταν ότι λόγω υψηλής θερμοκρασίας μπορεί να συμβεί ακόμη και αποκαρβοξυλίσεις του. Μείωση επίσης της συγκέντρωσης των ιόντων τριοξίου μπορεί να συμβεί και λόγω αντίδρασης με το διαλύτη, που στην προκειμένη περίπτωση ήταν propylene carbonate.

Τέλος η μείωση της καταλυτικής δράσης του αντιηλεκτροδίου για την αναγωγή του τριοξίου με το πέρασμα του χρόνου, λόγω διάλυσης μικρής ποσότητας λευκόχρυσου, μπορεί να εξηγηθεί τόσο την αύξηση της τάσης, όσο και τη μείωση της έντασης του ρεύματος. Ιόντα τριοξίου συσσωρεύονται στο αντιηλεκτρόδιο, αφού η αναγωγή τους από τα ηλεκτρόνια του εξωτερικού κυκλώματος καθυστερεί λόγω της μείωσης της καταλυτικής δράσης του στρώματος λευκόχρυσου στο αντιηλεκτρόδιο.

Αποτέλεσμα αυτής της συσσώρευσης είναι η αύξηση της τάσης. Η προσρόφηση της ποσότητας του λευκόχρυσου είτε στο υπόστρωμα (SnO2:F), είτε στο υμένιο του TiO2 έχει ως αποτέλεσμα την αύξηση της πυθανότητας επανασύνδεσης και την μεταβολή των ηλεκτροχημικών ιδιοτήτων του υμενίου.
Κεφάλαιο 4

Οργανικά φωτοβολταϊκά

Τα οργανικά φωτοβολταϊκά ανήκουν στα φ/β δεύτερης γενιάς ή διαφορετικά στα φ/β λεπτών υμειών. Αν και οι αποδόσεις τους είναι πολύ μικρές και πολλά προβλήματα πρέπει να επιλυθούν ακόμα πριν κάνουν την είσοδό τους στην αγορά, το χαμηλό κόστος τόσο των χρησιμοποιούμενων υλικών αλλά και του τρόπου κατασκευής και οι δυνατότητες που παρουσιάζουν κυρίως όσο αφορά την κατασκευή τους σε λεπτές και εύκαμπτες διατάξεις τα κάνει πολύ ελκυστικά σε διάφορες εφαρμογές. Η ανάπτυξη των φωτοβολταϊκών αυτών έχει σαν σύμμαχο της την έρευνα και την ανάπτυξη σε άλλους κλάδους όπου χρησιμοποιούνται οργανικά υλικά όπως είναι οπτικο-ελεκτρονικές διατάξεις π.χ. στα Led.

4.1 Αρχή λειτουργίας:

Στην καρδιά των συσκευών αυτών βρίσκεται κάποιο οργανικό υλικό (ενεργό υλικό), συνήθως πολυμερές, το οποίο και απορροφά το φως. Το υλικό αυτό τοποθετείται μεταξύ δύο ηλεκτροδίων, ενός διαφανούς όπως ITO και ενός μεταλλικού ηλεκτροδίου (Al, Ca). Κατά την διάρκεια του φωτισμού, το ενεργό υλικό απορροφά το φως έχοντας σαν αποτέλεσμα ένα ηλεκτρόνιο να περνά από το υψηλότερο κατευλημένο μοριακό τροχιακό (HOMO) στο χαμηλότερο μη κατευλημένο μοριακό τροχιακό (LUMO). Η διέγερση αυτή των ηλεκτρονίων έχει σαν αποτέλεσμα την δημιουργία εξιτονίων, δηλ. δέσμων καταστάσεων ηλεκτρονίων – οπών. Ο διαχωρισμός των δέσμων αυτών καταστάσεων ευνοείται από την ύπαρξη ενός εσωτερικού ηλεκτρικού πεδίου, το οποίο δημιουργείται λόγω της διαφορετικές ενέργειες ιονισμού/έργο εξόδου των ηλεκτρονίων και γι’ αυτό το λόγο τα ηλεκτρόδια που χρησιμοποιούνται είναι και διαφορετικά. Αυτή η ασυμμετρία στα ηλεκτρόδια είναι και ο λόγος για τον οποίο έχουμε μεταφορά των ηλεκτρονίων από το ηλεκτρόδιο με το μικρότερο έργο έξοδου στο ηλεκτρόδιο μια το μεγαλύτερο έργου εξόδου (ορθή πόλωση) [126]. Το ηλεκτρικό αυτό πεδίο δεν είναι πάντα τόσο

Η απόδοση των συσκευών αυτών όπως βλέπουμε εξαρτάται σε μεγάλο βαθμό, όχι μόνο από το πόσο αποτελεσματική είναι η απορρόφηση του φωτός από το ενεργό υλικό, αλλά και από το πόσο αποτελεσματική είναι η διάσπαση του εξιτονίου, πριν έχουμε επανασύνδεση. Είναι επιτακτική επομένως η ανάγκη για την ύπαρξη ενός ηλεκτρικού πεδίου το οποίο θα αναλάβει την δημιουργία των ελεύθερων φορέων. Ενδεικτικά αναφέρουμε ότι χρειάζεται ενέργεια της τάξης των 100 meV για να γίνει η διάσπαση των εξιτονίων. Απορρόφηση φωτός δεν συνεπάγεται επομένως και δημιουργία φορέων. Η επανασύνδεση των φορέων μπορεί να έχει σαν αποτέλεσμα την εκπομπή φωτός, αποτέλεσμα επιθυμητό σε άλλες διατάξεις όπως Led, αλλά ανεπιθύμητο τελείως στα οργανικά φ/β. Η ανάγκη επομένως για όσο το δυνατόν καλύτερο διαχωρισμό των δημιουργούμενων φορέων έχει οδηγήσει στην χρήση διαφόρων διατάξεων αλλά και χρησιμοποιούμενων υλικών, όπως θα δούμε παρακάτω.

4.2 Διαφορές με ανόργανα φ/β:

Η βασική διαφορά στην αρχή λειτουργίας των φ/β αυτών σε σύγκριση με τα φ/β πυριτίου είναι ότι το αποτέλεσμα της απορρόφησης φωτός δεν είναι η δημιουργία ελεύθερων φορέων αλλά εξιτονίων, δηλ. δέσμων καταστάσεων αλλά και στον ρόλο που διαδραματίζει η δημιουργία του εσωτερικού ηλεκτρικού πεδίου. Τα ανόργανα φ/β χαρακτηρίζονται και ως συσκευές μεταφοράς φορέων μειονότητας. Αυτό οφείλεται στο γεγονός ότι οι φορείς οι οποίοι δημιουργούνται από την απορρόφηση του φωτός στην συνέχεια μεταφέρονται τα μεν ηλεκτρόνια μέσα από
τον ημιαγωγό τύπου – n, ενώ οι απές μέσω του ημιαγωγού τύπου – p. Τα οργανικά
φ/β χαρακτηρίζονται ως συσκευές μεταφοράς φορέων πλειονότητας [128].

Στα ανόργανα από την άλλη μεριά ηλεκτρόνια και απές δημιουργούνται στην
ιδία φάση. Η διαφορά στο χημικό δυναμικό οδηγεί ηλεκτρόνια και απές προς την ιδία
κατεύθυνση, με το φαινόμενο να είναι πιο έντονο για τους φορείς μειονότητας.
Επιπροσθέτως το εσωτερικό ηλεκτρικό πεδίο διασχιζεί απές και ηλεκτρόνια προς
αντίθετες κατευθύνσεις. Στα οργανικά φ/β όμως στην περίπτωση της ετεροεπαφής (heterojunction) η οπή δημιουργείται στην μια φάση (δότης), ενώ το ηλεκτρόνιο
στην άλλη (δέκτης). Επειδή οι φορείς δημιουργούνται σε διαφορετικές φάσεις
εξαιτίας του φωτοεπαγόμενου χημικού δυναμικού μεταφέρονται σε διαφορετικές
κατευθύνσεις. Η ύπαρξη επομένως ενός εσωτερικού ηλεκτρικού πεδίου διαδραματίζει
μικρότερο ρόλο από ότι στα ανόργανα φ/β [128]. Στο παρακάτω σχήμα φαίνονται οι
dιαφορές στην αρχή λειτουργίας ανόργανων και οργανικών φ/β.

![Diagram](image)

Σχήμα 18: Φ/β επαφής p – n (αριστερά) και οργανικό φ/β διστροματικής διάταξης.
Διαφορές στον τρόπο λειτουργίας.

Θα μπορούσε επομένως να επιθεωθεί ότι τα οργανικά φ/β έχουν αντίθετη πολυκότητα
από τα ανόργανα, με το φως να προσπίπτει από την πλευρά της καθόδου και όχι από
την πλευρά της ανόδου.
4.3 Πλεονεκτήματα – Μειονεκτήματα:

Τα πλεονεκτήματα που παρουσιάζει η τεχνολογία των οργανικών ϕ/β επικεντρώνονται κυρίως στο χαμηλό τους κόστος αλλά και στον τρόπο παρασκευής τους, ο οποίος μας παρέχει την δυνατότητα της σχετικά εύκολης παρασκευής διατάξεων μεγάλης επιφάνειας, ακόμα και σε εύκαμπτα υποστρώματα. Οι μέθοδοι που χρησιμοποιούνται είναι κυρίως screen – print και doctor - blade. Ενδεικτικά αναφέρουμε ότι με την πρώτη τεχνική αυτή θα μπορούσαν να παρασκευαστούν ϕ/β διατάξεις 1000 m²/h. Ένα άλλο πλεονέκτημα που παρουσιάζουν είναι η υψηλή τάση ανοικτού κυκλώματος, η οποία δείχνει ότι ενεργειακά τουλάχιστον τα χρησιμοποιούμενα υλικά είναι κατάλληλα για χρήση.

Από την άλλη μεριά τα προβλήματα που παρουσιάζουν οι διατάξεις αυτές είναι αρκετά και σύνθετα με σημαντικότερο ίσως αυτό της σταθερότητας. Τα ϕ/β αυτά δεν έχουν μεγάλο κύκλο ζωής, γεγονός το οποίο θα πρέπει να αντιμετωπιστεί προκειμένου τα ϕ/β αυτά να εισέλθουν στην αγορά και να αποτελέσουν οικονομικά βιώσιμη λύση. Ενδεικτικά αναφέρουμε ότι πολλά υλικά που χρησιμοποιούνται είναι ευαίσθητα στην παρουσία νερού και οξυγόνου.

Επίσης ένα άλλο πρόβλημα είναι ότι τα πολυμερή που χρησιμοποιούνται μέχρις στιγμής δεν καταρθούν να απορροφήσουν μεγάλο μέρος της ηλιακής ακτινοβολίας και κυρίως στην υπέρυθρη περιοχή του φάσματος. Για το λόγο αυτό γίνεται έρευνα ότι να χρησιμοποιηθούν νέα υλικά με μεγαλύτερο εύρος απορρόφησης της ηλιακής ακτινοβολίας. Επίσης έχουν δοκιμαστεί διατάξεις στις οποίες μεταξύ του δότη και του δέκτη παρεμβάλλεται ένα στρώμα χρωστικής, η οποία αναλαμβάνει την απορρόφηση των φωτονίων. Τέλος μια διαφορετική προσέγγιση στην αντιμετώπιση αυτού του προβλήματος αποτελεί η χρήση δομών οι οποίες λειτουργούν σαν παγίδες φωτός. Οι δομές αυτές είναι ιδιαίτερα χρήσιμες σε περιπτώσεις ασθενείας απορρόφησης, επιτρέπουν την χρήση λεπτότερων ϕ/β και χρησιμοποιούνται ήδη στα ϕ/β πυρίτιο [127]. Από την άλλη μεριά οι συντελεστές απορρόφησης στην περιοχή όπου τα πολυμερή απορροφούν έντονα, είναι υψηλοί επιτρέποντας την χρήση υμείων με πάχος της τάξης των 100 nm.

Στα οργανικά ϕ/β το αποτέλεσμα της απορρόφησης του φωτός είναι όπως αναφέρθηκε και πιο πάνω η δημιουργία εξτρονίων. Αρα είναι απαραίτητη η ύπαρξη
ενός εσωτερικού ηλεκτρικού πεδίου για την διάσπαση τους. Οι δημιουργούμενοι φορείς μεταφέρονται όχι σε κάποια ζώνη όπως στους ημιαγωγούς, αλλά μέσω εντοπισμένων καταστάσεων. Η κινητικότητα των φορέων επομένως είναι χαμηλή σε σύγκριση με την κινητικότητα στους ανόργανους ημιαγωγούς και αυτό αποτελεί ένα ακόμη μειονέκτημα των φ/β αυτών. Η λύση στο πρόβλημα αυτό έχει να κάνει με την παρασκευή πολυμερών με καλύτερη αγομότητα αλλά και σε μερικές περιπτώσεις χρήση κάποιου ανόργανου υλικού όπως TiO₂ για την μεταφορά των φορέων στα ηλεκτρόδια. Επίσης έχουν μελετηθεί διατάξεις οι οποίες χρησιμοποιούν κρυσταλλικές χρωστικές, νανοσωλήνες ανθρακά καθώς και νανοσωλήνες CdSe [127].

Τέλος ο διαχωρισμός των φορτίων στους οργανικούς ημιαγωγούς είναι πιο δύσκολη σε σύγκριση με τους ανόργανους ημιαγωγούς, π.χ. Si, λόγω μικρότερης διηλεκτρικής σταθεράς [1].

4.4 Διατάξεις:

Οι διατάξεις που χρησιμοποιούνται μπορούν να χωριστούν σε τέσσερις διαφορετικούς τύπους. Σε όλους όμως αυτούς τους τύπους κυρίαρχο ρόλο διαδραματίζουν τα υλικά που λειτουργούν σαν δότες και δέκτες ηλεκτρονίων. Πιο συγκεκριμένα οι κυριότερες κατηγορίες είναι οι μονοστρωματικές διατάξεις, όπου το ενεργό στρώμα αποτελείται από ένα μόνο υλικό (homojunctions), οι διστρωματικές διατάξεις όπου το ενεργό στρώμα αποτελείται από δύο υλικά το ένα τοποθετημένο πάνω στο άλλο (heterojunctions), οι διατάξεις διεσπαρμένων ετεροεπαφών, όπου το ενεργό στρώμα αποτελείται από ένα μίγμα των δύο ή περισσότερων υλικών και τέλος οι στρωματοειδείς διατάξεις, όπου έχουμε περισσότερα από δύο στρώματα που απαρτίζουν το ενεργό υλικό. Στην τελευταία κατηγορία θα ξεχωρίσουμε διάφορες υποκατηγορίες ανάλογα με την σύσταση των στρωμάτων όπως θα δούμε πιο αναλυτικά παρακάτω. Η σχηματική αναπαράσταση των διατάξεων αυτών φαίνεται στο παρακάτω σχήμα:

4.4.1 Μονοστρωματικές διατάξεις:

Οι διατάξεις αυτές αποτέλεσαν την πρώτη προσπάθεια ανάπτυξης των οργανικών φ/β. Οπως φανερώνει και το όνομα τους πρόκειται για διατάξεις στις οποίες το ενεργό υλικό αποτελείται από ένα μόνο οργανικό υλικό (homojunctions), το οποίο βρίσκεται μεταξύ δύο ηλεκτροδίων με διαφορετικά έργα εξαγωγής. Στο οργανικό υλικό στηρίζεται πρακτικά η όλη λειτουργία της διάταξης μα και σ’ αυτό γίνεται τόσο η απορρόφηση του φωτός, η δημιουργία των εξιτονίων αλλά και η διάσπαση τους σε ξεχωριστούς φορείς. Στην συνέχεια οι δημιουργούμενοι φορείς κατευθύνονται ο καθένας σε ξεχωριστό ηλεκτρόδιο εξατμίας του δημιουργούμενου ηλεκτρικού πεδίου λόγω των διαφορετικών έργων εξαγωγής των ηλεκτροδίων. Στο σχήμα 20 φαίνεται το ενεργειακό διάγραμμα για την περίπτωση αυτή, καθώς και η κίνηση των φορέων. Παρατηρήθηκε ότι η διάσπαση των εξιτονίων γινόταν πιο αποτελεσματικά στις επαφές με τα ηλεκτρόδια και λόγω του μικρού μήκους διάχρονης των εξιτονίων στο ενεργό υλικό η διαδικασία αυτή δεν είναι ιδιαίτερα αποδοτική, γιατί έχουμε μεγάλη πιθανότητα επανασύνδεσης. Με άλλα λόγια δηλ. δεν συμμετέχει στην διαδικασία δημιουργίας των φορέων όλος ο όγκος του ενεργού υλικού αλλά μόνο η περιοχή του που βρίσκεται σε επαφή με τα ηλεκτρόδια. Ενδεικτικά
αναφέρουμε ότι το μήκος διάχυσης των φορέων είναι της τάξης των 10 nm, με αποτέλεσμα το πάχος του ενεργού υλικού να πρέπει να είναι και αυτό της ίδιας τάξης μεγέθους. Πολύ λεπτό φιλμ όμως έχει σαν συνέπεια απορρόφηση λιγότερης ηλιακής ακτινοβολίας, με όλες τις συνέπειες που αυτή συνεπάγεται. Για πολλούς οργανικούς ημιαγωγούς το πάχος του υμενίου θα πρέπει να είναι της τάξης των 100 nm, ώστε να απορροφούν ικανοποιητικά. Η αύξηση στο πάχος του υμενίου θα έχει ως αποτέλεσμα την καλύτερη απορρόφηση του φωτός, αλλά μόνο μια μικρό μέρος από τα δημιουργούμενα εξίτονα θα μπορούν να φθάσουν στην διεπιφάνεια και να διαχωριστούν. Το πρόβλημα αυτό αντιμετωπίζεται με την χρήση διστροματικών διατάξεων όπως θα αναφέρουμε παρακάτω.

Επίσης ένα ακόμα μειονέκτημα των διατάξεων αυτών είναι ότι μερικές φορές το ηλεκτρικό πεδίο το οποίο όπως είπαμε είναι υπεύθυνο για την διάσπαση των εξίτονων δεν είναι τόσο ισχυρό όσο πρέπει, με αποτέλεσμα η όλη διαδικασία να μην είναι πολύ αποτελεσματική.

Σχήμα 20: Ενεργειακό διάγραμμα μονοστροματικής διάταξης. IP: ενέργεια ιονισμού, Φ: έργο εξαγωγής, χ: ηλεκτρονική συγγένεια, Eg: ενεργειακό χάσμα (126)
4.4.2 Διστρωματικές διατάξεις:

Για την αποφυγή των προβλημάτων των μονοστρωματικών διατάξεων παρασκευάστηκαν ενεργά υλικά τα οποία αποτελούνται από μία διεπιφάνεια μεταξύ δύο υλικών (heterojunctions), με το ένα να συμπεριφέρεται σαν δότης ηλεκτρονίων και το άλλο σαν δέκτης ηλεκτρονίων. Η χρήση των διατάξεων αυτών οφείλεται στον Tang [130], ο οποίος χρησιμοποίησε ενεργά υλικό αποτελούμενο από δύο διαφορετικές χρωστικές και είχε σαν αποτέλεσμα μια σημαντική αύξηση στην απόδοση.

Το κοινό χαρακτηριστικό με τις προηγούμενες διατάξεις είναι ότι πάλι το ενεργό υλικό τοποθετείται μεταξύ δύο ηλεκτροδίων με διαφορετικά ύπαργγογής, λόγω των οποίων οι δημιουργούμενοι από την διάσπαση των εξιτονίων φορείς συλλέγονται στα αντίστοιχα ηλεκτρόδια. Η διάσπαση όμως των εξιτονίων οφείλεται στο ηλεκτρικό πεδίο που δημιουργείται στην διεπιφάνεια των δύο υλικών λόγω διαφοράς στην ηλεκτρονική συγγένεια και το δυναμικό ιονισμού μεταξύ των δύο υλικών. Αν επομένως τόσο η ηλεκτρονική συγγένεια (χ) όσο και το δυναμικό ιονισμού (IP) είναι μεγαλύτερα στο ένα υλικό (δέκτης ηλεκτρονίων) από ότι στο άλλο (δότης ηλεκτρονίων), τότε το δημιουργούμενο ηλεκτρικό πεδίο ενοεί τον διαχωρισμό των φορτίων, με την προϋπόθεση αυτή η διαφορά της δυναμικής ενέργειας να είναι μεγαλύτερη από την ενέργεια δεσμού του εξιτονίου. Στο παρακάτω σχήμα φαίνεται η αρχή λειτουργίας αυτών των διατάξεων. Η απορρόφηση του φωτός γίνεται από τον δότη. Η διέγερση του δότη έχει σαν αποτέλεσμα ένα ηλεκτρόνιο να μεταβεί από το τροχιακό LUMO στο τροχιακό HOMO αφήνοντας πίσω μια οπή. Το ηλεκτρόνιο με την οπή μπορούν να επανασυνδέουν έχοντας σαν αποτέλεσμα την εκπομπή φωτός, ή μπορούν να διαχωριστούν. Ο διαχωρισμός αυτών ευνοείται αν υπάρχει διαφορά ανάμεσα στο τροχιακό LUMO μεταξύ δότη και δέκτη, οπότε το ηλεκτρόνιο μπορεί να μεταφερθεί [126].

Το πλεονέκτημα των διατάξεων αυτών σε σύγκριση με τις προηγούμενες είναι ότι τώρα η δημιουργία και η διάσπαση των εξιτονίων γίνεται στην διεπιφάνεια των δύο υλικών που απαρτίζουν το ενεργό υλικό και στην συνέχεια οι δημιουργούμενοι φορείς μεταφέρονται σε διαφορετικά υλικά. Έχουμε επομένως μικρότερη επανασύνδεση των φορέων σε σχέση με τις μονοστρωματικές διατάξεις. Ο έλεγχος επομένως της μορφολογίας της διεπιφάνειας των δύο υλικών που απαρτίζουν το
ενεργό υλικό διαδραματίζει πολύ σημαντικό ρόλο στην κατασκευή αποδοτικών διατάξεων. Τέλος χρησιμοποιούντας δύο διαφορετικούς ημιαγωγούς μπορούμε να ρυθμίσουμε καλύτερα το ενεργειακό χάσμα με αποτέλεσμα την βελτιστοποίηση της απορρόφησης του φωτός.

Τα υλικά τα οποία απαρτίζουν την διεπιφάνεια μπορεί να είναι κάποιο πολυμερές σε επαφή με φουλερένιο ή κάποιο παραγωγό του, πολυμερές σε επαφή με άλλο πολυμερές, πολυμερές σε επαφή με κάποιο μόριο, επαφή δύο χρωστικών κ.τ.λ.. Στην πρώτη περίπτωση στο πολυμερές γίνεται η απορρόφηση του φωτός, η δημιουργία του εξτρονίου στην διεπιφάνεια και ο διαχωρισμός του με την εισαγωγή του ηλεκτρονίου στο φουλερένιο. Το φουλερένιο επομένως συμπεριφέρεται σαν δέκτης ηλεκτρονίων και το πολυμερές σαν δότης ηλεκτρονίων. Γενικά τα υλικά τα οποία χρησιμοποιούνται στις διατάξεις αυτές θα πρέπει να παρουσιάζουν καλή αγωγιμότητα στην μεταφορά οπόν ή ηλεκτρονίων ανάλογα αν συμπεριφέρονται σαν δότες ή δέκτες ηλεκτρονίων. Ακόμα ο καλός έλεγχος της διεπιφάνειας μεταξύ δότη και δέκτη διαδραματίζει σημαντικό ρόλο στην κατασκευή αποδοτικών διατάξεων.

Σχήμα 21: Ενεργειακό διάγραμμα διστροφικής διάταξης. IP: ενέργεια ιονισμού, Φ: έργο εξαγωγής, χ: ηλεκτρονική συγγένεια, Eg: ενεργειακό χάσμα (126)
4.4.3 Διατάξεις διεσπαρμένων ετεροεπαφών:

Η επόμενη εξέλιξη στα οργανικά φ/β για μεγαλύτερη ακόμα απόδοση ήρθε με την παρασκευή ενεργών υλικών τα οποία αποτελούνται όχι από επίπεδες διεσπαρμένες μεταξύ των δύο υλικών, αλλά από διεσπαρμένες οι οποίες εκτείνονται σε όλο τον όγκο του ενεργού υλικού. Με αυτό τον τρόπο επιτεύχθηκε μια σημαντική αύξηση στην διεσπαρμένη, γεγονός το οποίο είναι επιθυμητό μιας και όπως αναφέρθηκε παραπάνω στην διεσπαρμένη δημιουργούνται και διασπάνται τα εξιτώνια, τα οποία εξιτώνια έχουν μικρό μήκος διάρκειας. Αρα για να φθάσουν στα ηλεκτρόδια οι φορείς θα πρέπει η απόσταση μεταξύ του σημείου που τα εξιτώνια δημιουργούνται και διασπάνται να μη είναι πολύ μακριά από τα ηλεκτρόδια. Στις διατάξεις αυτές θα μπορούσε κανείς να πει ότι όλος ο όγκος του ενεργού υλικού συμμετέχει στην φ/β διαδικασία και όχι ένα μόνο μικρό μέρος του, όπως συμβαίνει στις μονοστρωματικές διατάξεις για παράδειγμα, όπου μόνο στην διεσπαρμένη ενεργού υλικού και ηλεκτροδίου συμβαίνει η διάσπαση των εξιτώνιον.

Η επιτυχής κατασκευή των ετεροεπαφών αυτών περιλαμβάνει όχι απλώς την εύρεση κατάλληλων υλικών τα οποία να μπορούν να αναμιχθούν, αλλά εξίσου σημαντικά θα πρέπει να λαμβάνει υπόψη την ύπαρξη συνεχόμενων αργώτυπων διαδρομών ώστε οι φορείς να μπορούν να φθάσουν και να συλλεχθούν από τα αντίστοιχα ηλεκτρόδια [127].

Σχήμα 22: Σχηματική αναπαράσταση διατάξεων διεσπαρμένης ετεροεπαφής

Για παράδειγμα η περιοχή 1 στο παραπάνω σχήμα μπορεί να είναι οπτικά ενεργή, αλλά όχι ηλεκτρικά ενεργή από την στεγή που δεν συνδέεται με κάποιο ηλεκτρόδιο. Σήμερα υπάρχουν πολλές τεχνικές οι οποίες χρησιμοποιούνται για την
παρασκευή τέτοιων ετεροεπαφών (spin coat, doctor blade), αλλά και υλικά. Η δομή του ενεργού υλικού καθορίζεται σε μεγάλο βαθμό από τον τρόπο παρασκευής του αλλά και από τους χρησιμοποιουμένους ηλεκτρολύτες.

4.4.4 Στρωματοειδείς – βαθμωτές διατάξεις:

Στις διατάξεις αυτές παρεμβάλλεται μεταξύ του ενεργού υλικού και των ηλεκτροδίων υμένια από τα ανάλογα υλικά δότη – δέκτη από τα οποία αποτελείται το ενεργό υλικό. Το ενεργό υλικό μπορεί να αποτελείται από μια διεσπαρμένη ετεροεπαφή ή όχι, απλώς τώρα δεν βρίσκεται σε άμεση επαφή με τα ηλεκτρόδια. Ο ρόλος επομένως των υμενίων αυτών είναι να εμποδίζουν να συλλέγονται φορείς σε αντίθετα ηλεκτρόδια, π.χ. ηλεκτρόνια στο ηλεκτρόδιο των οπών, μειώνοντας την πυθανότητα επανασύνδεσης. Στο παρακάτω σχήμα τα στρώματα PEDOT:PSS και LiF χρησιμοποιούνται γι’ αυτό ακριβώς τον σκοπό [131].

Ο ρόλος βέβαια των ενδιάμεσων στρωμάτων δεν είναι μόνο αυτός. Το στρώμα π.χ. PEDOT:PSS χρησιμοποιεί για να κάνει πιο λεία την επιφάνεια του ITO, προστατεύει το ενεργό υλικό από την επαφή με τον οξυγόνο του αέρα και εμποδίζει επίσης την διάχυση του υλικού της καθόδου στο ενεργό υλικό το οποίο θα είχε ανεπιθύμητες συνέπειες, όπως παγίδες για τους μεταφερόμενους φορείς [132,133].

Το στρώμα LiF και αυτό με την σειρά του λειτουργεί σαν ένα προστατευτικό στρώμα μεταξύ μετάλλου και ενεργού υλικού [128]. Διάφορες έρευνες απέδειξαν ότι η χρήση ενός λεπτού στρώματος LiF 5-10 Å θέλει ως αποτέλεσμα την αύξηση της απόδοσης της διάταξης λόγω ότι το στρώμα αυτό χαμηλώνει το ενεργειακό φράγμα για την εισαγωγή των ηλεκτρονίων από το ενεργό υλικό στο ηλεκτρόδιο [134], αλλά και γενικότερα η χρήση ενός τέτοιου στρώματος αυξάνει τον παράγοντα πληρότητας (fill factor) και σταθεροποιεί την τάση ανοικτού κυκλώματος V_{oc} [135].
Σχήμα 23: Σχηματική αναπαράσταση στρωματοειδούς διατάξεως

Να σημειώσουμε ότι έχουν προταθεί και διατάξεις οι οποίες δεν μπορούν να κατηγοριοποιηθούν σε κάποια από τις παραπάνω κατηγορίες. Ενδεικτικά αναφέρουμε μία διατάξη στην οποία μεταξύ των δύο πολυμερών που αποτελούν το ενεργό υλικό παρεμβάλλεται κάποιο στρώμα χρωστικής για να έχουμε καλύτερη απορρόφηση της ακτινοβολίας ή χρησιμοποιείται κάποιο ανόργανο στρώμα για να επιτευχθεί καλύτερη μεταφορά των φορτίων.

4.4.5 Επίλογος:

Τα οργανικά φ/β βρίσκονται ακόμα στο στάδιο της εξέλιξης και θα χρειαστεί πολύ προσπάθεια για να μπορέσουν τα φ/β αυτά να ανταγωνιστούν τα ανόργανα. Σήμερα πολλές ερευνητικές ομάδες έχουν ανακοινώσει αποδόσεις της τάξης του 4 – 5 %, με χρόνο ζωής των διατάξεων αυτών περίπου 10^4 άρες. Εάν η εξέλιξη των φ/β αυτών συνεχιστεί με τον ίδιο ρυθμό στα επόμενα χρόνια αναμένεται τα φ/β αυτά να αποκτήσουν εμπορικές εφαρμογές. Στις εμπορικές εφαρμογές που μπορούν να διαδραματίσουν ρόλο τα φ/β αυτά συγκαταλέγονται και εφαρμογές όπως ενσωμάτωση φ/β σε ρούχα [136] και γενικότερα σε ελαφριές και εύκαμπτες διατάξεις.
Βιβλιογραφία