ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ
ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ

Αγγελάκης Στέφανος

Κατασκευή και Πειραματική Αξιολόγηση Ομοιώματος Μαστού για Έλεγχο Απεικόνισης Διπλής Ενέργειας

Επιβλέπων Καθηγητής:
Βαλαής Ιωάννης, Αναπληρωτής Καθηγητής, Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας (πρώην Τεχνολογίας Ιατρικών Οργάνων), Σχολή Τεχνολογικών Εφαρμογών, Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας

Τριμελής Εξεταστική Επιτροπή:
Βαλαής Ιωάννης, Αναπληρωτής Καθηγητής, Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας, Σχολή Τεχνολογικών Εφαρμογών, Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας
Φούντος Γεώργιος, Αναπληρωτής Καθηγητής, Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας, Σχολή Τεχνολογικών Εφαρμογών, Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας
Σακελλαρόπουλος Γεώργιος, Αναπληρωτής Καθηγητής, Τμήμα Ιατρικής, Πανεπιστήμιο Πατρών
Περιεχόμενα

Πρόλογος ... 8

Κεφάλαιο 1. Μαστογραφία ... 8
 1.1 Εισαγωγή .. 8
 1.2 Σύνθεση του ιστού του μαστού .. 10
 1.3 Διαγνωστική Μαστογραφία ... 10
 1.4 Διαφορές μεταξύ απεικονιστικής μαστογραφίας και διαγνωστικής μαστογραφίας 10
 1.5 Πλεονεκτήματα της Μαστογραφίας ... 10
 1.6 Μειονεκτήματα της Μαστογραφίας ... 11
 1.6.1 Κίνδυνος από την ακτινοβολία .. 11
 1.6.2 Ευρήματα ψευδώς – False Positives (Risk of false alarm) 12
 1.6.3 Υπερδιάγνωση (overdiagnosis) .. 12
 1.7 Περιορισμοί που υπάρχουν στη Μαστογραφία ... 12

Κεφάλαιο 2. Ψηφιακή Μαστογραφία ... 13
 2.1 Διαφορές με την κλασική μαστογραφία ... 14
 2.2 Ψηφιακή Τομοσύνθεση μαστού ... 16

Κεφάλαιο 3. Είδη Ψηφιακής Μαστογραφίας ... 17
 3.1 Ψηφιακή Μαστογραφία Πλήρους Πεδίου (Full Field Digital Mammo-graphy-FFDM) 17
 3.2 Ψηφιακή Μαστογραφία με χρήση Απεικονιστικού Παράγοντα Αντίθεσης (σκιαγραφικό)-Contrast-enhanced digital mammography 18
 3.2.1 Πλεονεκτήματα και δυνατότητες .. 19
 3.2.2 Σύγκριση με άλλες τεχνικές ... 19
 3.3 Μαστογραφία Διπλής Ενέργειας-Dual Energy Mammography 20

Κεφάλαιο 4. Ομοιώματα που χρησιμοποιούνται στη Μαστογραφία Διπλής Ενέργειας 20
 4.1 Ομοιώματα κατασκευασμένα από gel ... 20
 4.1.1 Διαδικασία δημιουργίας gel με βάση το DMSO 21
 4.1.2 Διαδικασία δημιουργίας gel με βάση την αιθανόλη......................... 22
 4.1.3 Επίδραση της συγκέντρωσης του PVAL σε gels που έχουν ως βάση την αιθανόλη ... 22
 4.1.4 Εξασθένιση των ακτίνων X που παρουσιάζουν τα gels 23
 4.1.5 Μηχανικές ιδιότητες .. 23
 4.1.6 Συμπεράσματα .. 23
 4.2 Ομοιώματα τριών συστατικών (three component phantoms) 24
 4.2.1 Ομοιώματα A ... 24
 4.2.2 Ομοιώματα B ... 26
4.3 Τρισδιάστατο ομοίωμα μαστού σε μορφή λογισμικού για προσομοιώσεις στη μαστογραφία..27
4.3.1 Μοντελοποίηση του μαστού...27
4.3.2 Ομοιώματα σε μορφή λογισμικού για την αξιολόγηση της ψηφιακής τομοσύνθεσης......30
4.3.3 Υλικά Ομοιώματα (Hardware Phantoms) για την αξιολόγηση της κλινικής χρήσης της
Ψηφιακής Τομοσύνθεσης ..31
4.5 Ομοίωμα για την αξιολόγηση της εικόνας των αποτιτανώσεων από ένα ψηφιακό σύστημα
μαστογραφίας διπλής ενέργειας..32
4.5.1 Ομοίωμα με μορφή πλάκας (slab phantom)..33
4.5.2 Ομοίωμα με χρήση σφηνών (wedge phantom)...33
4.5.3 Ομοίωμα αποτιτανώσεων ..33
4.5.4 Ολοκληρωμένο ομοίωμα σφηνών-αποτιτανώσεων (wedge-calcification phantom)........33
4.6 Ομοίωμα για τη διεξαγωγή ελέγχων δοσιμετρίας στην μαστογραφία..........................34
4.6.1 Υλικά ισοδύναμα των ιστών του μαστού...34
4.6.2 Βήματα για την κατασκευή του ομοιώματος..35
4.6.3 Αποτελέσματα ..35
4.5 Ομοίωμα για την αξιολόγηση της εικόνας των αποτιτανώσεων από ένα ψηφιακό σύστημα
μαστογραφίας διπλής ενέργειας..32
4.5.1 Ομοίωμα με μορφή πλάκας (slab phantom)..33
4.5.2 Ομοίωμα με χρήση σφηνών (wedge phantom)...33
4.5.3 Ομοίωμα αποτιτανώσεων ..33
4.5.4 Ολοκληρωμένο ομοίωμα σφηνών-αποτιτανώσεων (wedge-calcification phantom)........33
4.6 Ομοίωμα για τη διεξαγωγή ελέγχων δοσιμετρίας στην μαστογραφία..........................34
4.6.1 Υλικά ισοδύναμα των ιστών του μαστού...34
4.6.2 Βήματα για την κατασκευή του ομοιώματος..35
4.6.3 Αποτελέσματα ..35
4.5 Ομοίωμα για την αξιολόγηση της εικόνας των αποτιτανώσεων από ένα ψηφιακό σύστημα
μαστογραφίας διπλής ενέργειας..32
4.5.1 Ομοίωμα με μορφή πλάκας (slab phantom)..33
4.5.2 Ομοίωμα με χρήση σφηνών (wedge phantom)...33
4.5.3 Ομοίωμα αποτιτανώσεων ..33
4.5.4 Ολοκληρωμένο ομοίωμα σφηνών-αποτιτανώσεων (wedge-calcification phantom)........33
4.6 Ομοίωμα για τη διεξαγωγή ελέγχων δοσιμετρίας στην μαστογραφία..........................34
4.6.1 Υλικά ισοδύναμα των ιστών του μαστού...34
4.6.2 Βήματα για την κατασκευή του ομοιώματος..35
4.6.3 Αποτελέσματα ..35
4.5 Ομοίωμα για την αξιολόγηση της εικόνας των αποτιτανώσεων από ένα ψηφιακό σύστημα
μαστογραφίας διπλής ενέργειας..32
4.5.1 Ομοίωμα με μορφή πλάκας (slab phantom)..33
4.5.2 Ομοίωμα με χρήση σφηνών (wedge phantom)...33
4.5.3 Ομοίωμα αποτιτανώσεων ..33
4.5.4 Ολοκληρωμένο ομοίωμα σφηνών-αποτιτανώσεων (wedge-calcification phantom)........33
4.6 Ομοίωμα για τη διεξαγωγή ελέγχων δοσιμετρίας στην μαστογραφία..........................34
4.6.1 Υλικά ισοδύναμα των ιστών του μαστού...34
4.6.2 Βήματα για την κατασκευή του ομοιώματος..35
4.6.3 Αποτελέσματα ..35
Κεφάλαιο 5. Κατασκευή Ομοιώματος..39
5.1 Διαδικασία κατασκευής εξωτερικού περιβλήματος..39
5.2 Διαδικασία παρασκευής για το ψηφιακοποιημένο λαρδί45
5.3 Διαδικασία παρασκευής τελικού μίγματος..45
Κεφάλαιο 6. Ακτινοβόληση Ομοιώματος..50
6.1 Συνθήκες ακτινοβόλησης...50
Αποτελέσματα ...55
Συμπεράσματα ...56
Μελλοντικές χρήσεις ..57
Βιβλιογραφία ...58
Περίληψη

Αρχικός στόχος της παρούσας διπλωματικής εργασίας ήταν η έρευνα για την εύρεση υλικών ικανών να προσομοιώσουν τον ανθρώπινο μαστό και στη συνέχεια η μελέτη των ιδιοτήτων των υλικών αυτών, με απότερο σκοπό την κατασκευή ενός ομοιώματος που θα μιμείται έναν ανθρώπινο μαστό. Λαμβάνοντας υπόψη τον διαθέσιμο εργαστηριακό εξοπλισμό αλλά και θέματα όπως το κόστος και η διαθεσιμότητα, μελετήθηκαν ενδελεχώς διάφορα υλικά ώστε να μπορέσουν να προσομοιωθούν επιτυχώς ο αδενόδης και ο λιπώδης ιστός του μαστού καθώς και για τον τρόπο κατασκευής του ομοιώματος. Αρχικά κατασκευάστηκε το περίβλημα του ομοιώματος χρησιμοποιώντας κάποια κομμάτια από plexiglass. Τα κομμάτια αυτά συγκολλήθηκαν με τέτοιο τρόπο ώστε να μπορέσουν να προσομοιωθούν επιτυχώς ο αδενικό και ο λιπώδης ιστός του μαστού καθώς και για τον τρόπο κατασκευής του μαστού. Αρχικά κατασκευάστηκε το περίβλημα του ομοιώματος χρησιμοποιώντας κάποια κομμάτια από plexiglass. Τα κομμάτια αυτά συγκολλήθηκαν με τέτοιο τρόπο ώστε το τελικό ομοίωμα να αναπαριστά έναν αδενώδη και ο λιπώδη ιστός του μαστού καθώς και για τον τρόπο κατασκευής του μαστού. Αρχικά κατασκευάστηκε το περίβλημα του ομοιώματος χρησιμοποιώντας κάποια κομμάτια από plexiglass.

Τέλος, πραγματοποιήθηκε η ακτινοβόληση του ομοιώματος προκειμένου να διαπιστωθεί ότι μπορεί να χρησιμοποιηθεί για την πειραματική αξιολόγηση ενός μαστογραφικού συστήματος διπλής ενέργειας. Οι διαδικασίες κατασκευής του περίβλημα και παρασκευής του μίγματος του ομοιώματος μαστού, καθώς και οι συνθήκες ακτινοβόλησης, αναφέρονται εκτενώς στο πειραματικό μέρος της παρούσας διπλωματικής εργασίας.
Abstract

The initial aim of this thesis was the research for finding materials that are capable of simulating human breast tissue and then the study of their properties in order to construct a phantom that could mimic human breast tissue. Taking into account the available laboratory equipment and issues such as cost and availability, various materials were thoroughly studied in order to simulate glandular and adipose breast tissue and also concerning the way that the phantom could be constructed. In the beginning, the phantom jar was constructed by Plexiglass slabs. These slabs were attached in such a way that the final phantom would simulate a compressed breast. Afterwards, the mixture simulating glandular and adipose breast tissue was prepared. Refined lard (derived from a pork fat rendering process that will be described in the experimental part) and egg whites were used to simulate adipose and glandular tissue, respectively. As a final result a phantom with inhomogeneities which represents very accurately the shape and the composition of the female breast was created. In order to have the presence of calcifications, a calcification phantom was placed underneath the breast phantom before the irradiation process. The calcification phantom was a 4mm thick Plexiglass slab with 5 holes of 3mm diameter. For simulating calcifications of different sizes, these holes were filled with a mixture of hydroxyapatite and epoxy resin. The thicknesses of those calcifications were 100, 200, 300, 400 and 500 μm. Finally, in order to determine that the phantom can be used for the experimental evaluation of a dual energy mammography system, an irradiation was carried out. Jar construction and mixture preparing as well as irradiation processes concerning the breast phantom are presented in detail in the experimental part of the present thesis.
Σκοπός

Σκοπός της παρούσας διπλωματικής εργασίας ήταν η μελέτη και η εύρεση των κατάλληλων υλικών που θα μπορούσαν να προσομοιώσουν με επιτυχία τον ανθρώπινο μαστό λαμβάνοντας ταυτόχρονα υπόψη θέματα κόστους και διαθεσιμότητας, η κατασκευή ενός ομοιώματος μαστού χρησιμοποιώντας τα υλικά αυτά και η πειραματική αξιολόγησή του εν λόγω ομοιώματος με χρήση μαστογραφικού συστήματος.

Ευχαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω τον Επιβλέποντα Καθηγητή κ. Ιωάννη Βαλαη για την συνεχή καθοδήγηση και τη βοήθεια που μου παρέδωσε καθώς και τον έλεγχο της διπλωματικής μου εργασίας. Ο χαρακτήρας, το ήθος καθώς και ο επαγγελματισμός που επέδειξε έπαιζαν καθοριστικό ρόλο στην ολοκλήρωση της εργασίας. Επίσης, θα ήθελα να ευχαριστήσω τους κυρίους Γεώργιο Φούντο και τις κυρίες Βάϊα Κούκου και Νίκη Μαρτίνη για τη σημαντική βοήθεια που παρέχατε αλλά και τις γνώσεις που μου μοιράστηκαν. Θα ήθελα να ευχαριστήσω την κυρία Χριστίνα Φωτεινά για την προσωπική χρήση που προσέφερε και για τη διαθέσιμη βοήθεια που παρέχατε. Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου και όλους τους φίλους μου για την αμέριστη συμπαράσταση, κατανόηση και ανιψιάση που μου παρέχατε από την αρχή μέχρι το τέλος της εργασίας.
Θεωρητικό Μέρος

Πρόλογος

Λόγω της σχέσης με την ιονίζουσα ακτινοβολία, η προέλευση της μαστογραφίας μπορεί να τοποθετηθεί χρονικά στην περίοδο ανακάλυψης των ακτίνων X από τον Wilhelm Roentgen το 1895. Η χρήση της μαστογραφίας όμως σαν απεικονιστική τεχνική συναντάται για πρώτη φορά το 1959, όπου ο Robert Egan στο University of Texas M.D Anderson Cancer Center, συνδυάζοντας μια τεχνική χαμηλών kVp με υψηλά mA και φιλμ μονού γαλακτώματος (single emulsion film), παρείχε τη δυνατότητα της ανίχνευσης αποτιτανώσεων στον ιστό του μαστού. Μέσο της τεχνικής αυτής, κατέστη δυνατή για πρώτη φορά η πρώιμη ανίχνευση του καρκίνου του μαστού. Η ικανότητα αυτή, έχει εδραιώσει τη μαστογραφία ως την καλύτερη απεικονιστική τεχνική για την αντιμετώπιση του καρκίνου του μαστού στις γυναίκες.

Επιτακτική ανάγκη για τη διεξαγωγή μιας μεγάλης πλήθους δοκιμών, μετρήσεων και ποιοτικών ελέγχων, χωρίς να επιβάρυνε τον ασθενή, έχει οδηγήσει σε μια τεράστια έρευνα για την εύρεση υλικών που θα μπορούσαν να προσομοιώσουν το γυναικείο μαστό. Υλικά όπως το plexiglass (PMMA-Poly methyl methacrylate) και το ζωικό λίπος έχει αποδειχθεί ότι μπορούν να προσομοιώσουν με επιτυχία τον αδενικό καθώς και τον λιπώδη ιστό ενός γυναικείου μαστού.

Κεφάλαιο 1. Μαστογραφία

1.1 Εισαγωγή

Η μαστογραφία αποτελεί μια εξειδικευμένη τεχνική ιατρικής απεικόνισης, η οποία μέσω της χρήσης ενός συστήματος ακτίνων X χαμηλής ενέργειας αποσκοπεί στην έγκαιρη ανίχνευση και διάγνωση ασθενειών όπως ο καρκίνος του μαστού. Κύριος και πρωταρχικός στόχος της, είναι η ανίχνευση του καρκίνου του μαστού πριν από την εκδήλωση σχετικών συμπτωμάτων ή την ψηλάφηση ογκών.

Η μαστογραφία αντιπροσωπεύει μια μέτρηση η οποία [1].

1) Επιτρέπει την έγκαιρη ανίχνευση του καρκίνου του μαστού με απώτερο σκοπό τη μείωση της θνησιμότητας και τη χρήση βελτιωμένων θεραπευτικών τεχνικών.

2) Σχετίζεται με αποδεκτές παρενέργειες στο θέμα της δόσης για τον εξεταζόμενο πληθυσμό.

3) Αποδίδει αναπαραγώγια αποτελέσματα.

4) Μπορεί να εφαρμοστεί σε τακτά χρονικά διαστήματα με αποδεκτό κόστος για την κοινωνία.

Η αντίθεση δύο ιστών με διαφορετικά πάχη και διαφορετικούς γραμμικούς συντελεστές εξασθένισης δίνεται από την σχέση (1) [2]:

\[C_s = \mu_1 \Delta x_1 - \mu_2 \Delta x_2 \] (1)

Όπου \(\mu_1 \) και \(\mu_2 \) οι αντίστοιχοι γραμμικοί συντελεστές εξασθένισης και \(\Delta x_1, \Delta x_2 \) τα διαφορετικά πάχη των δύο ιστών.
Όπως είναι γνωστό, οι γραμμικοί συντελεστές εξασθένισης μ_1 και μ_2 μειώνονται στις υψηλές ενέργειες. Συνεπώς είναι αναγκαίο να εκθέσουμε την αντίθεση σε μια ηχητικό-φωτοηλεκτρική εικόνα. Στην περίπτωση του μαστού, παράγοντες που καθορίζουν την αντίθεση, όπως είναι η πυκνότητα και ο ατομικός αριθμός, παρουσιάζουν πολύ μικρές διαφορές στις τιμές μεταξύ υγιούς και καρκινικού ιστού [2].

Στις χαμηλές ενέργειες στις οποίες πραγματοποιείται η μαστογραφία, ο βασικότερος μηχανισμός αλληλεπίδρασης είναι το φωτοηλεκτρικό φαινόμενο. Με το φωτοηλεκτρικό φαινόμενο οι διαφορές στον ατομικό αριθμό μεταξύ δύο διαφορετικών ιστών ενισχύονται. Όπως αναφέρθηκε παραπάνω, η διαφοροποίηση στον ατομικό αριθμό μεταξύ δύο διαφορετικών ιστών του μαστού είναι πολύ μικρή. Συνεπώς με τη χρήση χαμηλών ενεργειών που έχει ως επακόλουθο την κυρίαρχη παρουσία του φωτοηλεκτρικού φαινομένου, οι διαφορές στον ατομικό αριθμό μεταξύ δύο διαφορετικών ιστών του μαστού ενισχύονται σε μεγάλο βαθμό, με αποτέλεσμα να αυξάνεται ικανοποιητικά η αντίθεση στην τελική μαστογραφική εικόνα [2].

Μια μαστογραφία δεν μπορεί να αποδείξει με βεβαιότητα ότι η παρουσία μιας αλλοίωσης αποτελεί στοιχείο ύπαρξης κακοήθιας. Μπορεί όμως να παρέχει χρήσιμες πληροφορίες για την αναγκαιότητα περαιτέρω διερεύνησης του προβλήματος μέσω της χρήσης άλλων τεχνικών όπως είναι οι Ultrasounds και η Magnetic Resonance Imaging (MRI).

Οι δύο τύποι αλλοιώσεων της φυσιολογικής κατάστασης του μαστού που μπορεί να ανιχνευθούν σε μια μαστογραφία, είναι οι αποτιτανώσεις και οι μάζες [3,4].

Αποτιτανώσεις:
Οι αποτιτανώσεις είναι μικροσκοπικές εναποθέσεις αλάτων (tiny mineral deposits) εντός του ιστού του μαστού, οι οποίες απεικονίζονται σαν μικρές λευκές κηλίδες και μπορούν (όχι πάντα με βεβαιότητα) να αποτελέσουν ενδείξεις καρκινικής δραστηριότητας στις συγκεκριμένες περιοχές.

Μάζες:
Μια μάζα η οποία μπορεί ή όχι να περιέχει αποτιτανώσεις, μπορεί να είναι μια κύστη ή ένας μη καρκινικός συμπαγής όγκος, όμως μπορεί εξίσου να είναι και καρκίνος. Στην περίπτωση που μια μάζα δεν είναι μια απλή κύστη με υγρό αλλά φαίνεται σαν συμπαγής όγκος, απαιτείται περαιτέρω διερεύνηση με την πραγματοποίηση βιοψίας.

Κατά τη διάρκεια μιας μαστογραφικής εξέτασης, ο ασθενής παίρνει θέση μπροστά από τη μαστογραφική μονάδα και ο μαστός τοποθετείται πάνω σε ένα ειδικό έδρανο συμπίεσης (compression paddle) [5].

Η συμπίεση του μαστού είναι απαραίτητη για τους εξής λόγους [5]:

- Για να απλώσουμε τον ιστό του μαστού, έτσι ώστε να μειωθεί η πιθανότητα ακόμη και οι μικρότερες αλλοιώσεις να κρύβονται από υπερκείμενους ιστούς.
- Για να μπορέσουμε να μειώσουμε τη δόση, δεδομένος ότι θα θέλουμε να απεικονίσουμε έναν ιστό με μικρότερο πάχος.
- Με τη συμπίεση ο μαστός ακινητοποιείται και έτσι μπορεί να ελαχιστοποιηθεί η ασάφεια που θα υπήρχε στην τελική εικόνα λόγω κίνησης.
- Με τη συμπίεση μειώνεται η σκέδαση των ακτίνων X, με αποτέλεσμα να αυξάνεται η ευκρίνεια της εικόνας.
1.2 Σύνθεση του ιστού του μαστού
Για τη διεξαγωγή ακτινολογικών μελετών, η σύνθεση του ιστού του μαστού μπορεί να θεωρηθεί ως ένα ομοιογενές μίγμα αδενικού και λιπώδους ιστού και κατά συνέπεια μπορεί να περιγραφεί από το ποσοστό βάρους του αδενικού ιστού. Το χαρακτηριστικό αυτό συνιστά την αδενικότητα του μαστού, ή διαφορετικά το λεγόμενο glandularity. Οι αδενικοί ιστοί περιλαμβάνουν τους ιστούς του μαστού οι οποίοι ενέχουν μεγαλύτερο κίνδυνο για την ανάπτυξη καρκίνου και αρα η δόση προς του ιστούς αυτούς αποτελεί την σημαντικότερη παράμετρο για τον προσδιορισμό των κινδύνων λόγω ακτινοβολίας σε μια μαστογραφική εξέταση [6]. Η αδενικότητα είναι διαφορετική σε κάθε άτομο, αλλά έχει παρατηρηθεί ότι σχετίζεται με το πάχος του συμπιεσμένου μαστού και με την ηλικία του [7,8].

1.3 Διαγνωστική Μαστογραφία
Ο κυριότερος στόχος της διαγνωστικής μαστογραφίας όπως έχει ήδη αναφερθεί, είναι ο εντοπισμός της ακριβούς τοποθεσίας και του μεγέθους μιας αλλοίωσης που μπορεί να υπάρχει σε έναν γυναικείο μαστό καθώς και η απεικόνιση του περιβάλλοντος ιστού και των λεμφαδένων. Σε αρκετές περιπτώσεις, η διαγνωστική μαστογραφία μπορεί να οδηγήσει στην εκτίμηση ότι ένας ογκός είναι εν τέλει καλοήθης. Ωστόσο, εάν μια αλλοίωση κριθεί ύποπτη, τότε απαιτείται η περαιτέρω διερεύνησή της με χρήση άλλων απεικονιστικών τεχνικών (Υπέρηχοι, MRI) ή ακόμη και με βιοψία. Η βιοψία αποτελεί την πιο ακριβή μέθοδο προκειμένου να διαπιστωθεί εάν ένας ογκός είναι καρκινικός ή καλοήθης [9].

Η διαγνωστική μαστογραφία χρησιμοποιείται συνήθως για την αξιολόγηση ενός ασθενούς με μήθυπα της κλινικής ως ένα εξόγκωμα στον μαστό ή μια αλλοίωση της θηλής [5].

1.4 Διαφορές μεταξύ απεικονιστικής μαστογραφίας και διαγνωστικής μαστογραφίας
Στην απεικονιστική μαστογραφία λαμβάνονται ακτινογραφίες από δύο διαφορετικές οπτικές γωνίες σε κάθε μαστό. Στην διαγνωστική μαστογραφία και κατά συνέπεια, λαμβάνονται συνήθως επιπλέον ακτινογραφίες από διαφορετικές προβολές του μαστού [9].

Η διαγνωστική μαστογραφία είναι συνήθως περισσότερο χρονοβόρα και έχει μεγαλύτερο κόστος από την απεικονιστική μαστογραφία [9].

1.5 Πλεονεκτήματα της Μαστογραφίας
Χωρίς αμφιβολία, η απεικόνιση του μαστού όπως και κάθε μέτρηση ή εξέταση στον τομέα της Ιατρικής, προκαλεί παρενέργειες στον εξεταζόμενο άτομο. Κυρίαρχο ζήτημα όμως αποτελεί το κατά πόσο οι παρενέργειες αυτές μπορούν να αντισταθμιστούν από τα αναμενόμενα οφέλη που μπορεί να προσφέρει η συγκεκριμένη εξέταση [1].
Ορισμένα από τα πλεονεκτήματα-οφέλη της μαστογραφίας αναφέρονται στη συνέχεια [1]:

- Κύριο πλεονέκτημα αποτελεί η έγκαιρη ανίχνευση και διάγνωση του καρκίνου του μαστού η οποία με τη σειρά της είχε πολύ σημαντικό αντίκτυπο στην πρόγνωση.

- Η απεικόνιση του μαστού βελτιώνει σε πολύ σημαντικό βαθμό την ικανότητα του γιατρού να αντιμετωπίσει μικρούς όγκους οι οποίοι δεν είναι δυνατόν να αναγνωριστούν μέσω μιας ψηλάφησης. Το γεγονός αυτό προσφέρει τη δυνατότητα επιλογής μέσα από διαφορετικές θεραπευτικές τεχνικές, έτσι ώστε να μπορεί να επιπλέει ένα καλύτερο δυνατό αποτέλεσμα για τον ασθενή.

- Η χρήση της απεικονιστικής μαστογραφίας επηρεάζει επίσης σημαντικά τη δυνατότητα ανίχνευσης μικρών αλλοιώσεων σε ιστούς οι οποίοι περιορίζονται στους αγωγούς γάλακτος εντός του μαστού. Μια τέτοια δυσμορφία ονομάζεται πορογενές καρκίνωμα in situ (ductal carcinoma in situ - DCIS). Οι όγκοι αυτοί είναι σημαντικό να μπορούν να αφαιρεθούν όταν βρίσκονται σε πρώιμο στάδιο και αυτό μπορεί να επιτευχθεί μόνο ύστερα από την ανίχνευσή τους με τη βοήθεια της μαστογραφίας.

- Ακόμη και στην περίπτωση που είναι αναγκαίο να εξετασθούν συμπληρωματικές θεραπευτικές τεχνικές λόγω υπερδιάγνωσης (Κεφ. 1.6.3), ο αριθμός των μαστεκτομών και των χημειοθεραπειών ελαττώνεται με τη βοήθεια της μαστογραφίας [1].

1.6 Μειονεκτήματα της Μαστογραφίας

1.6.1 Κίνδυνος από την ακτινοβολία

Η μαστογραφία αποτελεί στη συνέχεια μια ακτινογραφική εξέταση. Το γεγονός αυτό υποδηλώνει ότι σχετίζεται άμεσα με μια ποσότητα ακτινοβολίας. Η μέση αδενική δόση (mean glandular dose) υπολογίζεται ύστερα από 4 mGy ανά μαστό. Η ατομική δόση μπορεί να διαφέρει από ασθενή σε ασθενή ανάλογα με το μέγεθος του μαστού και τη συμπίεση στη οποία υποβάλλεται σε κάθε περίπτωση. Σε γυναίκες με ηλικία μεγαλύτερη των 40 χρόνων, ο κίνδυνος από την ακτινοβολία μιας μαστογραφικής εξέτασης είναι πολύ μικρότερος σε σύγκριση με τον κίνδυνο της εμφάνισης καρκίνου του μαστού [1].

Για να γίνει περισσότερη κατανόηση η αναγκαιότητα της μαστογραφίας σε γυναίκες με ηλικία μεγαλύτερη των 40 χρόνων αρκεί να αναφέρουμε ότι σε μια γυναίκα 50 χρονών ο κίνδυνος εμφάνισης καρκίνου του μαστού παρουσιάζει ένα ποσοστό 8.8 %. Εάν η γυναίκα αυτή σε διάρκεια μερικών χρόνων (για παράδειγμα από τα 50 μέχρι τα 59) υποβάλλεται σε εξαμηνιαίο μαστογραφικό έλεγχο, τότε το παραπάνω ποσοστό θα μπορούσε να ανέβει στο 8.9 %. Ως εκ τούτου, η αύξηση του ποσοστού αυτού είναι αμελητέα έναντι στα οφέλη που θα μπορούσε να έχει μια έγκαιρη ανίχνευση είτε από μια μαστογραφική εξέταση [10].
1.6.2 Ευρήματα ψευδώς θετικά - False Positives (Risk of false alarm)

Όπως κάθε ιατρική εξέταση, έτσι και η μαστογραφία μπορεί να εντοπίσει αλλοίωσεις οι οποίες χρήζουν περαιτέρω διερεύνησης. Οι αλλοίωσεις αυτές εντούτοις είναι πολύ πιθανό να αποδείχθουν καλοήθεις. Το γεγονός αυτό αναφέρεται ως “εσφαλμένος συναγερμός” και τα ευρήματα της πρώτης εξέτασης ως “ψευδώς θετικά”. Από ψυχολογικής άποψης ένας θετικός αποτέλεσμα μπορεί να προκαλέσει άγχος και φόβο στον εξεταζόμενο δεδομένου ότι θα χρειαστεί να επαναλάβει την εξέταση και να περιμένει για την ακούση των αποτελεσμάτων. Τέλος, η ανάγκη ορισμένες φορές για ιστοπαθολογική διερεύνηση κάποιας αλλοίωσης, ενισχύει κατά πολύ τον φόβο του εξεταζόμενου για την παρουσία καρκίνου [1].

1.6.3 Υπερδιάγνωση (overdiagnosis)

Με τον όρο “υπερδιάγνωση”, αναφέρεται το γεγονός ότι ο αριθμός των περιπτώσεων εμφάνισης καρκίνου του μαστού σε έναν πληθυσμό ατόμων που υποβάλλονται σε μαστογραφία είναι μεγαλύτερος από τον αριθμό των περιπτώσεων ενός παρόμοιου πληθυσμού που δεν υπόκειται σε μαστογραφία. Ορισμένες περιπτώσεις καρκίνου οι οποίες ανιχνεύονται στον πρώτο πληθυσμό ατόμων, δεν θα είχαν γίνει ποτέ ορατές εάν δεν είχε πραγματοποιηθεί η εξέταση, και ο εντοπισμός τους δεν συμβάλλει απαραίτητα στη μείωση της θνησιμότητας. Ο λόγος για αυτό είναι ότι ο καρκίνος που κατατάσσεται στην έννοια της υπερδιάγνωσης (ο οποίος ιστοπαθολογικά αντιπροσωπεύει μια πραγματική κακοήθεια), είναι δυνατόν να μην συνιστά απειλή για τη ζωή του συγκεκριμένου ατόμου, δεδομένου ότι το άτομο αυτό μπορεί να έχει χάσει τη ζωή του από άλλα αίτια προτού ο καρκίνος αυτός γίνει ορατός. Δεδομένου όμως, ότι η διάρκεια ζωής του κάθε ατόμου είναι πράκτικα αδύνατο να ορίσουμε ποιες περιπτώσεις καρκίνου του μαστού αποτελούν υπερδιάγνωση και ποιές μια πραγματική απειλή για το συγκεκριμένο άτομο [1].

1.7 Περιορισμοί που υπάρχουν στη Μαστογραφία

Η ορατότητα ενός καρκίνου σε μια μαστογραφία, εξαρτάται κυρίως από τον τύπο του καρκίνου και από την πυκνότητα του περιβάλλοντος ιστού. Στην περίπτωση που η πυκνότητα ενός μαστού είναι αυξημένη, η ικανότητα ανίχνευσης καρκίνου, χωρίς την παρουσία μικροαποτίμα των, μειώνεται [11,12]. Ένας λοβιακός (lobular) καρκίνος ή ένας καρκίνος ο οποίος εξαπλώνεται σε διαφορετικές περιοχές του μαστού ταυτόχρονα, μπορούν κάλλιστα να μην μπορούν να ανιχνευθούν εάν μιμούνται της ιδιότητες ενός υγιούς ιστού ή στην περίπτωση ότι η διάρκεια ζωής του κάθε ατόμου έχει διώξει οποιαδήποτε κακοήθεια [1].

Μια γυναίκα μπορεί να αναπτύξει καρκίνο του μαστού στο μεσοδιάστημα που μεσολαβεί μεταξύ δύο προγραμματισμένων εξετάσεων μαστογραφίας. Το γεγονός αυτό μπορεί να οφείλεται σε δύο κυρίως λόγους [1]:

1. Ο καρκίνος μπορεί να είχε παρουσιαστεί κατά τη διάρκεια της πρώτης προγραμματισμένης εξέτασής αλλά το μέγεθος του να ήταν τόσο μικρό ώστε να μην ήταν ανιχνεύσιμος από το απεικονιστικό σύστημα.
2. Ο καρκίνος μπορεί να αναπτυχθεί αλλά μη διάγνωστει δύο ντο γρήγορα και να είναι τόσο επιθετικός ώστε μέσα στο μεσοδιάστημα αυτό να έχει ήδη προκαλέσει μια αναστρέψιμης ροής.
Το χρονικό διάστημα που μεσολαβεί μεταξύ δύο προγραμματισμένων εξετάσεων μαστογραφίας, χωρίς να έχει βρεθεί κάποια ύποπτη υπομορφία, ποικίλει από χώρα σε χώρα. Για παράδειγμα στις ΗΠΑ το διάστημα αυτό ορίζεται στον ένα χρόνο ενώ στην Αγγλία στα τρία χρόνια [1].

Επίσης, η παρουσία εμφυτευμάτων στον γυναικείο μαστό μπορεί να έχει επίπτωση στην ακρίβεια των μετρήσεων σε μια μαστογραφία. Αυτό κυρίως συμβαίνει επειδή η σιλικόνη και άλλους εμφυτεύματα, δεν είναι διαπεραιτά στις ακτίνες X και έτσι δεν μπορούμε να έχουμε μια σαφή εικόνα της μορφολογίας του ιστού ακριβώς πίσω από αυτά [5].

Τέλος, η αυξημένη πυκνότητα του μαστού, εκτός από το γεγονός ότι μπορεί να αυξήσει τον κίνδυνο εμφάνισης καρκίνου του μαστού [5], καθιστά δύσκολη την ανίχνευση ενός καρκίνου.

Είναι σημαντικό να συνειδητοποιήσουμε ότι με τη μαστογραφία δεν μπορούμε να ανιχνέψουμε όλους τους τύπους καρκίνου του μαστού και ότι αρκετές φορές η μαστογραφία από μόνη της δεν μπορεί να μας αποκάλυψε ότι μια αλλοίωση συνιστά καρκίνο. Για το λόγο αυτό πολλές φορές κρίνεται αναγκαία η περαιτέρω διερεύνηση ενός ευρήματος με τη βοήθεια άλλων διαγνωστικών τεχνικών όπως είναι οι Υπέρηχοι και η Απεικόνιση Μαγνητικού Συντονισμού.

Κεφάλαιο 2. Ψηφιακή Μαστογραφία

Αν και τα τελευταία χρόνια η τεχνολογία φθορίζουσας οθόνης-φίλμ έχει κάνει σημαντική πρόοδο στην ανίχνευση και την παρακολούθηση ύποπτων αλλοιώσεων του μαστού, υπόκειται σε περιορισμούς όσον αφορά την ανίχνευση συγκεκριμένων αλλοιώσεων του μαλακού ιστού, ιδιαίτερα σε περιπτώσεις που η παρουσία πυκνού αδενικού ιστού είναι έντονη [13].

Ένας από τους περιορισμούς της κλασικής μαστογραφίας με χρήση φίλμ είναι ότι το φίλμ λειτουργεί ταυτόχρονα σαν υποδοχέα της μαστογραφικής εικόνας, σαν μέσο προβολής και σαν μακροπρόθεσμο μέσο αποθήκευσης. Ο παραπάνω περιορισμός, μπορεί να οδηγήσει σε έλλειψη δυναμικής αντίθεσης στην εικόνα, ειδικά όταν η έκθεση ή η επεξεργασία του φίλμ οδηγούν σε χαμηλότερη οπτική πυκνότητα σε περιπτώσεις ιστών που περιέχουν κάποια αλλοίωση [14,15].

Το πλεονέκτημα της πρώιμης ανίχνευσης καρκίνου του μαστού σε γυναίκες ηλικίας μικρότερης των 50 χρόνων στην κλασική μαστογραφία, είναι πιθανό να οφείλεται στους εξής λόγους [16,17]:

1. Στην μικρότερη συχνότητα εμφάνισης καρκίνου του μαστού σε μικρότερες ηλικίες (κάτω των 50 ετών).
2. Στο γεγονός ότι στις ηλικίες αυτές έχουμε συχνότερα ταχύτερα αναπτυσσόμενους όγκους από ότι σε μεγαλύτερες ηλικίες.
3. Στη μεγαλύτερη ακτινογραφική πυκνότητα (radiographic density) των ιστών του μαστού στις ηλικίες αυτές.

Γενικότερα, η μεγάλη πυκνότητα ενός μαστού μειώνει την ευαισθησία της μαστογραφίας και ενέχει επίσης κίνδυνο παρουσίας καρκίνου του μαστού.

Η ψηφιακή μαστογραφία διαχωρίζει τις διαδικασίες απόκτησης εικόνας και απεικόνισης, επιτρέποντας με τον τρόπο αυτό την δυνατότητα βελτίωσης και των δύο. Με την ψηφιακή μαστογραφία επίσης, μέσω της επεξεργασίας ψηφιακόν δεδομένων κατά την απεικόνιση, καθίσταται δυνατή η διαχείριση του βαθμού της αντίθεσης σε μια εικόνα, με τελικό αποτέλεσμα την αύξηση της αντίθεσης σε περιοχές με πυκνό ιστό του μαστού [18,19].
2.1 Διαφορές με την κλασσική μαστογραφία

Η βασική διαφορά της ψηφιακής μαστογραφίας με την κλασσική μαστογραφία εντοπίζεται στην αντικατάσταση της φθορίζουσας οθόνης και του φιλμ, που χρησιμοποιούνται στην κλασσική μαστογραφία, με έναν ψηφιακό ανιχνευτή. Ο ψηφιακός ανιχνευτής καταγράφει τις ακτίνες X που ανιχνεύει ως ηλεκτρικά σήματα, τα οποία στη συνέχεια μετατρέπονται σε ψηφιακά δεδομένα [20].

Με την έλευση της ψηφιακής μαστογραφίας, γεννήθηκε ταυτόχρονα και η ελπίδα για ανίχνευση περιπτώσεων καρκίνου του μαστού οι οποίοι στην κλασσική μαστογραφία δεν ήταν ορατοί λόγο ύπαρξης πυκνού φυσιολογικού ιστού. Σε σύγκριση με το κλασσικό ακτινογραφικό φιλμ, ο ψηφιακός ανιχνευτής έχει καλύτερη διακριτική ικανότητα αντίθεσης και μεγαλύτερη ελευθερία σε επιλογές και περιορισμούς (wider latitude) [21]. Εντούτοις, ένας ψηφιακός ανιχνευτής δεν έχει τόσο υψηλή χωρική διακριτική ικανότητα όπως το φιλμ, για αντικείμενα υψηλής αντίθεσης. Η χωρική διακριτική ικανότητα και η διακριτική ικανότητα αντίθεσης είναι δύο χαρακτηριστικά που παίζουν εξίσου σημαντικό ρόλο στον χαρακτηρισμό μιας περίπτωσης ως καρκίνου του μαστού. Ετσι, είναι δύσκολο να επιτευχθεί μια ισορροπία μεταξύ των δύο αυτών χαρακτηριστικών, προκειμένου μια εκ των δύο τεχνικών μαστογραφίας να υπερέχει της άλλης [20].

Επιπλέον, η κλινική απόδοση της ψηφιακής μαστογραφίας εξαρτάται από την απόδοση του ακτινολόγου κατά την ερμηνεία των εικόνων καθώς και από την προσωπική του εμπειρία και ικανότητα κατά τη φάση επεξεργασίας των αρχικών εικόνων. Παρακάτω παρουσιάζονται τα αποτελέσματα από μια κλινική μελέτη. Παρατηρώντας τις εικόνες που ακολουθούν μπορούμε να συμπεράνουμε ότι καμία τεχνική δεν υπερέχει της άλλης στο σύνολο των περιπτώσεων. Δηλαδή, μπορεί η ψηφιακή μαστογραφία να έχει καλύτερη διακριτική ικανότητα αντίθεσης και να προσφέρει περισσότερες επιλογές επεξεργασίας των εικόνων σε σχέση με την κλασσική μαστογραφία, αλλά κάποια χαρακτηριστικά της κλασσικής μαστογραφίας όπως για παράδειγμα η χωρική διακριτική ικανότητα του φιλμ καθιστούν και τις δύο τεχνικές αναγκαίες. Το κυριότερο συμπέρασμα της μελέτης αυτής ήταν ότι με την ψηφιακή μαστογραφία ο αριθμός των περιστατικών που κλήθηκαν για επανεξέταση είναι μικρότερος από τον αντίστοιχο της κλασσικής μαστογραφίας [20].
Εικόνα 1. Εικόνα κλασσικής μαστογραφίας με τυχαία τοποθέτηση, στην οποία η ασθενής κλήθηκε για επανεξέταση λόγω της εμφάνισης μιας περιοχής με μεγαλύτερη πυκνότητα στο σημείο που δείχνει το βέλος [20].

Εικόνα 2. Εικόνα ψηφιακής μαστογραφίας στην οποία η περιοχή με την μεγαλύτερη πυκνότητα δεν είναι τόσο ευδιάκριτη όσο στην περίπτωση της κλασσικής μαστογραφίας και φαίνεται ότι προκύπτει λόγω της επικάλυψης των παρακείμενων ιστών. Η εικόνα κρίθηκε φυσιολογική και η ασθενής δεν κλήθηκε για επανεξέταση [20].

Στην παραπάνω περίπτωση η σημειωμένη συμπίεση (spot compression) που έχει υποστεί η εικόνα που προέκυψε από την κλασσική ακτινοβόληση, προκειμένου να αξιολογηθεί εκτενέστερα, δεν δείχνει καμία ανωμαλία στη συγκεκριμένη περιοχή. Η εικόνα στην περίπτωση αυτή δείχνει ότι η παρουσία της περιοχής με τη μεγαλύτερη πυκνότητα οφείλεται στο φαινόμενο της επικάλυψης των ιστών (overlapping tissues) [20].
Εικόνα 3. Εικόνα ψηφιακής μαστογραφίας πλήρους πεδίου (Full field digital mammogram image) στην οποία εντοπίσθηκε πορογενές διηθητικό καρκίνωμα (στην περιοχή του βέλους) με τη μορφή μιας ακαθόριστης μάζας με αιχμηρά, γωνιακά περιθώρια [20].

Εικόνα 4. Εικόνα κλασικής μαστογραφίας για το ίδιο περιστατικό στην οποία η παρουσία του καρκίνου είναι μεν ορατή (στο σημείο του βέλους), η εμφάνιση δε της περιοχής αυτής είναι παρόμοια με αυτή του περιβάλλοντα φυσιολογικού ιστού [20].

Στην περίπτωση αυτή, στην εικόνα της κλασικής μαστογραφίας ο καρκίνος είναι ορατός (στο σημείο που δείχνει το βέλος) αλλά η εμφάνισή του είναι παρόμοια με αυτή των γειτονικών φυσιολογικών ιστών. Η διαφορά της περιοχής αυτής, η οποία είναι εμφανής στην ψηφιακή μαστογραφική εικόνα, εκτιμήθηκε αρχικά ότι προκλήθηκε από τη διαφορά στην προβολή του καρκίνου ύστερα από τη συμπίεση του μαστού [20].

2.2 Ψηφιακή Τομοσύνθεση μαστού
Η ψηφιακή τομοσύνθεση είναι μια μέθοδος ανακατασκευής τομογραφικών εικόνων περιορισμένου τόξου (limited angle reconstruction of tomographic images), οι οποίες παράγονται σε μεταβλητά ύψη, στη βάση μιας σειράς από γωνιακές προβολές [22]. Ιδιαίτερα στην απεικόνιση του μαστού, οι μελέτες οι οποίες συμπεριλαμβάνουν και κλινικές περιπτώσεις, έχουν αποδείξει ότι η ψηφιακή τομοσύνθεση μπορεί να παρέχει πολύ ανώτερη ποιότητα εικόνας σε σύγκριση με την αντίστοιχη των κλασικών μαστογραφικών εικόνων. Στη μέθοδο αυτή, ο απεικονιζόμενος όγκος (volume) ανακατασκευάζεται από διαδιάστατες προβολές ύστερα ώστε να παρέχει τρισδιάστατη πληροφορία σχετικά με τη δομή της ανατομίας του εξεταζόμενου. Οι βασικότεροι αλγόριθμοι που χρησιμοποιούνται για την ανακατασκευή, είναι η οπισθοπροβολή και η μέθοδος μετατόπισης και πρόσθεσης. Ωστόσο, οι αλγόριθμοι αυτοί οδηγούν στην εμφάνιση σημαντικής ασάφειας στην εικόνα, η οποία προκαλείται από άλλες δομές που δεν βρίσκονται στο επίπεδο ενδιαφέροντος. Το γεγονός αυτό οδηγεί σε κακή ανιχνευσιμότητα των αντικειμένων που βρίσκονται μέσα στο επίπεδο που εστιάζουμε [23].
Η ψηφιακή τομοσύνθεση μαστού αποτελεί μια τεχνική απεικόνισης του γυναικείου μαστού η οποία προσφέρεται είτε σαν ένα ξεχωριστό σύστημα, είτε ως επιλογή στα ήδη υπάρχοντα δισδιάστατα συστήματα μαστογραφίας [24]. Κατά τη διάρκεια της απόκτησης των εικόνων, η ακτινογραφική λυχνία κινείται διαγράφοντας μια μικρή γωνία γύρω από τον μαστό και με τον τρόπο αυτό λαμβάνεται μια σειρά εικόνων. Η κίνηση της λυχνίας μπορεί να είναι συνεχής είτε σε μορφή step-and shoot. [25]

Η ποιότητα της εικόνας και η απόδοση της ψηφιακής τομοσύνθεσης μαστού καθορίζονται από [25]:

- Τη λυχνία ακτίνων X
- Τον ανιχνευτή
- Την ποιότητα της δέσμης
- Τη δόση
- Τη μέθοδο ανακατασκευής εικόνας
- Την κίνηση που μπορεί να υπάρχει κατά τη διάρκεια της απόκτησης των εικόνων
- Τη γεωμετρία του συστήματος

Η ικανότητα ανίχνευσης των αλλοιώσεων στην τεχνική αυτή επηρεάζεται από τρία βασικά ζητήματα [25]:

1. Την ποιότητα που μπορεί να έχει η αναπαράσταση της αλλοίωσης στο ανακατασκευασμένο πλάνο εικόνας.
2. Την ικανότητα του συστήματος ψηφιακής τομοσύνθεσης, να καταστέλλει την υψηλή η οποία βρίσκεται έξω από το πλάνο της εικόνας και παράγεται από γειτονικούς ιστούς.
3. Το πάχος του πλάνου της ανακατασκευασμένης εικόνας η οποία παρουσιάζεται στον ακτινολόγο.

Κεφάλαιο 3. Είδη Ψηφιακής Μαστογραφίας

3.1 Ψηφιακή Μαστογραφία Πλήρους Πεδίου (Full Field Digital Mammography-FFDM)

Η ψηφιακή μαστογραφία πλήρους πεδίου προσφέρει [17,30]:

- Τη δυνατότητα απόκτησης μαστογραφικών εικόνων υψηλής ποιότητας, με μεγαλύτερη διακριτική ικανότητα αντίθεσης και βελτιωμένο δυναμικό εύρος.
- Τη δυνατότητα ταχείας επεξεργασίας των δεδομένων και των εικόνων σε σύγκριση με την κλασική μαστογραφία.
- Αυξημένη ακρίβεια στην απεικόνιση γυναικών που βρίσκονται πριν την εμμηνόπαυση ή κατά τη διάρκεια αυτής και γενικότερα στην απεικόνιση γυναικών που βρίσκονται γενικότερα σε ηλικίες κάτω των 50 ετών καθώς και σε γυναίκες στις οποίες ο μαστός έχει αυξημένη πυκνότητα.
- Τη δυνατότητα ανάπτυξης νέων και προηγμένων εφαρμογών για την απεικόνιση του μαστού. Μια από τις εφαρμογές αυτές είναι ψηφιακή μαστογραφία με χρήση απεικονιστικού παράγοντα αντίθεσης (contrast-enhanced digital mammography).
3.2 Ψηφιακή Μαστογραφία με χρήση Απεικονιστικού Παράγοντα Αντίθεσης (σκληραγραφικό)- Contrast-enhanced digital mammography

Η ψηφιακή μαστογραφία με χρήση απεικονιστικού παράγοντα αντίθεσης είναι μια σχετικά νέα τεχνική ψηφιακής μαστογραφίας η οποία συνδυάζει την ενδοφλέβια χορήγηση ενός παράγοντα αντίθεσης με βάση το ιώδιο με μία εξέταση μαστογραφίας. Επειδή η διακριτική ικανότητα αντίθεσης της μαστογραφίας είναι μικρότερη από την αντίστοιχη τεχνικών όπως η υπολογιστική τομογραφία και η απεικόνιση μαγνητικού συντονισμού, στην παραπάνω τεχνική τεχνίτης χρησιμοποιείται μια διαδικασία αφαίρεσης των εικόνων που λαμβάνονται προκειμένου να βελτιωθεί η ορατότητα του καρκίνου στο φόντο του φυσιολογικού ιστού.

Στη μαστογραφία υπάρχει ένα ποσοστό περιπτώσεων καρκίνου 10-20 % οι οποίοι δεν απεικονίζονται. Μέσα στο ποσοστό αυτό συμπεριλαμβάνεται και ένα ποσοστό περίπου 9% οι οποίοι έχουν στάσει σε τέτοιο στάδιο που μπορούν να ψηλαφιστούν[31]. Σε πολλές περιπτώσεις ο κάρκινος του μαστού μπορεί να υπάρχει μέσα σε μια περιοχή του μαστού η οποία απεικονίζεται υγιής αλλά στην πραγματικότητα τον επισκιάζει. Οι περιπτώσεις αυτές εμφανίζονται κυρίως σε γυναίκες με πυκνό μαστό (δηλαδή σε ποσοστό γυναικών περίπου 25 %), λόγω της πολυπλοκότητας των παρακείμενων ιστών[32].

Η μαστογραφία διπλής ενέργειας μπορεί να βοηθήσει στην ικανότητα ανίχνευσης αλλοιώσεων αφαιρώντας το θόρυβο δομής (structural noise) στην εικόνα[33]. Ωστόσο, λόγω της πολύ μικρής διαφοράς των γραμμικών συντελεστών εξασθένισης του αδενικού και του καρκινικού ιστού, η οποία κυμαίνεται από 4 % στα 15 keV μέχρι και 1 % στα 25 keV η αφαίρεση των ανεπιθύμητων δομών μπορεί να μην είναι αρκετή προκειμένου να ανιχνεύσουμε μια αλλοίωση[34]. Σε τέτοιες περιπτώσεις η βελτίωση της εσωτερικής αντίθεσης (intrinsic contrast) της αλλοίωσης μπορεί να επιτευχθεί με τη χρήση απεικονιστικών παραγόντων[32].

Έπειτα από έρευνες που έχουν πραγματοποιηθεί στην περίοδο των προηγούμενων χρόνων, έχει αποδειχθεί ότι η ανάπτυξη και η μεταστατικότητα που παρουσιάζουν οι όγκοι συνδέονται άμεσα με την επέκταση της αγγειογένεσης του ιστού[35]. Η ανάπτυξη ενός όγκου προϋποθέτει τη δημιουργία νέων αιμοφόρων αγγείων τα οποία θα παρέχουν οξυγόνο και θρεπτικές ουσίες. Οπότε, η χρήση ενός παράγοντα αντίθεσης ο οποίος διαχείται στα νέα αγγεία, ενισχύει την αντίθεση της περιοχής η οποία περιβάλει τον όγκο[32].

Οι δύο βασικές τεχνικές ψηφιακής μαστογραφίας με χρήση απεικονιστικού παράγοντα αντίθεσης, οι οποίες βρίσκονται σε εξέλιξη είναι οι εξής[36]:

1. Ψηφιακή μαστογραφία με χρήση απεικονιστικού παράγοντα αντίθεσης στην οποία πραγματοποιείται χρονική αφαίρεση των εικόνων που ανακτώνται (temporal subtraction CEDM). Με την τεχνική αυτή, παράγοντα υψηλής ενέργειας ψηφιακές μαστογραφικές εικόνες εφαρμόζοντας μια τεχνική χρονικής αφαίρεσης των εικόνων που παίρνουμε πριν την παρουσία του απεικονιστικού παράγοντα αντίθεσης από της εικόνας που παίρνουμε με την παρουσία του παράγοντα αυτού.

2. Αφαιρετική Απεικόνιση Διπλής Ενέργειας (dual energy subtraction imaging). Η τεχνική αυτή εκμεταλλεύεται την ενεργειακή εξάρτηση της εξασθένισης των ακτίνων X μέσω των διαφόρων ιστών του μαστού. Στην περίπτωση της απεικόνισης δυνής ενέργειας, λαμβάνονται δύο εικόνες έπειτα από την χορήγηση του απεικονιστικού παράγοντα αντίθεσης. Η μια από τις εικόνες αυτές είναι εικόνα χαμηλής ενέργειας και η δεύτερη είναι εικόνα υψηλής ενέργειας. Στη συνέχεια οι
δύο εικόνες συνδυάζονται προκειμένου οι περιοχές με αυξημένη αντίθεση να ενισχυθούν στην τελική εικόνα.

Η τεχνική αυτή μπορεί να χρησιμοποιηθεί για τη βελτίωση της ανίχνευσης-ορατότητας (conspicuity) ενός συγκεκριμένου ιστού. Το σήμα εικόνας (image signal) από έναν ιστό μπορεί να κατασταλεί με σκοπό την απομάκρυνση του ανατομικού θορύβου υποβάθρου, ενισχύοντας έτσι την αντίθεση του ιστού που μας ενδιαφέρει [37].

Με την πρώτη τεχνική προσφέρεται η δυνατότητα ανάλυσης της καμπύλης κινητικής (kinetic curve). Η καμπύλη αυτή αφορά την ενίσχυση των αλλοιώσεων του μαστού, όπως γίνεται και στην απεικόνιση μαγνητικού συντονισμού [36].

Η δεύτερη τεχνική δεν παρέχει πληροφορίες σχετικά με την κινητική του όγκου, αλλά επιτρέπει την απόκτηση πολλαπλών προβολών του μαστού και επιπλέον είναι λιγότερο ευαίσθητη στην κίνηση του εξεταζόμενου σε σχέση με την πρώτη τεχνική [36].

3.2.1 Πλεονεκτήματα και δυνατότητες

Κλινικές μελέτες έχουν δείξει ότι η ψηφιακή μαστογραφία με χρήση απεικονιστικού παράγοντα αντίθεσης έχει την ικανότητα να χαρτογραφεί την κατανομή της νεοαγγείωσης που προκαλείται από τον καρκίνο. Η τεχνική αυτή, σε σύγκριση με την κλασσική μαστογραφία, βελτιώνει επίσης την ανίχνευση αλλοιώσεων του μαστού, όπως γίνεται και στην απεικόνιση μαγνητικού συντονισμού (BIRADS - Breast Imaging Reporting and Data System) [36].

Κάποιες από τις πιθανές κλινικές εφαρμογές της τεχνικής αυτής είναι οι εξής [36]:

- Προσδιορισμός της έκτασης της νόσου
- Αξιολόγηση της επανεμφάνισης της νόσου
- Η διευκρίνιση περιπτώσεων όπου η οργανική βλάβη είναι αμφιλεγόμενη (equivocal lesions)
- Η ανίχνευση οργανικών βλαβών οι οποίες δεν είναι ορατές στην κλασσική μαστογραφία, ιδιαίτερα σε περιπτώσεις πυκνού μαστού
- Η παρακολούθηση της ανταπόκρισης στην χημειοθεραπεία

3.2.2 Σύγκριση με άλλες τεχνικές

Απεικονιστικοί παράγοντες αντίθεσης έχουν χρησιμοποιηθεί ευρέως σε τεχνικές υπολογιστικής τομογραφίας (CT) και στην απεικόνιση μαγνητικού συντονισμού (MRI), προκειμένου να διερευνηθεί η αγγειογένεση στην παρουσία καρκίνου ενός μαστού μέσω της παρακολούθησης της πρόσληψης και της αποβολής από τον στοχευμένο ιστό [30]. Η υπολογιστική τομογραφία με χρήση απεικόνισης αντίθεσης βασισμένη στο ιώδιο, έχει αποδειχθεί ότι βοηθάει στην ανίχνευση του καρκίνου του μαστού [38]. Εντούτοις, η τεχνική αυτή έχει ως αποτέλεσμα την εξεταζόμενο στοιχεία να επιβαρύνεται με υψηλή δόση ακτινοβολίας στο στήθος και στο θωρακικό τοίχωμα. Η απεικόνιση μαγνητικού συντονισμού του μαστού με χρήση γαδολινίου ως παράγοντα αντίθεσης θεωρείται στις μέρες μας ως η τεχνική απεικόνισης του μαστού με τη μεγαλύτερη ευαισθητική-όσον αφορά την ανίχνευση καρκίνου του μαστού. Ωστόσο, η τεχνική αυτή έχει περιορισμένη ευκολότητα, δεν είναι ευρέως διαθέσιμη και είναι ακριβής [39,40].
3.3 Μαστογραφία Διπλής Ενέργειας-Dual Energy Mammography

Κατά τη διάρκεια των τελευταίων χρόνων η μεγάλη έρευνα στον τομέα της ψηφιακής απεικόνισης με ακτίνες X έχει οδηγήσει στην ανάδειξη νέων τεχνικών απεικόνισης. Μια από τις τεχνικές αυτές είναι η μαστογραφία διπλής ενέργειας. Η μαστογραφία διπλής ενέργειας είναι μια τεχνική απεικόνισης η οποία βοηθάει στην απεικόνιση συγκεκριμένων ιστών του μαστού όπως για παράδειγμα των μικροποσπονδύλων και των μαλακών ιστών. Εκτός αυτού, η συμβατική μαστογραφία δεν παρέχει επαρκείς πληροφορίες για τον χαρακτηρισμό διαφορετικού τύπου ιστών όπως έχουμε στην περίπτωση των καλόθων και των κακοήθων όγκων [41].

Στην μαστογραφία διπλής ενέργειας έχουμε την δημιουργία δύο εικόνων εκ των οποίων η μία είναι εικόνα χαμηλής ενέργειας και η δεύτερη είναι εικόνα υψηλής ενέργειας. Μέσω μιας διαδικασίας κατά την οποία η μία εικόνα “αφαιρείται” από την άλλη με απώτερο σκοπό τη μείωση της ασάφειας από την επικάλυψη διαφόρων δομών ιστού, έχουμε τη δημιουργία της τελικής εικόνας [41].

Οι πληροφορίες που δίνει η μαστογραφία διπλής ενέργειας μπορούν να αξιολογηθούν εκτιμώντας τα επίπεδα του θορύβου στην τελική εικόνα (η οποία έχει προκύψει με την παραπάνω αφαιρετική διαδικασία). Αυτό σημαίνει, ότι η ανάλυση του λόγου σήματος προς τον θόρυβο (SNR analysis) είναι απαραίτητη, προκειμένου να αποκτήσουμε πληροφορίες σχετικά με τις επιδόσεις της εφαρμοζόμενης απεικόνισης καθώς και για την βελτιστοποίηση που μπορεί να επιδεχόταν οι παράμετροι που έχουν χρησιμοποιηθεί για τη διπλή έκθεση [41].

Σε μια μαστογραφική εξέταση διπλής ενέργειας, ο μαστός ακτινοβολείται με χαμηλής και υψηλής ενέργειας ακτίνες X αντίστοιχα, κατά τη διάρκεια μιας συμπίεσης σε μεσοπλευρική πλάγια προβολή (MLO projection- mediolateral oblique projection). Για τη δέσμη ακτίνων X υψηλής ενέργειας, χρησιμοποιείται συνήθως ένας συνδυασμός στόχου ροδίου με φίλτρο αλουμινίου, ενώ στην περίπτωση της δέσμης ακτίνων X χαμηλής ενέργειας συνδυάζεται συνήθως στόχος μολυβδείου με φίλτρο μολυβδείου [42, 43].

Η διάρκεια της εξέτασης κυμαίνεται από 5 έως 10 λεπτά ανάλογα με τον αριθμό των προβολών. Η συνολική δόση με την οποία επιβαρύνεται ο εξεταζόμενος για ένα ζεύγος εικόνων χαμηλής και υψηλής ενέργειας, εκτιμάται μεταξύ 0.7 και 3.6 mGy η οποία αντιστοιχεί σε περίπου 1.2 φορές τη δόση που δίνεται σε μια κλασική μαστογραφία και εξαρτάται από το πάχος καθώς και από τη σύνθεση των ιστών του μαστού [30].

Κεφάλαιο 4. Ομοιώματα που χρησιμοποιούνται στη Μαστογραφία Διπλής Ενέργειας

4.1 Ομοιώματα κατασκευασμένα από gel

Ακτινογραφικά ομοιώματα τα οποία είναι κατασκευασμένα από υλικά ισοδύναμα διαφόρων ιστών, είναι απαραίτητα για τη διεξαγωγή ποιοτικών ελέγχων και για τη βαθμονόμηση του διαγνωστικού ακτινολογικού εξοπλισμού. Αν και η συμπίεση του γυναικείου μαστού έχει μεγάλη σημασία στη μαστογραφία, ελάχιστα από τα ομοιώματα που χρησιμοποιούνται συνήθως για τη διεξαγωγή ελέγχων σε αυτή την απεικονιστική τεχνική παρέχουν τη δυνατότητα συμπίεσης [44]. Η δυνατότητα πρόβλεψης της παραμόρφωσης που προκαλείται από μια δεδομένη δύναμη, είναι ικανή να βοηθήσει στον εντοπισμό των αλλοιώσεων οι οποίες έχουν αναγνωριστεί κατά τη διαδικασία της διαγνωστικής απεικόνισης [45].
Πολύ συμπαγή και εξαιρετικά ελαστικά gel μπορούν να σχηματιστούν αρχικά με ψύξη και στη συνέχεια με απόνυξη διαλύματος PVAL (Polyvinyl Alcohol). Διαλύματα όμως τα οποία έχουν σαν βάση το νερό, όταν παράγονται σύμφωνα με την παραπάνω διαδικασία, έχουν ως αποτέλεσμα εξαιρετικά θολά και οπτικά ανομοιογενή gel. Αυτό συμβαίνει επειδή σχηματίζονται πόροι με διαφορετικούς δείκτες διάθλασης λόγω του σχηματισμού κρυστάλλων πάγου [46]. Εάν το σημείο ψύξης του διαλύματος μπορεί να κατασταλεί έτσι ώστε κατά την ψύξη να μην σχηματίζονται κρυστάλλοι πάγου, τότε μπορούν να παραχθούν στέρεα και αρκετά ελαστικά gels. Αυτό μπορεί να επιτευχθεί διαλύοντας το PVAL σε ένα μικτό διαλύτη νερού και διμεθυλοσουλφοξειδίου (DMSO) [47].

Δοκιμές έδειξαν ότι τα gel που κατασκευάζονται με βάση το DMSO έχουν γραμμικό συντελεστή εξασθένισης 3.4 cm⁻¹ στα 17.5 keV, ο οποίος είναι τέσσερις φορές μεγαλύτερος από τον τυπικό συντελεστή για έναν ιστό του μαστού [34]. Αυτό είναι αποτέλεσμα της περιεκτικότητας του DMSO σε θείο (ο ατομικός αριθμός του θείου είναι 16). Προκειμένου να κατασταλεί το σημείο πήξης, μπορεί να χρησιμοποιηθεί η αιθανόλη ως εναλλακτικός διαλύτης. Διαλύματα PVAL με 50:50 μείγματα αιθανόλης και νερού παράγουν εξαιρετικά διαφανή και μη σκεδάσματα gel ένω έχουν εξασθένιση ακτίνων x ισοδύναμη με αυτή των ιστών του μαστού [44].

Ένα ιδιαίτερα σημαντικό ζήτημα, είναι η ακαμψία του υλικού να μπορεί να μεταβληθεί έτσι ώστε η σχετική διαφάρα στην ακαμψία που παρατηρείται μεταξύ των καρκινικών και των υγιών ιστών να μπορεί να μιμηθεί [44]. Οι περιεσθέρες ιστοί, με εξαίρεση τον λιπόδοχο, παρουσιάζουν μια ιδιαίτερα μια γραμμική σχέση τάσης-παραμόρφωσης εντός της περιοχής της ελαστικότητας. Επίσης οι καρκινικοί ιστοί είναι γενικά πολύ πιο σκληρο-άκαμπτοι από τους υγιής ιστούς [48,49]. Η διαφάρα μεταξύ των ιδιαίτερα διαφάρα ιστών γίνεται όλο και πιο έντονο καθώς αυξάνεται η πίεση, επειδή η σχέση τάσης-παραμόρφωσης των καρκινικών ιστών είναι περισσότερο μη γραμμική από αυτή των υγιών ιστών [49]. Μεταβάλλοντας έτσι τη συγκέντρωση του PVAl από 7.5 % σε 20% w/v, μπορούμε να δημιουργήσουμε gel με συντελεστές ελαστικότητας από 20 μέχρι 220 kPa σε 15 % πίεση. Οι παραπάνω άρθρα είναι χαρακτηριστικές φυσιολογικού και καρκινικού ιστού αντίστοιχα [44].

4.1.1 Διαδικασία δημιουργίας gel με βάση το DMSO
Για τη δημιουργία ενός τέτοιου gel θα πρέπει να ακολουθηθούν τα παρακάτω βήματα [44]:

1. Αρχικά πρέπει να διαλυθούν 72 γραμμάρια PVAL σε 800 ml διαλύτη, ο οποίος αποτελείται από 4 μέρη DMSO και 1 μέρος αποσταμένο νερό. Λόγω της χαμηλής διαλυτότητας του PVAl όμως, ο διαλύτης θα πρέπει να τοποθητηθεί πάνω σε εστίο με θερμοκρασία 200 °C και να αναδευτεί για περίπου 25 λεπτά ώστε να φτάσει σε θερμοκρασία 75 με 85 βαθμών κελσίου. Η διαδικασία αυτή θα πρέπει να πραγματοποιηθεί προτού προστεθεί το PVAL στον διαλύτη.

2. Στη συνέχεια αφού προστεθεί το PVAL, το μίγμα θα πρέπει να θερμανθεί και να αναδευτεί συνεχώς για επιπλέον 45 λεπτά μέχρι να φτάσει σε θερμοκρασία 95 °C και μέχρι ολόκληρη η ποσότητα του PVAl να έχει διαλυθεί.

3. Έπειτα, το διάλυμα θα πρέπει να τοποθητηθεί σε κατάλληλο καλύπτο.

4. Αφού αφαιρεθεί να κρυώσεται για περίπου μια ώρα, στη συνέχεια το καλύπτι μαζί με το διάλυμα θα πρέπει να τοποθηθούν σε κατάνυξη σε θερμοκρασία -13 °C, ώστε να δημιουργηθεί το gel.

5. Μετά από 22 ώρες το gel θα πρέπει να βγει από το καλύπτι και να βιβλιστεί σε ένα μίγμα από DMSO και αποσταμένο νερό με αναλογία 4:1. Η διαδικασία αυτή προστατεύει το gel και δεν το αφήνει να εξαφανθεί κατά την περίοδο αποθήκευσης.
4.1.2 Διαδικασία δημιουργίας gel με βάση την αιθανόλη

Για τη διαδικασία αυτή αρχικά χρησιμοποιείται ένας σωλήνας-δοχείο αντίδρασης, ο οποίος πρέπει να στέκεται πάνω σε ένα θερμαντικό κάλυμμα (heating mantle). Ο σωλήνας αυτός έχει ένα καπάκι με τρεις οπές πρόσβασης. Η πρώτη από αυτές είναι εφοδιασμένη με έναν υδρόψυκτο συμπυκνωτή, η δεύτερη σφραγίζεται με ένα θερμόμετρο, έτσι ώστε να μπορούμε να παρακολουθούμε την θερμοκρασία του μίγματος και η τρίτη είναι εφοδιασμένη με ένα πόμα (τάπα) μέσω του οποίου μπορούμε να τοποθετήσουμε το στέλεχος μιας ράβδου ανάδευσης.

Πριν εφαρμοσθεί οποιαδήποτε θέρμανση, το νερό και η αιθανόλη θα πρέπει να προστεθούν στο δοχείο. Έπειτα ξεκινάει η ανάδευση του μίγματος με τον αναδευτή. Στη συνέχεια πρέπει να προστεθεί το PVAL μέσω του σημείου πρόσβασης το οποίο είναι σφραγισμένο με το θερμόμετρο και το διάλυμα να θερμανθεί μέχρι τη σημείο βρασμού. Στη συνέχεια η θερμότητα θα μειωθεί έτσι ώστε το διάλυμα να παραμείνει σε θερμοκρασία περίπου 83 °C. Ακολουθώντας τα παραπάνω βήματα, αποφεύγουμε την ένωση-τήξη του PVAL πάνω στα τοιχώματα του δοχείου αντίδρασης και ο συμπυκνωτής δεν υπερφορτώνεται. Ο χρόνος που απαιτείται για να διαλυθεί το PVAL αυξάνεται καθώς αυξάνεται η συγκέντρωση του PVAL, αλλά κυμαίνεται από 70 μέχρι 135 λεπτά ως το σημείο βρασμού.

4.1.3 Επίδραση της συγκέντρωσης του PVAL σε gels που έχουν ως βάση την αιθανόλη

Ο συντελεστής ελαστικότητας (Young’s modulus) των gels μπορεί να ρυθμιστεί με την αλλαγή της συγκέντρωσης του PVAL. Ο συντελεστής αυτός σε δεδομένη πίεση αυξάνει με την συγκέντρωση του PVAL, ενώ η μέγιστη πίεση που μπορεί να επιτευχθεί στο gel, μειώνεται με την αύξηση της συγκέντρωσης του PVAL [44].

Για παράδειγμα ένα gel με συγκέντρωση PVAL 20% w/v έχει συντελεστή Young παρόμοιο με τον λιπώδη ιστό κατά την εφαρμογή μεγάλης πίεσης. Ενώ τέτοιο gel μπορεί να χρησιμοποιηθεί για να μεμονώσουμε καρκινικούς ιστούς ή πολύ ενδιαφέροντες χαρακτηριστικές, αυτός θα έχει μια μέγιστη πίεση που επιτευχθεί στη συγκέντρωση του PVAL, ενώ η μέγιστη πίεση που μπορεί να επιτευχθεί στο gel, μειώνεται με την αύξηση της συγκέντρωσης του PVAL [44].

Το μέγεθος των πόρων που σχηματίζεται μέσα στα gels αυξάνεται με την περιεκτικότητα του PVAL σε νερό [46]. Ένα gel που περιέχει μεγάλους πόρους και μια λιγότερο κανονική δομή του PVAL αναμένεται να έχει χαμηλότερο συντελεστή ελαστικότητας από κάποιο άλλο gel που δεν παρουσιάζει αυτά τα χαρακτηριστικά [44].
4.1.4 Εξασθένιση των ακτίνων X που παρουσιάζουν τα gels
Οι γραμμικοί συντελεστές εξασθένισης των gel με βάση την αιθανόλη και με συγκεντρώσεις PVAL από 5 έως 20% w/v κυμαίνονται από 0,76 ώς 0,86 cm⁻¹ στα 17,5 keV και αυξάνονται καθώς αυξάνεται η συγκέντρωση του PVAL. Αυτές οι τιμές είναι παρόμοιες με τις τυπικές τιμές των ιστών του μαστού (0,8-0,9 cm⁻¹). Για να παραχθούν gels με συντελεστές εξασθένισης παρόμοιους με εκείνους του νιώδους ή καρκινικού ιστού, θα πρέπει να προσθέσουμε μικρές ποσότητες ενός άλατος βαρέως μετάλλου (όπως είναι το χλωριούχο βάριο) στο διάλυμα του PVAL πριν από τη διαδικασία της ψύξης. Για την παραγωγή gel με μικρότερη πυκνότητα και γραμμικούς συντελεστές εξασθένισης παρόμοιους με αυτούς του λιπώδη ιστού, θα πρέπει να προσθέσουμε μικρές ποσότητες και κοίλα, μικροσφαιρίδια φαινολικής ρητίνης στο διάλυμα του PVAL [50,51].

4.1.5 Μηχανικές ιδιότητες
Αν και τα gel είναι γνωστό ότι έχουν μια πορώδη δομή, αυτό που προσφέρει το μεγαλύτερο μέρος της αντοχής σε συμπίεση κατά την άσκηση πολύ χαμηλών πιέσεων, είναι η βάση του PVAL και όχι οι πόροι. Εντούτοις, μόλις η εφαρμοζόμενη δύναμη γίνει αρκετά μεγάλη, η δομή αυτή μπορεί να λυγίσει [46].

4.1.6 Συμπεράσματα
Η σχέση μεταξύ της συγκέντρωσης του PVAL και του γραμμικού συντελεστή εξασθένισης για gels κατασκευασμένα με διαλύτη αιθανόλης 50% v/v φαίνεται στην παρακάτω εικόνα. Όλα τα gels έχουν έναν γραμμικό συντελεστή εξασθένισης παρόμοιο με αυτόν του υγιούς ιστού του μαστού, ο οποίος είναι 0,8-0,9 cm⁻¹. Ο συντελεστής εξασθένισης του 10% w/v PVAL gel κατασκευασμένου με διαλύτη αιθανόλης 35% v/v είναι 0,83±0,01 cm⁻¹ υψηλότερος από εκείνον του gel με διαλύτη αιθανόλης 50% v/v. Αυτό το γεγονός όμως είναι αναμενόμενο, καθώς η αιθανόλη εξασθενεί λιγότερο από το νερό [52].

Εικόνα 5: Στην εν λόγω εικόνα φαίνεται ότι ο γραμμικός συντελεστής εξασθένισης αυξάνεται με την αύξηση της περιεκτικότητας του PVAL στο gel [44].
Υστερα απο πειράματα το PVAL βρέθηκε να είναι σε μεγάλο βαθμό αδιάλυτο σε διαλύτες που γίνονται με 65% v/v αιθανόλη, ενώ διαλύτες που περιέχουν λιγότερο από 30% v/v αιθανόλη παγώνουν [53]. Παρατηρήθηκε επίσης ότι ένα gel που σχηματίζεται χρησιμοποιώντας έναν διαλύτη αιθανόλης 35% v/v φαίνεται να είναι λιγότερο σταθερό απο αυτό εκείνο που κατασκευάζεται χρησιμοποιώντας διαλύτη αιθανόλης 50% v/v και που περιέχει την ίδια συγκέντρωση PVAL.

Διαλύματα PVAL σε 50:50 μίγματα αιθανόλης και νερού παράγουν εξαιρετικά διαφανή και μη σκεδάσιμα, ενώ παρουσιάζουν εξασθένιση των ακτίνων X παρόμοια με αυτή των ιστών του μαστού [44].

Με βάση τα παραπάνω ευρήματα, μπορούν να παραχθούν gel με συγκεντρώσεις PVAL από 5% μέχρι 20% w/v χρησιμοποιώντας διαλύτη αιθανόλης 50% v/v. Τέλος αποδεικνύεται ότι κάτω από κανονικές συνθήκες τα gel αυτά έχουν εξασθένιση ακτίνων X ταυτόσημη με εκείνη των υγιών ιστών του μαστού. Η εξασθένισή τους μπορεί εύκολα να αυξηθεί έτσι ώστε να ταιριάζει με αυτή του καρκινικού ή του πολύ ινώδους ιστού [44].

4.2 Ομοιώματα τριών συστατικών (three component phantoms)

4.2.1 Ομοίωμα Α

Για τη διεξαγωγή μετρήσεων και ποιοτικών ελέγχων σε ένα μαστογραφικό σύστημα διπλής ενέργειας μπορούμε να κατασκευάσουμε ένα ομοίωμα τριών συστατικών. Ένα τέτοιο ομοίωμα μπορεί να κατασκευασθεί επιλέγοντας υλικά τα οποία παρουσιάζουν εξασθένιση όμοια με αυτή των διαφόρων ιστών του μαστού. Σε αυτή την περίπτωση, ακόμη και όταν η αντίθεση μεταξύ δύο τέτοιων υλικών είναι πάρα πολύ μικρή και τείνει να μηδενισθεί, αυτά μπορούν να παρουσιάσουν αντίθεση με το τρίτο υλικό. Με την παραπάνω λογική ακόμη και όταν η αντίθεση ελαχιστοποιείται λόγω της κατανομής των υγείων ιστών αυτό θα μπορούσε να οδηγήσει σε βελτίωση της ανίχνευσης μιας αλλοίωσης [33].

Για τη συγκεκριμένη μελέτη υποθέτουμε ότι ο μαστός αποτελείται από τρία είδη ιστών. Αυτοί είναι ο αδενικός, ο λιπώδης και ο καρκινικός. Το εξωτερικό περίβλημα του ομοίωμα θα είναι κατά 65% από plexiglass και κατά 35% από νερό [33]. Μια φωτογραφία του εν λόγω ομοίωμα φαίνεται στην παρακάτω εικόνα:
Εικόνα 6: Εικόνα ομοιώματος μαστού, το οποίο αποτελείται από τρία συστατικά, για χρήση σε ψηφιακή μαστογραφία διπλής ενέργειας. Στην εικόνα αυτή φαίνονται ξεκάθαρα με λευκό χρώμα τα σφαιρίδια από πολυαιθυλένιο. Επίσης στο δεξί μέρος του ομοιώματος έχει τοποθετηθεί μια πλάκα από plexiglass η οποία χρησιμοποιείται για τον υπολογισμό της έντασης της προσπίπτουσας δέσμης ακτινοβολίας [33].

Παρατηρώντας το γράφημα που ακολουθεί, βλέπουμε ότι οι γραμμικοί συντελεστές εξασθένισης του νερού, του plexiglass και του πολυαιθυλένιου είναι ταυτίζονται με τους αντίστοιχους συντελεστές του καρκινικού, του αδενικού και του λιπώδους ιστού του μαστού. Αυτό υποδηλώνει ότι τα υλικά αυτά μπορούν να χρησιμοποιηθούν για την προσομοίωση ενός γυναικείου μαστού που παρουσιάζει κάποια κακοήθη.

Γράφημα 1: Γραφική παράσταση ενέργειας – γραμμικών συντελεστών εξασθένισης στην οποία φαίνεται ο συσχετισμός νερού-καρκινικού ιστού, πολυαιθυλένιου-λιπώδους ιστού και plexiglass-αδενικού ιστού [33].
4.2.2 Ομοίωμα B
Μια δεύτερη περίπτωση ομοίωματος το οποίο μπορεί να χρησιμοποιηθεί για τη διεξαγωγή μετρήσεων και ποιοτικών ελέγχων στην ψηφιακή μαστογραφία διπλής ενέργειας είναι αυτό που περιγράφεται παρακάτω.

Για να χρησιμοποιήσουμε μια δεύτερη περίπτωση ομοίωματος το οποίο μπορεί να χρησιμοποιηθεί για τη διεξαγωγή μετρήσεων και ποιοτικών ελέγχων στην ψηφιακή μαστογραφία διπλής ενέργειας, αναφέρομαι στο παράποτο ομοίωμα.

Το περίβλημα του ομοίωματος και σε αυτή την περίπτωση αποτελείται από PMMA (plexiglass) και έχει συνολικό ύψος 5 cm. Στην περίπτωση αυτή, το περίβλημα αυτό θα πρέπει να το γεμίσουμε με ζωικό λίπος σε υγρή μορφή το οποίο προηγουμένως θα έχει υποστεί κατάλληλη επεξεργασία. Το ζωικό λίπος επιλέγεται, επειδή είχε αποδειχθεί ότι παρουσιάζει κοινές ιδιότητες και συμπεριφορά με τον λιπώδη ιστό του μαστού. Έπειτα θα πρέπει να τοποθετήσουμε στο περίβλημα σφαιρίδια από PMMA διαμέτρου 8 mm και 12.7 mm (έτσι κάποιας άλλης διαμέτρου). Τα σφαιρίδια από plexiglass επιλέγονται επειδή έχει βρεθεί ότι παρουσιάζουν ίδια συμπεριφορά και ιδιότητες με τον αδενικό ιστό. Η χρήση των σφαιριδίων αυτών κάνει το ομοίωμα μη ομοιογόνο όπως ακριβώς είναι και ο κανονικός μαστός [32].

Στη συνέχεια, για την προσομοίωση του καρκινικού ιστού ο οποίος μπορεί να υπάρχει σε έναν μαστό, θα πρέπει να τοποθετηθούμε στο κέντρο του ομοίωματος μια πλάκα από PMMA πάχους 1 cm η οποία θα περιέχει κοιλότητες δύο διαφορετικών διαμέτρων. Μπορούμε να επιλέξουμε οι κοιλότητες αυτές να έχουν διαμέτρου 5 mm και 8 mm έτσι ώστε να προσομοιώνουμε μικρούς άγκους [32].

Τέλος, πρέπει να γεμίσουμε τις παραπάνω κοιλότητες με διαφορετικά διαλύματα νερού και Ultravist (iopromide, 370 mg ml⁻¹ iodium, Bertex Laboratories, Montville, NJ).

Σαν τελικό αποτέλεσμα θα έχουμε ένα ομοίωμα το οποίο θα αποτελείται κατά 70% από PMMA και κατά 30% από ζωικό λίπος. Τα ποσοστά αυτά αντιστοιχούν σε ένα κλάσμα αδενικότητας 70/30 [32].

Η τελική μορφή του ομοίωματος αυτού παρουσιάζεται στην παρακάτω εικόνα.

Εικόνα 7. Σχηματική αναπαράσταση ομοίωματος για τη διεξαγωγή μετρήσεων και ποιοτικών ελέγχων σε μαστογραφικό σύστημα διπλής ενέργειας. Στην παραπάνω εικόνα μπορούμε να δούμε το περίβλημα του ομοίωματος το οποίο είναι κατασκευασμένο από plexiglass, καθώς και τα υλικά με τα οποία γεμίζουμε το ομοίωμα (ζωικό λίπος και σφαιρίδια από plexiglass). Επίσης μπορούμε να δούμε την πλάκα από plexiglass για την προσομοίωση του καρκινικού ιστού, μέσα στην οποία υπάρχουν κοιλότητες που γεμίζουν με τον απεικονιστικό παράγωντα αντίθεσης [32].
4.3 Τρισδιάστατο ομοίωμα μαστού σε μορφή λογισμικού για προσομοιώσεις στη μαστογραφία

Αν και η πρόσφατη ανάπτυξη στον τομέα της ψηφιακής μαστογραφίας έχει θέσει τις βάσεις για την βελτίωση της ποιότητας της εικόνας, η κλασική μαστογραφία περιορίζεται από τη φύση της στην αναπαράσταση μιας τρισδιάστατης πληροφορίας σε έναν δισδιάστατο χώρο. Το γεγονός αυτό, αποτελεί έναν σημαντικό περιορισμό ειδικά στην περίπτωση που μια κακοήθης αλλοίωση έχει μικρό μέγεθος ή ο μαστός είναι πυκνός με μεγάλο ποσοστό αδενικού ιστού. Η κατανόηση της συσχέτισης μεταξύ της τρισδιάστατης σύνθεσης του μαστού και της δισδιάστατης απεικόνισής του, πρόκειται να βελτιώσει σημαντικά την απεικόνιση του αλλοιώσεων του μαστού [54].

Οι προσομοιώσεις και η μοντελοποίηση του γυναικείου μαστού με τη βοήθεια του ηλεκτρονικού υπολογιστή, μπορούν να προσφέρουν μια οικονομική και πρακτικά ευέλικτη προσέγγιση για την κατασκευή ομοιωμάτων που μπορούν να χρησιμοποιηθούν για τη διεξαγωγή ποιοτικών ελέγχων και δοσιμετρικών μελετών στον τομέα της ψηφιακής μαστογραφίας. Οι προσομοιωτές λογισμικού μπορούν επίσης να χρησιμοποιηθούν και για εκπαιδευτικούς σκοπούς [55].

Ένα τρισδιάστατο ομοίωμα μαστού σε μορφή λογισμικού είναι ένα σύνθετο μοντέλο του μαστού και μπορεί να περιλαμβάνει [55]:

- Την επιφάνεια του μαστού
- Το σύστημα των αγωγών και τις πορώδες λοβιακές απολήξεις (terminal ductal lobular units)
- Τους συνδέσμους του Cooper (Cooper’s ligaments)
- Τον θωρακικό μυς
- Το τρισδιάστατο μαστογραφικό υπόβαθρο
- Αλλοιώσεις του μαστού

4.3.1 Μοντελοποίηση του μαστού

Αρχικά θα πρέπει να πραγματοποιηθεί η μοντελοποίηση του εξωτερικού σχήματος του μαστού. Στη συνέχεια δημιουργείται το σύστημα των αγωγών το οποίο ξεκινάει από την περιοχή της θηλής και περιορίζεται από το εξωτερικό περίγραμμα του μαστού. Η υφή του τρισδιάστατου υποβάθρου σχηματίζεται με βάση τον όγκο που ορίζεται από την εξωτερική επιφάνεια του μαστού. Στη συνέχεια προστίθενται οι σύνδεσμοι του Cooper και ο θωρακικός μυς. Τέλος, για την ολοκλήρωση του ομοιώματος εισάγονται μοντελοποιημένες αλλοιώσεις. Στη συνέχεια προστίθενται οι σύνδεσμοι του Cooper και ο θωρακικός μυς. Τέλος, για την ολοκλήρωση του ομοιώματος εισάγονται μοντελοποιημένες αλλοιώσεις. Τα αιμοφόρα αγγεία, τα λεμφικά αγγεία και τα νεύρα δεν μοντελοποιούνται κατά τη διαδικασία σύνθεσης του ομοιώματος, αλλά η επίδρασή τους λαμβάνεται υπόψη από το τρισδιάστατο μαστογραφικό υπόβαθρο [55]. Στην εικόνα που ακολουθεί φαίνονται τα βήματα της διαδικασίας δημιουργίας του συγκεκριμένου ομοιώματος.
4.3.1.1 Προσομοίωση του σχήματος του μαστού
Η προσομοίωση του σχήματος του μαστού γίνεται συνδυάζοντας δύο γεωμετρικά στοιχεία του υπολογιστικού συστήματος. Το πρώτο είναι ένα επίμηκες ήμι-ελλειψοειδές στοιχείο και το δεύτερο ένα επίμηκες semi-hyperpolid γεωμετρικό στοιχείο το οποίο μοιάζει με το σχήμα του μαστού. Η μεταβολή των γεωμετρικών παραμέτρων που ορίζουν αυτά τα στοιχεία, επιτρέπει τη δημιουργία μαστών με διαφορετικά σχήματα και διαστάσεις [55].

4.3.1.2 Προσομοίωση του συστήματος αγωγών
Το σύστημα αγωγών προσομοιώνεται χρησιμοποιώντας ένα δίκτυο από πιθανοκρατικά τοποθετημένους κυλίνδρους οι οποίοι σχηματίζουν μια διατάξη όμοια με αυτή που έχουν τα κλαδιά ενός δέντρου. Το σύστημα αγωγών περιλαμβάνει δύο τύπους αγωγών. Ο πρώτος τύπος είναι οι κύριοι αγωγοί και ο δεύτερος οι γαλακτοφόροι αγωγοί. Οι κύριοι αγωγοί ξεκινούν από την περιοχή της θηλής του μαστού και εκτείνονται προς τη διεύθυνση του, ενώ οι γαλακτοφόροι αγωγοί ξεκινούν από το τελείωμα των κύριων αγωγών [55].

4.3.1.3 Προσομοίωση του μαστογραφικού υποβάθρου
Η υφή του τρισδιάστατου μαστογραφικού υποβάθρου προσομοιώνει την παρουσία του λιπώδους ιστού, του αδενικού ιστού, του συνδετικού ιστού καθώς και την παρουσία άλλων είδους ιστών οι οποίοι δεν μοντελοποιούνται. Το υπόβαθρο αυτό, αναπαριστάται από έναν πίνακα με 256³ στοιχεία όγκου (voxels) με ανάλυση 1 mm³. Οι συντελεστές εξασθένισης των στοιχείων όγκου θα πρέπει να έχουν μηδενιστεί από την αρχή. Η δημιουργία του τρισδιάστατου υποβάθρου πραγματοποιείται με την βοήθεια συνθετικών εικόνων ακολουθώντας συγκεκριμένα βήματα. Η πυκνότητα του μαστού ελέγχεται από τον αριθμό των συνθετικών εικόνων που χρησιμοποιούνται. Αυξάνοντας τον αριθμό αυτό, αυξάνεται παράλληλα και ο αριθμός των μη μηδενικών στοιχείων όγκου στην εικόνα του τρισδιάστατου υποβάθρου. Το γεγονός αυτό δημιουργεί μια πυκνότερη μήτρα υποβάθρου και κατά συνέπεια πυκνότερες εικόνες προβολής οι οποίες λαμβάνονται με την προσομοίωση [55].

Εικόνα 8. Διαδικασία σύνθεσης του ομοιώματος [55].
4.3.1.4 Προσομοίωση των συνδέσμων του Cooper και του θωρακικού μυών

Οι σύνδεσμοι του Cooper προσομοιώνονται ως ένα σύνολο λεπτών ελλειψοειδών κελυφών (set of thin ellipsoid shells), τα οποία τοποθετούνται σε τυχαίες θέσεις στο μοντέλο του μαστού. Η τιμή του γραμμικού συντελεστή εξασθένισής τους είναι ίδια με εκείνη των αγωγών ενώ στα τμήματα που περικλείονται εντός αυτών, αποδίδεται η τιμή του γραμμικού συντελεστή εξασθένισης του λιπώδους ιστού [55]. Ο θωρακικός μυός προσομοιώνεται ως ένα κονικό αντικείμενο με έναν συγκεκριμένο γραμμικό συντελεστή εξασθένισης μpectoralis = 0.380 cm^{-1} στα 30 keV [56].

4.3.1.5 Προσομοίωση των αλλοιώσεων του μαστού

Ένα βασικό χαρακτηριστικό για την περιγραφή μιας αλλοίωσης είναι το σχήμα. Στην παρακάτω εικόνα βλέπουμε κάποια από τα σχηματικά μοντέλα που χρησιμοποιούνται για την προσομοίωση των αλλοιώσεων του μαστού. Η περιγραφή μιας αλλοίωσης συνοδεύεται συχνά από παραμέτρους όπως το μέγεθος, η τοποθεσία, η ομοιογένεια και ο αριθμός των αποτίτανώσεων, τις οποίες μπορούμε να εισάγουμε εμείς ως χρήστες. Με την αλλαγή των παραμέτρων αυτών είναι πιθανή η μεταβολή του επιπέδου της κακοήθιας που μπορεί να παρουσιάζει μια αλλοίωση [55].

Εικόνα 9. Σχηματικά μοντέλα προσομοίωσης αλλοιώσεων: a) στρογγυλό, b) ωοειδές, c) σύμπλεγμα αποτίτανώσεων, d) επίμηκες, e) ακανόνιστο [55].
4.3.2 Ομοιώματα σε μορφή λογισμικού για την αξιολόγηση της ψηφιακής
tομοσύνθεσης

Για τη διεξαγωγή προσομοιώσεων στην ψηφιακή τομοσύνθεση μαστογραφίας, στα πλαίσια της
αξιολόγησης αλγορίθμων ανακατασκευής εικόνας, μπορούν να χρησιμοποιηθούν τα παρακάτω
ομοιώματα [23]:

1. Το πρώτο ομοίωμα (Εικόνα 10a) περιλαμβάνει τρείς σειρές με σφαιρίδια τοποθετημένα σε
cάθετη κατεύθυνση σε αποστάσεις -10, 0 και 10 mm από το ισόκεντρο. Τα σφαιρίδια αυτά
tοποθετούνται μέσα σε μια πλάκα ύψους 4 cm. Τα χαρακτηριστικά της πλάκας αυτής
αντιστοιχούν στα χαρακτηριστικά ενός μαστού με ποσοστό αδενικού ιστού 50 % και ποσοστό
λιπώδους ιστού 50 % (δηλαδή με συντελεστή εξασθένισης 0.71 cm-1). Κάθε σειρά αποτελείται
από πέντε σφαιρίδια. Τα σφαιρίδια της κάτω σειράς έχουν συντελεστή εξασθένισης όμοιο με
αυτόν της μάζας του μαστού (0.75 cm-1) και διάμετρο που κυμαίνεται από 2 έως 12 mm. Η
μεσαία και η πιο πάνω σειρά περιέχουν σφαιρίδια με διάμετρο που κυμαίνεται από 0.05 έως 1.2
mm και συντελεστή εξασθένισης όμοιο με αυτόν του ανθρακικού ασβεστίου (18.45 cm-1) [23]. Σε
ένα τέτοιο ομοίωμα οι συντελεστές εξασθένισης για τον λιπώδη ιστό, τον αδενικό ιστό και το
ανθρακικό ασβέστιο μπορούν να υπολογισθούν με βάση ήδη υπάρχουσε μελέτη [57].

2. Το δεύτερο ομοίωμα (Εικόνα 10b) είναι ένα μαθηματικό μοντέλο του ομοιώματος μαστού CIRS
και συγκεκριμένα του μοντέλου 011Α [58]. Το ομοίωμα αυτό αποτελεί ένα ομοίωμα ισοδύναμο
των ιστών του μαστού με πάχος 4.5 cm και προσομοιώνει μια σύνθεση μαστού με 50 % αδενικό
ιστό [23].

3. Η τρίτη περίπτωση μαθηματικού ομοιώματος που έχει αναπτυχθεί (Εικόνα 10c) περιλαμβάνει
μια τρισδιάστατη αναπαράσταση ενός μεσαίου μεγέθους ασθενήστου μαστού, με ποσοστό
αδενικού ιστού 50 % και ποσοστό λιπώδους ιστούς 50 % [59]. Στο ομοίωμα αυτό μπορούν να
ενσωματώθηκαν επίσης και μερικές μικροαποτιτανώσεις σε ένα τρισδιάστατο υπόβαθρο
ετερογένειας. Οι μικροαποτιτανώσεις αυτές προσομοιώνονται ως σφαίρες από ανθρακικό
ασβέστιο με μέγεθος από 0.05 έως 1 mm [23].

Εικόνα 10. Μαθηματικά ομοιώματα για τη διεξαγωγή προσομοιώσεων στην ψηφιακή τομοσύνθεση
μαστογραφίας, στα πλαίσια της αξιολόγησης αλγορίθμων ανακατασκευής εικόνας. Αριστερά φαίνεται το
ομοίωμα με τα σφαιρίδια διαφόρων διαμέτρων και χαρακτηριστικών, στο κέντρο το ομοίωμα CIRS και τέλος
dεξιά φαίνεται το ομοίωμα που προσομοιώνει έναν συμπιεσμένο μαστό με πάχος 6 cm [23].
4.3.3 Υλικά Ομοιώματα (Hardware Phantoms) για την αξιολόγηση της κλινικής χρήσης της Ψηφιακής Τομοσύνθεσης

Προκειμένου να μελετηθεί η απόδοση των αλγορίθμων σε πειραματικό περιβάλλον, μπορεί να δημιουργηθεί ένα ομοίωμα συνδυάζοντας τα ομοιώματα TOR-MAM και TOR-MAX (Leeds Test Objects Ltd, Leeds, UK), που χρησιμοποιούνται για τον πιο στις Ψηφιακής Τομοσύνθεση (Εικόνα 10a) [60]. Το συνολικό πάχος του τελικού ομοιώματος είναι 3 cm. Το ακτινοβολούμενο τμήμα από το TOR-MAM ομοίωμα (η χαμηλότερη περιοχή ενδιαφέροντος-ROI στην εικόνα 10b) περιέχει δομές υποβάθρου με ενσωματωμένα μικροσωματίδια και ίνες που μπορεί να αντιπροσωπεύουν παθολογικά χαρακτηριστικά σε έναν μαστό. Το αντίστοιχο ακτινοβολούμενο τμήμα από το TOR-MAX ομοίωμα (η υψηλότερη περιοχή ενδιαφέροντος στην εικόνα 10b), περιέχει κυκλικές λεπτομέρειες με διάμετρο 6 mm οι οποίες αντιστοιχούν σε λεπτομέρειες υψηλής αντίθεσης και κυκλικές λεπτομέρειες 0.25 και 0.5 mm οι οποίες αντιστοιχούν σε λεπτομέρειες χαμηλής αντίθεσης [23].

Εικόνα 11. Στο αριστερό μέρος της εικόνας (Εικόνα 10a) φαίνεται το τελικό ομοίωμα έπειτα από το συνδυασμό των ομοιωμάτων TOR-MAM και TOR-MAX και στα δεξιά φαίνονται οι ακτινοβολούμενες περιοχές ενδιαφέροντος των δύο παραπάνω ομοιωμάτων [23]. Ένα υλικό ομοίωμα θα πρέπει να περιλαμβάνει τμήματα τα οποία θα αναπαριστούν μικροαποτιτανώσεις και μικρές μάζες προκειμένου να μπορούν να διεξάγονται εναλλακτικά test παρατηρητή εξαναγκασμένης επιλογής (alternative forced choice reader tests). Σε διαφορετική περίπτωση το ομοίωμα θα πρέπει να περιλαμβάνει έναν μεγάλο αριθμό αντικειμένων για ηλεκτρονική ανάλυση και να παράγει έναν πράγματι πρότυπο σκέδασης για όλες τις απεικονιστικές μεθόδους του μαστού που χρησιμοποιούν ακτίνες X. Στο ομοίωμα αυτό οπότε, μπορούν να συμπεριληφθούν επίσης ανατομικά υπόβαθρα τα οποία θα έχουν διαφορετικά πάχη και θα κυμαίνονται από λιπώδη έως πολύ πυκνά. Αυτά μπορούν είτε να τοποθετηθούν στο υλικό βάσης του ομοιώματος, είτε να προστεθούν επίσης από την κατασκευή του ομοιώματος [25]. Ένα ομοίωμα σαν αυτό που περιγράφεται παραπάνω, φαίνεται στην εικόνα που ακολουθεί:
Εικόνα 12. Ομοίωμα δοκιμής για τον έλεγχο της απόδοσης ενός συστήματος υψηλής τομοσύνθεσης μαστού με διάφορες προσθήκες (inserts) στο ένα επίπεδο και τριγωνικά τμήματα αδενικών ιστών στο άλλο επίπεδο (by A. Walker, Leeds Test Objects, UK) [25].

4.5 Ομοίωμα για την αξιολόγηση της εικόνας των αποτιτανώσεων από ένα ψηφιακό σύστημα μαστογραφίας διπλής ενέργειας

Ανάλογα με το μέγεθος και τη θέση που μπορεί να έχουν οι αποτιτανώσεις σε μια μαστογραφική εικόνα, η ανίχνευσή τους μπορεί να περιορίζεται από τις επικαλυπτόμενες ανατομικές δομές (overlapping anatomical structures), ακόμη και στην περίπτωση όπου οι αποτιτανώσεις αυτές έχουν επαρκή λόγο αντίθεσης προς θόρυβο (Contrast to noise ratio-CNR). Οι ανατομικές δομές σε μια μαστογραφική εικόνα προέρχονται από τη διαφορά στην εξασθένιση των ακτινών X μεταξύ του λιπώδους ιστούς, του αδενικού ιστού, των αγγείων και των αγγειών και αναφέρονται ως υπόβαθρο ιστού-δομής (tissue-structure background). Μια πιθανή λύση στο πρόβλημα των επικαλυπτόμενων ανατομικών δομών είναι η χρήση της ψηφιακής μαστογραφίας διπλής ενέργειας η οποία έχει περιγραφεί εκτενώς πιο πάνω. Στην ιδιαίτερη περίπτωση, οι εικόνες αποτιτανώσεων με μαστογραφία διπλής ενέργειας αναμένεται να έχουν ένα ομοιόμορφο υπόβαθρο, το οποίο θα είναι ανεξάρτητο από το υπόβαθρο ιστού-δομής. Πάνω στο υπόβαθρο αυτό θα μπορούν να απεικονισθούν οι αποτιτανώσεις, με την αντίθεσή τους να αυξάνεται ανάλογα με την αύξηση του μεγέθους τους [61].

Για την αξιολόγηση εικόνων μαστογραφίας διπλής ενέργειας όσον αφορά τον οπτικό διαχωρισμό των αποτιτανώσεων μπορούν να χρησιμοποιηθούν τα ομοίωματα που αναφέρονται στη συνέχεια:
4.5.1 Ομοίωμα με μορφή πλάκας (slab phantom)
Ένα τέτοιο ομοίωμα μπορεί να είναι ένα τετράγωνο “κουτί” από υλικό ισοδύναμο με αυτό των ιστών του μαστού (όπως για παράδειγμα το plexiglass), με ύψος 5 cm και διαστάσεις 22X14 cm². Το ομοίωμα αυτό θα πρέπει να έχει σταθερή αναλογία αδενικού ιστού. Σαν αναλογίες αδενικού ιστού, μπορούμε να χρησιμοποιήσουμε τα ποσοστά 0 %, 50 % και 100 % [61].

4.5.2 Ομοίωμα με χρήση σφηνών (wedge phantom)
Ένα τέτοιο ομοίωμα μπορεί να κατασκευασθεί τοποθετώντας δύο σφήνες κατασκευασμένες από υλικό ισοδύναμο με αυτό των ιστών του μαστού, διαστάσεων 22x14 cm² (μήκος x πλάτος) και ύψους από 5 έως 0 cm, τη μία πάνω στην άλλη όπως ακριβώς φαίνεται και στην παρακάτω εικόνα (Εικόνα 11a). Οι σφήνες αυτές θα ισοδυναμούν η μία με 100 % αδενικό ιστό και η άλλη με 100 % λιπώδη ιστό. Η προκύπτουσα πλάκα θα έχει ένα σταθερό ύψος 5 cm με σταθερή αναλογία αδενικού ιστού κατά μήκος της μικρότερης πλευράς και μεταβλητή αναλογία (από 0 % έως 100 %) αδενικού ιστού κατά μήκος της μεγαλύτερης πλευράς [61].

4.5.3 Ομοίωμα αποτιτανώσεων
Το ομοίωμα αποτιτανώσεων μπορεί να δημιουργηθεί τοποθετώντας 66 ομάδες αποτιτανώσεων σε ένα πλέγμα 11X6 πάνω σε ένα ακτινογραφικό φιλμ. Κάθε ομάδα αποτιτανώσεων θα πρέπει να αποτελείται από 9 κρυστάλλους CaCO₃ τοποθετημένους σε μια διάταξη 3x3, για την προσομοίωση των αποτιτανώσεων. Οι κρύσταλλοι αυτοί οργανώνονται με βάση το μέγεθος τους σε 6 σειρές με ονομαστικό μέγεθος που κυμαίνεται από 212-224, 224-250, 250-300, 300-355 και 355-425 μ. Σαν αποτέλεσμα της παραπάνω διαδικασίας (Εικόνα 13a), το μέγεθος των αποτιτανώσεων ποικίλει κατά μήκος της μικρότερης πλευράς του ομοιώματος αλλά παραμένει σταθερό κατά μήκος της μεγαλύτερης πλευράς του ομοιώματος [61].

4.5.4 Ολοκληρωμένο ομοίωμα σφηνών-αποτιτανώσεων (wedge-calcification phantom)
Για τη δημιουργία του τελικού ομοιώματος (Εικόνα 13a) θα πρέπει να τοποθετηθεί το ομοίωμα με τις αποτιτανώσεις ακριβώς κάτω από το ομοίωμα που δημιουργήθηκε με τη χρήση σφηνών. Ως αποτέλεσμα του συνδυασμού αυτού, έχουμε μια ορθογώνια πλάκα πάχους 5 cm με συνεχώς μεταβαλλόμενη αναλογία αδενικού ιστού και σταθερό μέγεθος αποτιτανώσεων κατά μήκος της μεγαλύτερης πλευράς και σταθερή αναλογία αδενικού ιστού καθώς και μεταβλητή αναλογία αδενικού ιστού κατά μήκος της μικρότερης πλευράς [61].
Εικόνα 13. Στο επάνω μέρος της εικόνας βλέπουμε μια σχηματική αναπαράσταση του ομοίωματος που δημιουργείται με τη χρήση σφηνών στην οποία φαίνονται επίσης οι σφήνες που είναι κατασκευασμένες από υλικά ισοδύναμα με τον αδενικό και τον λιπώδη ιστό του μαστού. Κάτω από το πρώτο ομοίωμα έχει τοποθετηθεί το ομοίωμα των αποτιτανώσεων το οποίο μπορεί να χρησιμοποιηθεί για την αξιολόγηση εικόνων αποτιτανώσεων στη μαστογραφία διπλής ενέργειας. Στο κάτω μέρος της εικόνας φαίνεται το ομοίωμα που περιέχει τις αποτιτανώσεις τοποθετημένες σύμφωνα με τη διαδικασία που προαναφέρθηκε [61].

4.6 Ομοίωμα για τη διεξαγωγή ελέγχων δόσιμης στην μαστογραφία
Προκειμένου να προβλέψουμε την μέση αδενική δόση (Average Glandular Dose-AGD) σε πραγματικούς πληθυσμούς ασθενών, θα πρέπει να χρησιμοποιηθούν ομοίωματα που να επιτρέπουν τη μεταβολή του πάχους και της αδενικότητας. Ένα τέτοιο ομοίωμα περιγράφεται παρακάτω [6].

4.6.1 Υλικά ισοδύναμα των ιστών του μαστού
Τα υλικά που χρησιμοποιούνται για την κατασκευή του ομοίωματος θα πρέπει να έχουν μαζικούς συντελεστές εξασθένισης, μαζικούς συντελεστές απορρόφησης και πυκνότητα παρόμοιας με τις γνωστές τιμές των ιστών του μαστού στο εύρος ενεργειών της μαστογραφίας. Ιδιαίτερη βαρύτητα θα πρέπει επίσης να δοθεί όσον αφορά το κόστος, τη συντήρηση και τη διαθεσιμότητα των υλικών αυτών [6].

Στον παρακάτω πίνακα φαίνονται τα υλικά που μπορούμε να επιλέξουμε για την κατασκευή ενός τέτοιου ομοίωματος ανά ποσοστό μάζας. Μεταβάλλοντας τις αναλογίες των συστατικών αυτών, οι επιθυμητές φυσικές ιδιότητες καθώς και οι μαζικοί συντελεστές εξασθένισης για την προσομοίωση του λιπώδους και του αδενικού ιστού μπορούν να αντιστοιχήσουν με τις άνω συνθήκες των ιστών του μαστού που αναφέρονται στο ICRU 44 [62].
Πίνακας 1. Σύνθεση υλικών ισοδύναμων με τους ιστούς του μαστού ανά ποσοστό βάρους, για 100% αδενικό και 100% λιπώδη ιστό [6].

<table>
<thead>
<tr>
<th>Τέλος</th>
<th>100% glandular</th>
<th>100% adipose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araldite GY 60-10 (epoxy resin)</td>
<td>49.43%</td>
<td>48.43%</td>
</tr>
<tr>
<td>Jeffamine T-403 (hardener)</td>
<td>19.77%</td>
<td>19.37%</td>
</tr>
<tr>
<td>Polyethylene powder (medium density)</td>
<td>18.50%</td>
<td>26.30%</td>
</tr>
<tr>
<td>Phenolic microspheres</td>
<td>0.88%</td>
<td>1.20%</td>
</tr>
<tr>
<td>Magnesium oxide power</td>
<td>11.42%</td>
<td>4.70%</td>
</tr>
</tbody>
</table>

4.6.2 Βήματα για την κατασκευή του ομοιώματος

Ως βάση για την κατασκευή του ομοιώματος επιλέγεται μια μήτρα εποξικής ρητίνης στην οποία μπορούν εύκολα να ενσωματωθούν τα διάφορα συστατικά ώστε τελικά να παραχθεί ένα ομοίωμα με τις επιθυμητές ακτινολογικές ιδιότητες [6].

Τα βήματα για την κατασκευή του ομοιώματος αναφέρονται στη συνέχεια:

1. Τα συστατικά που αναφέρονται στον παραπάνω πίνακα, θα πρέπει να ζυγιστούν με την εξής σειρά, ανάλογα με την επιθυμητή σύνθεση:
 - Εποξική ρητίνη (Araldite)
 - Σκόνη πολυαιθυλενίου
 - Σκόνη οξειδίου του Μαγνησίου
 - Φαινολικά μικροσφαιρίδια
 - Σκληρυντικό (Jeffamine)

2. Στη συνέχεια όλα τα συστατικά πρέπει να αναμιχθούν με το χέρι πριν προστεθούν στην εποξική ρητίνη, ώστε να εξασφαλιστεί ότι το ομοίωμα θα έχει καλή ομοιογένεια.

3. Έπειτα από την προσθήκη του σκληρυντικού το μίγμα θα πρέπει να αναμιχθεί με το χέρι για επιπλέον 20 λεπτά. Η ανάμιξη με το χέρι γίνεται προκειμένου να αποτραπεί η είσοδος φυσαλίδων αέρα εντός του μίγματος.

4. Τέλος το μίγμα χύνεται σε καλούπια βάθους ενός εκατοστού επικαλυμμένα με Teflon και αφήνεται να σκληρύνει (curing) για 48 ώρες.

4.6.3 Αποτελέσματα

Οι μαζικοί συντελεστές εξασθένισης και οι μαζικοί συντελεστές απορρόφησης ενός τέτοιου ομοιώματος μπορούν να ζυγίσουν αξιολογώντας το XCOM, με βάση τη χημική σύνθεση του μίγματος της εποξικής ρητίνης. Αποδεικνύεται επίσης ότι ταυτίζονται με τους αντίστοιχους συντελεστές που αναφέρονται στο ICRU 44 για 100% λιπώδη ιστό και 100% αδενικό ιστό, με ποσοστό αβεβαιότητας ±1.3 % σε ολόκληρο το φάσμα ενεργειών της μαστογραφίας [6].

Τροποποιώντας κάποια από τα παραπάνω υλικά, μπορούμε να αποφύγουμε την μίξη τους υπό συνθήκες κενού. Έτσι, μπορούμε να καταλήξουμε σε ένα ομοιογενές ομοίωμα, όπος ακριβώς θα καταλήγαμε και με τον παραπάνω τρόπο και μπορούμε επίσης να επιτύχουμε καλύτερη αντιστοίχιση των συντελεστών εξασθένισης και απορρόφησης [63].

Το παραπάνω ομοίωμα επιτρέπει επίσης τη μέτρηση της μέσης αδενικής δόσης (average glandular dose - AGD) η οποία στην ουσία αναπαριστά καλύτερα τη δόση με την οποία επιβαρύνεται ένας ασθενής κατά τη διάρκεια μιας μαστογραφίας [6].
Δοσιμετρικές μετρήσεις έδειξαν επίσης ότι η μέση αδενική δόση μειώνεται με την αύξηση των kVp. Για το συγκεκριμένο ομοίωμα η δόση στα 28 kVp βρέθηκε ότι αντιστοιχεί με το 77% της δόσης στα 25 kVp. Το γράφημα που ακολουθεί δείχνει ότι το ποσοστό μείωσης της δόσης σε σχέση με την αύξηση των kVp είναι μικρότερο στην περίπτωση της υψηλής αδενικότητας και μεγαλύτερο στην περίπτωση της χαμηλής αδενικότητας [6].

Γράφημα 2. Σχέση AGD και kVp για διάφορα ομοίωμα που αναπαριστούν διάφορα πάχη συμπιεσμένου μαστού με τιμές 1.86 cm, 2.57 cm, 3.36 cm, 4.27 cm, 5.39 cm και 6.96 cm. Τα πάχη αυτά αντιστοιχούν σε αδενικότητες 70%, 60%, 50%, 40%, 30%, 20% [6].
Πειραματικό Μέρος

Όπως έχει ήδη περιγραφεί, υπάρχει μια μεγάλη ποικιλία από ομοιώματα που έχουν αναπτυχθεί (ή βρίσκονται ακόμη υπό ανάπτυξη) τα οποία μιμούνται τις ιδιότητες των ιστών του μαστού και κατά συνέπεια μπορούν να χρησιμοποιηθούν για προσομοιώσεις στη μαστογραφία. Ορισμένα όμως από τα ομοιώματα αυτά είναι δύσκολα στην κατασκευή και προϋποθέτουν τη χρήση υλικών τα οποία είναι δυσεύρετα και πολλές φορές ιδιαίτερα ακριβά.

Στα πλαίσια λοιπόν των διαθέσιμων εργαστηριακών εγκαταστάσεων και θεμάτων κόστους και διαθεσιμότητας, ως καταλληλότερα υλικά για τη δημιουργία του μίγματος με το οποίο επρόκειτο να γεμίσουμε το εξωτερικό περίβλημα του ομοιώματος, επιλέχθηκαν το ομογενοποιημένο λαρδί και τα ασπράδια αυγών. Για τη δημιουργία δε του περιβλήματος μέσα στο οποίο θα τοποθετήσουμε το μίγμα αυτό, επιλέχθηκε ένα ευρέως χρησιμοποιούμενο και διαθέσιμο υλικό, το PMMA ή διαφορετικά Plexiglass. Συνεπώς, τα υλικά τα οποία χρησιμοποιήθηκαν για τη δημιουργία του τελικού ομοιώματος είναι το plexiglass, το ομογενοποιημένο λαρδί και τα ασπράδια αυγών.

Η επιλογή των υλικών αυτών καθώς και οι διαδικασίες που περιγράφονται παρακάτω, βασίστηκαν σε προηγούμενη μελέτη. Όπως έχει ήδη αποδειχθεί, τα ασπράδια αυγών και το λαρδί έχουν παρόμοια σύνθεση και άρα μπορούν να προσομοιώσουν τον αδενικό και λιπώδη ιστό του ανθρώπινου μαστού αντίστοιχα [64].

Οι συντελεστές εξασθένισης των ακτίνων X και οι στοιχειακές συνθέσεις του λιπώδους και του αδενικού ιστού, έχουν μελετηθεί κατά καιρούς από διάφορους ερευνητές [34, 65-69].

Όπως έχει ήδη αποδειχθεί, τα ασπράδια αυγών και το λαρδί έχουν παρόμοια σύνθεση και άρα μπορούν να προσομοιώσουν τον αδενικό και λιπώδη ιστό του ανθρώπινου μαστού αντίστοιχα [64].

Οι συντελεστές εξασθένισης των ακτίνων X και οι στοιχειακές συνθέσεις του λιπώδους και του αδενικού ιστού, έχουν μελετηθεί κατά καιρούς από διάφορους ερευνητές [34, 65-69].

Οι στοιχειακές συνθέσεις για τα ασπράδια αυγών και το λαρδί έχουν υπολογισθεί από την Εθνική Βάση Δεδομένων Θρεπτικών Συστατικών για Πρότυπα Αναφοράς του Υπουργείου Γεωργίας των Ηνωμένων Πολιτειών (USDA’s National Nutrient Database for Standard Reference- USDA 2009) και οι μαζικοί συντελεστές εξασθένισης για τα υλικά αυτά προκύπτουν από τις παραπάνω τιμές με χρήση της βάσης δεδομένων PENELOPE [64].

Αναλυτικότερα, με βάση τα παραπάνω υπολογίσθηκαν μετρούμενοι-grαμμικοί συντελεστές εξασθένισης για το ασπράδι αυγού είναι 0.426 cm\(^{-1}\) στα 27 keV και 0.215 cm\(^{-1}\) στα 60 keV, η ειδική πυκνότητα είναι 1.04 και οι μαζικοί συντελεστές εξασθένισης είναι 0.410 cm\(^2\)/g στα 27 keV και 0.207 cm\(^2\)/g στα 60 keV [64].

Οι συντελεστές εξασθένισης για το λαρδί είναι 0.426 cm\(^{-1}\) στα 27 keV και 0.215 cm\(^{-1}\) στα 60 keV, η ειδική πυκνότητα είναι 1.04 και οι μαζικοί συντελεστές εξασθένισης είναι 0.410 cm\(^2\)/g στα 27 keV και 0.207 cm\(^2\)/g στα 60 keV [64].

Στον πίνακα που ακολουθεί φαίνεται η σύγκριση της στοιχειακής σύνθεσης των υλικών τα οποία έχουμε επιλέξει για την κατασκευή του ομοιώματος, με την αντίστοιχη σύνθεση του αδενικού και του λιπώδους ιστού του μαστού από προηγούμενες μελέτες.
<table>
<thead>
<tr>
<th>Элемент</th>
<th>Масло</th>
<th>Жировая ткань груди</th>
<th>Яичные белки</th>
<th>Железистая ткань груди</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>76.05</td>
<td>61.9 (49.1-69.1)</td>
<td>76.5 ± 1.1</td>
<td>5.59 (10.8-30.5)</td>
</tr>
<tr>
<td>H</td>
<td>12.25</td>
<td>11.2</td>
<td>12.4 ± 0.1</td>
<td>10.69</td>
</tr>
<tr>
<td>O</td>
<td>11.69</td>
<td>25.1 (18.9-35.7)</td>
<td>10.7 ± 1.3</td>
<td>81.64</td>
</tr>
<tr>
<td>N</td>
<td>0.007</td>
<td>1.7</td>
<td>0.4 ± 0.05</td>
<td>1.56</td>
</tr>
</tbody>
</table>

Πίνακας 2. Σύγκριση της στοιχειακής σύνθεσης (ως ποσοστό κατά βάρος) των υλικών που χρησιμοποιήθηκαν για την κατασκευή του ομοιώματος με τις αντίστοιχες τιμές των ιστών του μαστού από προηγούμενες μελετές [64].

Στο γράφημα που ακολουθεί φαίνεται η σύγκριση των μαζικών συντελεστών εξασθένισης της παραπάνω μελέτης με τις αντίστοιχες τιμές άλλων μελετών.

Γράφημα 3. Στην αριστερή εικόνα φαίνεται η σύγκριση των μαζικών συντελεστών εξασθένισης μεταξύ του λιπώδους ιστού του μαστού και του λιπώδους υλικού που χρησιμοποιήθηκε για την μελέτη αυτή (λαρδί) και στην δεξιά εικόνα φαίνεται η σύγκριση των μαζικών συντελεστών εξασθένισης μεταξύ του αδενικού ιστού και των ασπραδιών αυγού [64].

Εξετάζοντας το παραπάνω γράφημα φαίνεται ότι ο μαζικός συντελεστής εξασθένισης για το λαρδί ταιριάζει με τις αντίστοιχες τιμές του λιπώδους ιστού του μαστού σε κάθε ενέργεια με μια απόκλιση 20 %. Αντίστοιχα και οι τιμές για το ασπράδι αυγού ταιριάζουν με τις τιμές του αδενικού ιστού με μια απόκλιση 15 %. Οπως είναι φανερό οι αποκλίσεις αυτές γίνονται μεγαλύτερες για ενέργειες μικρότερες των 20 keV.
Κεφάλαιο 5. Κατασκευή Ομοιώματος

5.1 Διαδικασία κατασκευής εξωτερικού περιβλήματος

Το ιδανικό περιβλήμα του ομοιώματος είναι αυτό που προτείνεται σε προηγούμενη μελέτη και φαίνεται στην παρακάτω εικόνα (Εικόνα 14). Εάν παρατηρήσουμε το περιβλήμα αυτό είναι εμφανές ότι αποτελεί μια ενιαία κατασκευή, χωρίς ραφές και ότι το μόνο αποσπώμενο τμήμα είναι το πίσω μέρος της κατασκευής το οποίο ενώνεται με το κύριο μέρος του περιβλήματος μέσω της φλάντζας. Συνεπώς, για να δημιουργηθεί ένα τέτοιο περιβλήμα, απαιτείται η χρήση ειδικού καλούπι. Έπειτα από έρευνα εκτιμήθηκε ότι είναι ασύμφορο από θέμα κόστους να δημιουργηθεί ένα τέτοιο καλούπι για τη δημιουργία ενός και μόνο περιβλήματος. Προκειμένου λοιπόν να διατηρηθεί το κόστος της όλης κατασκευής χαμηλά, η δημιουργία του εξωτερικού περιβλήματος του ομοιώματος, επιλέχθηκε να πραγματοποιηθεί ακολουθώντας τις παρακάτω διαδικασίες.

Εικόνα 14. Στην παραπάνω εικόνα φαίνεται το τελικό ομοίωμα το οποίο δημιουργήθηκε σε προηγούμενη μελέτη. Παρατηρώντας την εικόνα βλέπουμε ότι το εξωτερικό περιβλήμα που αποτελείται από plexiglass είναι ενιαίο και δεν έχει καθόλου ραφές γεγονός που υποδηλώνει ότι προέρχεται από κατάλληλο καλούπι [64].

Για την κατασκευή του εξωτερικού περιβλήματος του ομοιώματος, αρχικά χρησιμοποιήθηκαν τέσσερα κομμάτια από plexiglass. Τα δύο από αυτά τα κομμάτια είχαν το σχήμα ενός ημικύκλιου και χρησιμοποιήθηκαν ως πάνω μέρος και βάση του περιβλήματος. Το μήκος του κάθετου τμήματος και η ακτίνα κάθε ημικυκλίου ήταν 12 cm και 8 cm αντίστοιχα. Το πάχος τέλος, των κομματιών αυτών ήταν 1 cm.

Ένα τρίτο ημικυκλικό κομμάτι από plexiglass με πάχος 1 cm και ύψος 2 cm, χρησιμοποιήθηκε ως το ενδιάμεσο τμήμα πάνω στο οποίο επρόκειτο να κολλήθονταν τα δύο ημικυκλικά κομμάτια. Η κόλλα που χρησιμοποιήθηκε για τον σκοπό αυτό, παρασκευάστηκε συνδυάζοντας χλωροφόριο και λιώνοντας ρινίσματα από plexiglass. Αρχικά, τοποθετήθηκε κόλλα στην πάνω πλευρά και σε όλο το μήκος της καμπύλωτου τμήματος του τρίτου κομματιού, με τη βοήθεια μιας σύριγγας. Έπειτα, τοποθετήθηκε κόλλα στο τρίτο κομμάτι και η κατασκευή πακτώθηκε με ειδικό σφιγκτήρα για χρονικό διάστημα 10 λεπτών έτσι ώστε τα δύο κομμάτια plexiglass να κολλήσουν. Στη συνέχεια, ακολουθώντας την ίδια διαδικασία κολλήθηκε και το δεύτερο από τα ημικυκλικά κομμάτια στην άλλη πλευρά του τρίτου κομματιού. Τέλος, η κατασκευή παρέμεινε για χρονικό διάστημα περίπου τριάντα λεπτών κάτω από την επίδραση σταθερού βάρους,
ώστε να διασφαλίσουμε ότι τα κομμάτια έχουν κολλήσει μεταξύ τους. Το αποτέλεσμα των παραπάνω
dιαδικασιών ήταν ένα ημικύκλιο μήκους 12 cm και πάχους-ύψους 4 cm μαζί με τα τοιχώματα.

Η τοποθέτηση του τρίτου κομματιού ως ενδιάμεσο τμήμα του περιβλήματος, έγινε προκειμένου να
dημιουργηθεί ένας κενός ημικυκλικός χώρος με μήκος 10 cm και πάχος-ύψος 2 cm ο οποίος στη
συνέχεια θα μπορούσε να γεμίσει με το μήκος του οποίου οι διαδικασία παρασκευής αναφέρεται
αναλυτικά παρακάτω. Το κύριο μέρος του εξωτερικού περιβλήματος καθώς και ο χώρος που
dημιουργήθηκε εντός αυτού, φαίνονται στις εικόνες που ακολουθούν.

Εικόνα 15. Στην εικόνα αυτή φαίνεται το κύριο μέρος του εξωτερικού περιβλήματος έπειτα από
tην κόλληση των τριών διαφορετικών τμημάτων από plexiglass (1 – πάνω μέρος περιβλήματος, 2
– βάση περιβλήματος, 3 – ενδιάμεσο τμήμα περιβλήματος).
Εικόνα 16. Στην εικόνα αυτή φαίνεται η άνω (ή αντίστοιχα η κάτω) άποψη του κύριου μέρους του εξωτερικού περιβλήματος.

Εικόνα 17. Άνω (ή κάτω) άποψη εξωτερικού περιβλήματος από διαφορετική οπτική γωνία.

Εικόνα 18. Στην παραπάνω εικόνα φαίνεται το μπροστινό τμήμα του εξωτερικού περιβλήματος. Επειδή το μπροστινό μέρος ενός συμπιεσμένου μαστού σχηματίζει μια καμπυλότητα, χρησιμοποιήθηκε ένα κοίλο κομμάτι από plexiglass το οποίο τοποθετήθηκε ανάμεσα από τα δύο αρχικά κομμάτια έτσι ώστε η τελική κατασκευή να αναπαριστά όσο το δυνατό πιο πιστά έναν συμπιεσμένο μαστό.

Εικόνα 19. Στην εικόνα αυτή φαίνεται ο εσωτερικός χώρος ο οποίος δημιουργήθηκε στο κύριο μέρος του εξωτερικού περιβλήματος και στον οποίο επρόκειτο να τοποθετηθεί το μίγμα. Ο όγκος του κενού αυτού τμήματος υπολογίσθηκε στα 140 ml.
Τα 2 cm ως ύψος του τρίτου κομματιού και το 1 cm ως πάχος των δύο ημικυκλικών κομματιών, επιλέχθηκαν έτσι ώστε όταν τα τρία αυτά κομμάτια τοποθετηθούν το ένα πάνω στο άλλο, να σχηματίζουν ένα εξωτερικό περίβλημα με συνολικό πάχος-υψός 4 cm μαζί με τα τοιχώματα. Πριν από την ακτινοβολήση του ομοίωματος και προκειμένου να προσομοιωθούν τυχόν αποτιτανώσεις οι οποίες μπορεί να υπάρχουν σε ένα μαστό, τοποθετήθηκε ακριβώς κάτω από το αρχικό ομοίωμα ένα ομοίωμα αποτιτανώσεων. Το ομοίωμα αυτό ήταν στην ουσία μια πλάκα από plexiglass η οποία όπως θα περιγραφεί παρακάτω περιείχε μια σειρά από αποτιτανώσεις. Το πάχος της πλάκας αυτής ήταν 0.4 cm. Συνεπώς το πάχος του εξωτερικού περιβλήματος επιλέχθηκε να είναι 4 cm, ώστε κατά την τοποθέτηση του ομοίωματος τον αποτιτανώσεων ακριβώς κάτω από το ομοίωμα ανομοιογενειών να προκύπτει ένα ολοκληρωμένο ομοίωμα που θα προσομοιώνει έναν συμπιεσμένο μαστό πάχους 4.4 cm.

Ένα από τα ζητούμενα ήταν το εξωτερικό περίβλημα του ομοίωματος να έχει ένα αποσπώμενο τμήμα έτσι ώστε να μπορεί ανά πάσα στιγμή να αφαιρεθεί το αρχικό μίγμα, στη συνέχεια να καθαριστεί το εσωτερικό του περιβλήματος και τέλος να τοποθετηθεί νέο μίγμα. Το κομμάτι αυτό, τοποθετήθηκε στο πίσω μέρος της αρχικής κατασκευής με τη βοήθεια ειδικών πλαστικών βιδών όπως περιγράφεται στη συνέχεια. Αρχικά σχεδιάστηκε πάνω στο αποσπώμενο κομμάτι το περίγραμμα του πίσω μέρους της αρχικής κατασκευής και σημειώθηκαν τα σημεία που θα γίνουν οι οπές για τις βίδες. Ο αριθμός των οπών επιλέχθηκε τυχαία να είναι οκτώ. Στο σημείο αυτό αξίζει να σημειωθεί ότι όσο μεγαλύτερος είναι ο αριθμός των οπών, τόσο καλύτερη θα είναι η συνένωση των δύο τμημάτων (του κύριου και του αποσπώμενου τμήματος του εξωτερικού περιβλήματος). Οι δύο από τις οπές αυτές έγιναν στο μέσο της απόστασης (δηλαδή στα 2 cm) των πλευρών με μήκος 4 cm, και οι υπόλοιπες έγιναν σε αποστάσεις 4 cm, 8 cm και 12 cm σε κάθε πλευρά με μήκος 16 cm. Οι οπές αρχικά ανοίχτηκαν με τρυπάνι διαμέτρου 3 χιλιοστών και στη συνέχεια διευρύνθηκαν με τρυπάνι διαμέτρου 3.5 χιλιοστών ώστε να περάνε με ευκολία μέσα από αυτές. Οι διαθέσιμες βίδες ήταν πλαστικές με διάμετρο 3 χιλιοστά και μήκος 15 χιλιοστά. Στις εικόνες που ακολουθεί φαίνεται το αποσπώμενο τμήμα έπειτα από τη διάνοιξη των οπών.

Εικόνα 20. Στην εικόνα αυτή φαίνεται το αποσπώμενο τμήμα το οποίο χρησιμοποιήθηκε ως καπάκι για το εξωτερικό περίβλημα έπειτα από την διάνοιξη των οπών.

Εικόνα 21. Εικόνα αποσπώμενου τμήματος από άλλη θέση.
Στη συνέχεια, τοποθετώντας το αποσπώμενο τμήμα στο πίσω μέρος του κύριου τμήματος του εξωτερικού περιβλήματος, σημειώθηκαν τα σημεία στα οποία θα γίνονταν οι οπές. Επειδή το πάχος των τοιχωμάτων του κύριου τμήματος του περιβλήματος ήταν μόλις 1 cm και η διάμετρος των διαθέσιμων βιδών 3 mm, το άνοιγμα των οποίων θα έπρεπε να γίνει με μεγάλη προσοχή ώστε να μην δημιουργηθούν ρωγμές στο υλικό. Για το λόγο αυτό επιλέχθηκε οι οπές αυτές να ανοιχτούν αρχικά με τριμάτα διαμέτρου 2.4 mm και στη συνέχεια να διευρυνθούν με το χέρι με τη βοήθεια ειδικού εργαλείου διάνοιξης εσωτερικού σπειρόματος (σπειροτόμο - κολαούζο). Το βάθος που θα έπρεπε να γίνουν οι οπές στα τοιχώματα του περιβλήματος, υπολογίσθηκε με βάση το μήκος των βιδών (15 mm) και το πάχος του αποσπώμενου τμήματος που θα χρησιμοποιούνταν ως καπάκι (0.5 cm). Σύμφωνα με τους παραπάνω αριθμούς, επιλέχθηκε το βάθος αυτό να είναι 1 cm. Η διαδικασία της διάνοιξης των οπών έπρεπε να γίνει εξίσου προσεκτικά ώστε να μην προκληθεί ζημιά στο εσωτερικό σπείρωμα. Για την διευκόλυνση της διαδικασίας αυτής χρησιμοποιήθηκε επίσης ειδικό λιπαντικό το οποίο τοποθετήθηκε πάνω στον σπειροτόμο αλλά και μέσα στις αρχικές οπές με τη βοήθεια σύριγγας.

Τέλος, προκειμένου να διασφαλιστεί η στεγανοποίηση του ομοιώματος τοποθετήθηκε ειδική φλάντζα πάχους 2 mm ανάμεσα στο αποσπώμενο και το αρχικό τμήμα του εξωτερικού περιβλήματος. Αρχικά, σχεδιάστηκαν τέσσερις οπές στον υπολογισμό από τις θέσεις των αρχικών οπών του κύριου τμήματος του εξωτερικού περιβλήματος, έπειτα ανοίχτηκαν 8 οπές στις ίδιες θέσεις και τέλος η φλάντζα κόπηκε στις ανάλογες διαστάσεις.

Εικόνα 22. Στην εικόνα αυτή φαίνεται το περίγραμμα από το πίσω μέρος του κύριου τμήματος του εξωτερικού περιβλήματος όπως αυτό αποτυπώνεται πάνω στην φλάντζα. Επίσης φαίνονται και τα σημεία στα οποία δημιουργήθηκαν οι οπές.

Εικόνα 23. Εικόνα της φλάντζας η οποία χρησιμοποιήθηκε για τη στεγανοποίηση του ομοιώματος από διαφορετική οπτική γωνία.
Το τελικό εξωτερικό περίβλημα έπειτα από την συνένωση των δύο τμημάτων μέσω της φλάντζας, φαίνεται στις εικόνες που ακολουθούν:

Εικόνα 24. Εικόνα τελικής κατασκευής. Στην εικόνα αυτή φαίνονται καθαρά οι οπές στο αποσπώμενο τμήμα του περιβλήματος.

Εικόνα 25. Πάνω όψη του εξωτερικού περιβλήματος.

Εικόνα 26. Στην εικόνα αυτή φαίνεται ο τρόπος ένωσης του αρχικού τμήματος του εξωτερικού περιβλήματος με το αποσπώμενο τμήμα μέσω της φλάντζας.

Εικόνα 27. Εικόνα ολοκληρωμένης κατασκευής εξωτερικού περιβλήματος.
5.2 Διαδικασία παρασκευής για το ομογενοποιημένο λαρδί

Από τις διάφορες μορφές λίπους τις οποίες μπορούμε να αποκτήσουμε από ένα ζώο και συγκεκριμένα στη μελέτη μας από το χοιρινό, η καλύτερη για την παραγωγή του ομογενοποιημένου λαρδίου είναι το βασιλικό λίπος. Το λίπος αυτό βρίσκεται στην περιοχή της κοιλιάς του ζώου και γύρω από ζωτικά όργανα όπως είναι το ήπαρ και τα νεφρά.

Στην ενότητα αυτή αναφέρονται αναλυτικά τα βήματα που πραγματοποιήθηκαν για την απόκτηση του ομογενοποιημένου λαρδίου:

1. Αρχικά αποκτήθηκαν μερικά κομμάτια χοιρινού βασιλικού λίπους.
2. Στη συνέχεια, αφού τα κομμάτια αυτά καθαρίστηκαν από υπολείμματα αδενικού ιστού, τοποθετήθηκαν σε ένα ρηχό δοχείο.
3. Έπειτα, πραγματοποιήθηκε θέρμανση των κομματιών χωρίς όμως την προσθήκη νερού στο δοχείο. Η θερμοκρασία βρασμού επιλέχθηκε να είναι αρκετά χαμηλή (για παράδειγμα στο 2 με μέγιστο το 9) έτσι ώστε να πάρουμε την καλύτερη δυνατή ποιότητα (καθαρότητα) λίπους. Κατά τη διάρκεια της διαδικασίας βρασμού παρατηρήθηκε ότι μετά από χρονικό διάστημα 30 λεπτών τα κομμάτια άρχισαν να λιώνουν ενώ παράλληλα εξατμίζονταν το νερό που περιείχαν. Ένας ενδεικτικός χρόνος βρασμού ώστε να μπορέσει να αποκτηθεί το καθαρό λαρδί είναι περίπου τέσσερις ώρες ανάλογα και με τη θερμοκρασία.
4. Αφότου τα αρχικά κομμάτια είχαν δώσει τη μέγιστη ποσότητα λίπους, στη συνέχεια αφαιρέθηκαν τα υπολείμματα και το λίπος που είχε ανακτηθεί από αυτά τοποθετήθηκε σε ειδικά γυάλινα δοχεία. Η μεταφορά του λίπους από το δοχείο βρασμού στα γυάλιζα δοχεία, πραγματοποιήθηκε με τη βοήθεια μιας γάζας με πολύ μικρές οπές. Με τον τρόπο αυτό διασφαλίστηκε ότι θα περάσει στο δοχείο αποθήκευσης μόνο το καθαρό λίπος.
5. Τέλος, το υγρό λίπος παρέμεινε σε θερμοκρασία δωματίου για 30 λεπτά και στη συνέχεια τοποθετήθηκε σε ψυγείο ώστε να κρυώσει και να στερεοποιηθεί.

Ακολουθώντας την παραπάνω διαδικασία είναι δυνατόν να αποκτηθεί η καλύτερη δυνατή ποιότητα ομογενοποιημένου λαρδίου.

5.3 Διαδικασία παρασκευής τελικού μίγματος

Στην ενότητα αυτή περιγράφονται αναλυτικά οι διαδικασίες που ακολουθήθηκαν για την παρασκευή του τελικού μίγματος.

Όπως έχει ήδη αναφερθεί, για την προσομοίωση του λιπώδους ιστού χρησιμοποιήθηκε ομογενοποιημένο λαρδί σε στέρεα μορφή ενώ για την προσομοίωση του αδενικού ιστού χρησιμοποιήθηκαν ασπράδια αυγών σε υγρή μορφή. Η αρχική ιδέα, όπως αναφέρεται και στο άρθρο στο οποίο βασίστηκε η κατασκευή, ήταν να χρησιμοποιηθούν παστεριωμένα ασπράδια αυγών. Ύστερα όμως από πλήθος δοκιμών, και λόγω της έντονης παρουσίας του διαχωρισμού φάσεων κρίθηκε καταλληλότερη η χρήση ασπράδιων αυγών σε κανονική μορφή. Η ποσότητα από το κάθε υλικό επιλέχθηκε να είναι η ίδια έτσι ώστε να καταλήξουμε σε ένα κλάσμα αδενικότητας 50%. Τέλος, προκειμένου το μίγμα μας να μπορέσει να διατηρηθεί μέσα στο ομοίωμα σε συνθήκες ψύξης, χρησιμοποιήθηκε μικρή ποσότητα του συντηρητικού Sodium Benzoate (0.2 % w/v).
Για τη ζύγιση των υλικών χρησιμοποιήθηκε αναλυτικός ζυγός εργαστηρίου. Πριν από τη ζύγιση κάθε υλικού, πραγματοποιήθηκε μηδενισμός του ζυγού με το δοχείο μέσα στο οποίο επρόκειτο να τοποθετηθούν τα υλικά, έτσι ώστε να μπορέσει στη συνέχεια να ζυγιστεί το καθαρό βάρος του κάθε υλικού. Αρχικά ζυγίστηκαν 71.0869 g ομογενοποιημένο λαρδί και 71.0705 g ασπράδι αυγών. Τέλος, ζυγίστηκαν 0.1423 g συντηρητικού. Το συντηρητικό αυτό τοποθετήθηκε μέσα στο δοχείο με το ασπράδι αυγών και έπειτα τα δύο συστατικά αναδεύθηκαν ώσπου το συντηρητικό να διαλυθεί πλήρως.

Οι εικόνες που παρουσιάζονται στη συνέχεια δείχνουν τον εξοπλισμό που χρησιμοποιήθηκε για τη ζύγιση των υλικών καθώς και τα υλικά που χρησιμοποιήθηκαν για τη δημιουργία του μίγματος.

Εικόνα 28. Στην παραπάνω εικόνα φαίνεται ο αναλυτικός ζυγός που χρησιμοποιήθηκε για τη ζύγιση των υλικών καθώς και το δοχείο μέσα στο οποίο τοποθετήθηκαν τα υλικά αυτά.

Εικόνα 29. Στην εικόνα αυτή φαίνονται τα ασπράδια αυγών και το συντηρητικό που χρησιμοποιήθηκε.
Εικόνα 30. Στην εικόνα αυτή φαίνεται το ομογενοποιημένο λαρδί σε στέρεα κατάσταση πριν από τη ζύγισή του.

Ως επόμενο βήμα, τοποθετήθηκε το δοχείο με το στερεοποιημένο λαρδί μέσα σε υδατόλουτρο χωρίς όμως η βάση του να ακουμπάει στην βάση του υδατόλουτρου (Εικόνες 31,32). Αυτό έγινε προκειμένου να επιτευχθεί η ομοιόμορφη θέρμανση του δοχείου. Μια από τις αρχικές παρατηρήσεις ήταν ότι το στερεοποιημένο λαρδί μετατρέπεται σε υγρό σε θερμοκρασία περίπου 45 °C. Η θέρμανση του δοχείου συνεχίστηκε μέχρι το υγρό πλέον λαρδί να φτάσει σε θερμοκρασία 80 °C.

Εικόνα 31. Στην παραπάνω εικόνα φαίνεται το δοχείο με το λαρδί κατά την τοποθέτησή του στο υδατόλουτρο. Παρατηρώντας την εικόνα αυτή μπορούμε να δούμε ότι το λαρδί έχει αρχίσει να μετατρέπεται από στερεό σε υγρό.
Εικόνα 32. Στην εικόνα αυτή φαίνεται ότι το δοχείο με το λαρδί δεν αγγίζει τη βάση του υδατόλουτρου.

Στη συνέχεια πραγματοποιήθηκε η ανάμιξη των δύο υλικών. Είναι σημαντικό να τονισθεί ότι η ανάμιξη θα πρέπει να πραγματοποιηθεί ρίχνοντας ολόκληρη την ποσότητα από το ασπράδι αυγών μέσα στο υγρό λαρδί απευθείας και όχι ρίχνοντας μικρότερες ποσότητες ανά τακτά χρονικά διαστήματα (για παράδειγμα με τη βοήθεια μιας σύριγγας).

Αμέσως μετά την ανάμιξη των δύο υλικών το μίγμα αναδεύτηκε με ταχύτητα περίπου 125 ρητι για χρονικό διάστημα 30 δευτερολέπτων.

Έπειτα από την ανάδευση, το δοχείο με το μίγμα απομακρύνθηκε από το υδατόλουτρο και παρέμεινε σε θερμοκρασία δωματίου ώστε να κρύωσε. Στις εικόνες που ακολουθούν, φαίνεται η μορφή του τελικού μίγματος.

Εικόνες 33, 34. Τελικό μίγμα έπειτα από την ανάδευση.
Εικόνα 35. Στην εικόνα αυτή διακρίνονται καθαρά οι σχηματισμοί από τα ασπράδια αυγών στο τελικό μίγμα.

Τα συσσωματώματα που σχημάτισθηκαν μέσα στο λαρδί από τα ασπράδια αυγών, είχαν τυχαία μορφή και μέγεθος. Αυτό ακριβώς ήταν και το επίθυμητο αποτέλεσμα, επειδή με τον τρόπο αυτό γίνεται πιο πιστή η αναπαράσταση των σχηματισμών που δημιουργούνται από την παρουσία του αδενικού ιστού εντός του μαστού.

Όταν το μίγμα έφτασε σε θερμοκρασία 45 °C, πραγματοποιήθηκε η μεταφορά του από το αρχικό δοχείο στο δοχείο από plexiglass. Στο σημείο αυτό, είναι σημαντικό να τονισθεί ότι λόγω της ευαισθησίας του plexiglass, εάν πραγματοποιούνταν η μεταφορά του μίγματος από το αρχικό δοχείο στο περίβλημα από plexiglass προτού αυτό κρύωσε, τότε πιθανότατα θα δημιουργούνταν ρωγμές τόσο στα σημεία κόλλησης των αρχικών κομματιών του εξωτερικού περιβλήματος όσο και στο ίδια τα κομμάτια.

Στη συνέχεια, το εξωτερικό περίβλημα με το μίγμα στο εσωτερικό του, τοποθετήθηκε σε αντλία κενού, έτσι ώστε να απομακρυνθούν οι φυσαλίδες αέρα που ήταν πιθανό να έχουν εγκλωβιστεί μέσα σε αυτό (Εικόνα 36).

Εικόνα 36. Στην παραπάνω εικόνα φαίνεται το εξωτερικό περίβλημα με το μίγμα στο εσωτερικό του, το οποίο έχει τοποθετηθεί στην αντλία κενού προκειμένου να απομακρυνθούν οι φυσαλίδες αέρα που μπορεί να υπάρχουν μέσα στο μίγμα.

Τέλος, το ομοίωμα τοποθετήθηκε σε γυαλί έτσι ώστε να επιβραδυνθούν οι διαδικασίες αποσύνθεσης του μίγματος.
Κεφάλαιο 6. Ακτινοβόληση Ομοιώματος

Η ακτινοβόληση του ομοιώματος έγινε με τη βοήθεια ενός ακτινογραφικού συστήματος με άνοδο από βολφράμιο και η ακτινογραφική λυχνία που χρησιμοποιήθηκε ήταν η Del Medical Eureka. Για την απόκτηση των εικόνων, χρησιμοποιήθηκε ο ανιχνευτής Dexela 2923 CMOS ο οποίος έχει τα εξής χαρακτηριστικά:

- Pixel Matrix: 3888 x 3072
- Pixel Pitch/Size: 74.8 μm
- Speed/Transfer Size: up to 86 fps
- Energy Range: 12 – 130 kV

Για την προσομοίωση του αδενικού καθώς και του λιπώδους ιστού του μαστού χρησιμοποιήθηκε το ομοίωμα ανομοιόγενειας το οποίο κατασκευάστηκε σύμφωνα με τις διαδικασίες που έχουν ήδη περιγραφεί. Όπως αναφέρθηκε και πιο πάνω, για την προσομοίωση των αποτιτανώσεων που μπορεί να περιέχει ένας μαστός, πριν από την ακτινοβόληση τοποθετήθηκε ένα ομοίωμα αποτιτανώσεων ακριβώς κάτω από το αρχικό ομοίωμα. Το ομοίωμα αυτό ήταν στην ουσία μια πλάκα κατασκευασμένη από PMMA, πάχους 4 mm η οποία είχε πέντε οπές, όλες με διάμετρο 3 mm. Οι οπές αυτές προκειμένου να προσομοιώνουν αποτιτανώσεις διαφορετικών μεγεθών, είχαν πληρωθεί με ένα μίγμα από υδροξυαπατίτη και εποξική ρητίνη. Το ποσοστό του υδροξυαπατίτη που υπολογίσθηκε σε κάθε οπή βρέθηκε ότι αντιστοιχεί σε πάχη καθαρού υδροξυαπατίτη 100, 200, 300, 400 και 500 μm.

6.1 Συνθήκες ακτινοβόλησης

Πριν από την ακτινοβόληση, η απόσταση μεταξύ της πηγής της ακτινοβολίας και του ανιχνευτή ρυθμίστηκε στα 100 cm (SDD=100 CM).

Για την εικόνα χαμηλής ενέργειας, πραγματοποιήθηκαν δύο λήψεις με τα εξής χαρακτηριστικά:

Πρώτη Λήψη

- Εσωτερικό φίλτρο αλουμινίου πάχους 3 mm (3 mm Al)
- Τάση λυχνίας: 40 kV
- Ρεύμα Λυχνίας: 80 mA
- Χρόνος Έκθεσης: 1600 msec

Σύμφωνα με τα παραπάνω χαρακτηριστικά η πρώτη λήψη πραγματοποιήθηκε με συνθήκες ακτινοβόλησης 128 mAs.

Δεύτερη Λήψη

- Εσωτερικό φίλτρο αλουμινίου πάχους 3 mm (3 mm Al)
- Τάση Λυχνίας: 40 kV
- Ρεύμα Λυχνίας: 80 mA
- Χρόνος Έκθεσης: 2000 msec

Σύμφωνα με τα παραπάνω χαρακτηριστικά η δεύτερη λήψη πραγματοποιήθηκε με συνθήκες ακτινοβόλησης 160 mAs.
Για την εικόνα υψηλής ενέργειας, πραγματοποιήθηκαν επίσης δύο λήψεις με τα εξής χαρακτηριστικά:

Πρώτη Λήψη
- Εσωτερικό φίλτρο αλουμινίου πάχους 3 mm + πρόσθετο φίλτρο από χαλκό πάχους 0.5 mm (0.5 mm Cu)
- Τάση Λυχνίας: 70 kV
- Ρεύμα Λυχνίας: 56 mA
- Χρόνος Έκθεσης: 1600 msec

Σύμφωνα με τις παραπάνω παράμετρους η πρώτη λήψη για την εικόνα υψηλής ενέργειας πραγματοποιήθηκε με συνθήκες ακτινοβόλησης 89.6 mAs.

Δεύτερη Λήψη
- Εσωτερικό φίλτρο αλουμινίου πάχους 3 mm + πρόσθετο φίλτρο από χαλκό πάχους 0.5 mm (0.5 mm Cu)
- Τάση Λυχνίας: 70 kV
- Ρεύμα Λυχνίας: 56 mA
- Χρόνος Έκθεσης: 2000 msec

Σύμφωνα με τις παραπάνω παραμέτρους η πρώτη λήψη για την εικόνα υψηλής ενέργειας πραγματοποιήθηκε με συνθήκες ακτινοβόλησης 112 mAs.

Οι εικόνες χαμηλής και υψηλής ενέργειας έπειτα από κάθε λήψη, παρουσιάζονται στη συνέχεια:

Στις εικόνες που ακολουθούν φαίνονται αριστερά οι εικόνες χαμηλής ενέργειας του ομοιώματος με τις συνθήκες ακτινοβόλησης της πρώτης (Εικόνα 37) και της δεύτερης λήψης αντίστοιχα (Εικόνα 38) και δεξιά οι εικόνες υψηλής ενέργειας με τις συνθήκες ακτινοβόλησης της πρώτης (Εικόνα 37) και της δεύτερης λήψης (Εικόνα 38) αντίστοιχα.

Στο σημείο αυτό είναι σημαντικό να τονισθεί ότι οι εν λόγω εικόνες δεν υπέστησαν καμία επεξεργασία.

Τέλος, στις παρακάτω εικόνες διακρίνονται επίσης τα όρια του ομοιώματος αποτιτανώσεων (στα σημεία που δείχνουν τα βέλη) το οποίο τοποθετήθηκε κάτω ακριβώς από το ομοιώμα ανομοιογενειών.
Εικόνα 37. Εικόνες χαμηλής και υψηλής ενέργειας του ομοιώματος με τις συνθήκες ακτινοβόλησης της πρώτης λήψης. Αναλυτικότερα, η εικόνα χαμηλής ενέργειας (αριστερά) έχει ληφθεί με 128 mAs και εσωτερικό φίλτρο αλουμινίου πάχους 3 mm, ενώ η εικόνα υψηλής ενέργειας (δεξιά) έχει ληφθεί με 89.6 mAs και εσωτερικό φίλτρο αλουμινίου πάχους 3 mm + πρόσθετο φίλτρο από χαλκό πάχους 0.5 mm. Στην αριστερή εικόνα έχει επιλεγεί μια περιοχή ενδιαφέροντος (Region of Interest-ROI) η οποία δείχνει το σημείο στο οποίο βρίσκονται οι αποτιτανώσεις.

Εικόνα 38. Εικόνες χαμηλής και υψηλής ενέργειας του ομοιώματος με τις συνθήκες ακτινοβόλησης της δεύτερης λήψης. Αναλυτικότερα, η εικόνα χαμηλής ενέργειας (αριστερά) έχει ληφθεί με 160 mAs και εσωτερικό φίλτρο αλουμινίου πάχους 3 mm, ενώ η εικόνα υψηλής ενέργειας (δεξιά) έχει ληφθεί με 122 mAs και εσωτερικό φίλτρο αλουμινίου πάχους 3 mm + πρόσθετο φίλτρο από χαλκό πάχους 0.5 mm.
Στη συνέχεια προκειμένου να ανακτηθούν οι εικόνες διπλής ενέργειας με τις συνθήκες ακτινοβόλησης της κάθε λήψης, έγινε αφαίρεση των δύο εικόνων (της high energy και της low energy) με τη βοήθεια της πλατφόρμας του matlab, καθώς και καταστολή του υποβάθρου. Στην περίπτωσή μας το υπόβαθρο είναι οι τυχαίοι σχηματισμοί που δημιουργούνται από τα ασπράδια αυγών. Η καταστολή αυτή πραγματοποιήθηκε, προκειμένου να αναδειχθούν καλύτερα οι αποτιτανώσεις στην τελική εικόνα διπλής ενέργειας.

Στις εικόνες που ακολουθούν γίνεται μια σύγκριση των εικόνων χαμηλής ενέργειας και των τελικών εικόνων διπλής ενέργειας για τις συνθήκες ακτινοβόλησης κάθε λήψης. Οι εικόνες αυτές παρουσιάζουν μια περιοχή ενδιαφέροντος η οποία περιλαμβάνει μια ομάδα αποτιτανώσεων.

Εικόνα 39. Στην αριστερή εικόνα φαίνεται η επιλογή μιας περιοχής ενδιαφέροντος της εικόνας χαμηλής ενέργειας με 128 mAs και εσωτερικό φίλτρο αλουμινίου πάχους 3 mm, στην οποία είναι ορατή η παρουσία αποτιτανώσεως. Στην δεξιά εικόνα φαίνεται μια περιοχή ενδιαφέροντος της εικόνας διπλής ενέργειας η οποία δημιουργήθηκε από κατάλληλη επεξεργασία της παραπάνω εικόνας χαμηλής ενέργειας και της εικόνας υψηλής ενέργειας με συνθήκες λήψης 89.6 mAs και εσωτερικό φίλτρο αλουμινίου πάχους 3 mm + πρόσθετο φίλτρο από χαλκό πάχους 0.5 mm.

Στην αριστερή εικόνα (εικόνα χαμηλής ενέργειας) μπορούμε να διακρίνουμε τις αποτιτανώσεις με πάχη 500 μm, 400 μm και 300 μm καθώς και διάφορους σχηματισμούς που έχουν δημιουργηθεί μέσα στο ομοιώμα από τα ασπράδια αυγών. Στην δεξιά εικόνα (εικόνα διπλής ενέργειας) η οποία έχει δημιουργηθεί με κατάλληλη επεξεργασία των εικόνων χαμηλής και υψηλής ενέργειας, παρατηρούμε ότι το υπόβαθρο έχει κατασταλεί. Αυτό έχει ως αποτέλεσμα οι σχηματισμοί από τα ασπράδια να μην είναι πλέον ορατοί. Σε αντίθεση, με την καταστολή του υποβάθρου οι θέσεις καθώς και τα όρια των αποτιτανώσεων με τα μεγαλύτερα πάχη είναι πιο ευδιάκριτα.
Εικόνα 40. Στην αριστερή εικόνα φαίνεται η επιλογή μιας περιοχής ενδιαφέροντος της εικόνας χαμηλής ενέργειας με 160 mAs και εσωτερικό φίλτρο αλουμινίου πάχους 3 mm, στην οποία είναι ορατή η παρουσία αποτιτανώσεων. Στη δεξιά εικόνα φαίνεται μια περιοχή ενδιαφέροντος της εικόνας διπλής ενέργειας η οποία δημιουργήθηκε από κατάλληλη επεξεργασία της παραπάνω εικόνας χαμηλής ενέργειας και της εικόνας υψηλής ενέργειας με συνθήκες λήψης 112 mAs και εσωτερικό φίλτρο αλουμινίου πάχους 3 mm + πρόσθετο φίλτρο από χαλκό πάχους 0.5 mm.
Αποτελέσματα
Ακολουθώντας τις διαδικασίες που περιγράφηκαν παραπάνω και χρησιμοποιώντας ως υλικά το plexiglass, το λαρδί και τα ασπράδια αυγών δημιουργήθηκε ένα ομοίωμα το οποίο προσομοίωνει με μεγάλη ακρίβεια τους ιστούς του ανθρώπινου μαστού.

Αρχικά, με τη χρήση του plexiglass, δημιουργήθηκε το εξωτερικό περίβλημα του ομοιώματος. Το ιδανικότερο σχήμα του περιβλήματος είναι αυτό που φαίνεται στην Εικόνα 13 και το οποίο έχει υλοποιηθεί σε προηγούμενη μελέτη (Freed et al 2010, [64]). Με ένα τέτοιο περίβλημα θα μπορούσαμε να μιμηθούμε με μεγαλύτερη ακρίβεια έναν συμπιεσμένο μαστό όσον αφορά την καμπύλη τους ιστών του ανθρώπινου μαστού. Όπως όμως έχει ήδη αναφερθεί λόγω της δυσκολίας κατασκευής και προκειμένου να διατηρηθεί το κόστος χαμηλό, επιλέχθηκε να δημιουργηθεί ένα όσο το δυνατόν πιο πιστό αντίγραφο του παραπάνω περιβλήματος.

Ένας σημαντικός παράγοντας που λήφθηκε υπόψη κατά τη διαδικασία κατασκευής του περιβλήματος ήταν η ικανότητα πρόσβασης στο εσωτερικό τους. Αυτό το χαρακτηριστικό κρίθηκε αναγκαίο επειδή έπειτα από χρονικό διάστημα ορισμένων ημερών το μίγμα στο εσωτερικό του ομοιώματος αλλοιώνεται. Προκειμένου λοιπόν να μπορεί να αντικατασταθεί το παλιό μίγμα με νέο, θα έπρεπε να υπάρχει ένα σημείο πρόσβασης στο περίβλημα. Για το λόγο αυτό, επιλέχθηκε η δημιουργία του αποσπώμενου τμήματος.

Επειτά από το περίβλημα παρασκευάστηκε το μίγμα από ασπράδια αυγών και ομογενοποιημένο λαρδί, σύμφωνα με τις προαναφερθείσες διαδικασίες.

Σαν τελικό αποτέλεσμα δημιουργήθηκε ένα ομοίωμα ανομοιογενειών το οποίο αποτελούνταν από το εξωτερικό περίβλημα και το μίγμα στο εσωτερικό του. Το ομοίωμα αυτό, όπως αποδείχτηκε επειτά από τη διαδικασία της ακτινοβολήσεως, είναι ικανό να μιμηθεί το σχήμα, τη σύσταση καθώς και τις ιδιότητες ενός συμπιεσμένου μαστού. Με την τοποθέτηση τέλος του ομοιώματος αποτιτανώσεων κάτω από την καμπύλη, κατέστη δυνατή η προσομοίωση ενός μαστού ο οποίος είναι πιθανό να περιέχει κάποια κακοήθια.

Στις εικόνες 37 και 38 γίνεται σύγκριση των εικόνων χαμηλής και υψηλής ενέργειας του ομοιώματος. Στην εικόνα χαμηλής ενέργειας έχει επιλεγθεί μια περιοχή ενδιαφέροντος η οποία περιλαμβάνει τις πέντε αποτιτανώσεις. Οι αποτιτανώσεις που είναι ορατές είναι αυτές με πάχος 500 μm (πάνω αριστερά), 400 μm (κάτω αριστερά) και 300 μm (στο κέντρο) ενώ οι αποτιτανώσεις με πάχος 200 και 100 μm δεν διακρίνονται. Τέλος, διακρίνονται οι τυχαίοι σχηματισμοί που έχουν δημιουργηθεί από την παρουσία των ασπραδίων αυγών. Στην εικόνα υψηλής ενέργειας οι αποτιτανώσεις δεν είναι ορατές. Ωστόσο η εικόνα υψηλής ενέργειας δεν περιέχει κάποια χρήσιμη πληροφορία, όμως είναι απαραίτητη για τον σχηματισμό της τελικής εικόνας διπλής ενέργειας.

Σε καμία από τις παραπάνω εικόνες δεν κατέστη δυνατή η απτιτυδοποίηση των αποτιτανώσεων με πάχη 100 και 200 μm.
Συμπεράσματα
Για την κατασκευή του ομοιώματος το οποίο παρουσιάζεται στην παρούσα διπλωματική εργασία χρησιμοποιήθηκαν υλικά τα οποία είναι ευρέως διαθέσιμα και έχουν σχετικά χαμηλό κόστος. Οι διαδικασίες δε που ακολουθήθηκαν για την κατασκευή του εν λόγω ομοιώματος, αποδείχθηκε ότι μπορούν πολύ εύκολα να πραγματοποιηθούν σε ένα περιβάλλον το οποίο διαθέτει βασικό εργαστηριακό εξοπλισμό.

Οσον αφορά την κατασκευή του εξωτερικού περιβλήματος του ομοιώματος μαστού, ιδιαίτερη προσοχή δόθηκε κατά τη διάνοιξη των οπών, επειδή το plexiglass είναι ένα υλικό με μικρές ανοχές σε μηχανικές καταπονήσεις και μπορεί πολύ εύκολα να δημιουργηθούν ρωγμές. Για το λόγο αυτό τα κομμάτια από plexiglass επιλέχθηκαν να έχουν πάχος ένα εκατοστό και όχι μικρότερο. Παρατηρώντας τις εικόνες, η καμπυλότητα που επιτεύχθηκε στο τελικό ομοίωμα είναι παρόμοια με αυτή που επιτυγχάνεται στο μαστό κατά τη συμπίεσή του από τα πίεστρα του μαστογράφου. Κατά τη δημιουργία του μίγματος, πραγματοποιήθηκαν πλήθος δοκιμών μεταβάλλοντας τον χρόνο θέρμανσης για το λαρδί, τον τρόπο προσθήκης των ασπραδιών αυγού μέσα στο υγρό λαρδί καθώς και το χρόνο ανάδευσης των δύο υλικών. Ενα από τα βασικά συμπεράσματα το οποίο απορρέει από τις δοκιμές αυτές, είναι ότι χρησιμοποιώντας ασπράδια αυγού σε κανονική και όχι σε παστεριωμένη μορφή, δημιουργήθηκε ένα ανομοιογενές μίγμα παρόμοιο με τη δομή των ιστών του μαστού. Στις εικόνες αυτές, ανάλογα και με τις συνθήκες ακτινοβολήσεως, αναδείχθηκαν οι μάζες με τα ακαθόριστα όρια που σχηματίζονται από τα ασπράδια αυγού. Κατά τη σύγκριση των εικόνων αυτών με τα κλινικά σημεία συγκόλλησης των αρχικών κομματιών, αποδεικνύεται ότι οι σχηματισμοί αυτοί αναπαριστούν με μεγάλη ακρίβεια την τυχαία κατανομή του αδενικού ιστού σε έναν ανθρώπινο μαστό.
Μελλοντικές χρήσεις

Στην παρούσα διπλωματική εργασία κατασκευάσθηκε ένα ομοίωμα για την πειραματική αξιολόγηση ενός μαστογραφικού συστήματος διπλής ενέργειας. Η μορφή και οι ιδιότητες του ομοίωματος αυτού, αποδείχθηκε ότι το καθιστούν επίσης κατάλληλο για χρήση σε άλλα τρισδιάστατα απεικονιστικά συστήματα όπως ο Αξονικός Τομογράφος.

Όσον αφορά την κατασκευή του εξωτερικού περιβλήματος του ομοίωματος, σε μελλοντική έρευνα θα μπορούσαν να πραγματοποιηθούν δοκιμές με διαφορετικά πάχη στα κομμάτια από plexiglass. Αυτό θα είχε ως αποτέλεσμα την αλλαγή της αδενικότητας του ομοίωματος, συμπεριλαμβανομένων των τοιχωμάτων του περιβλήματος, και κατά συνέπεια την διαφοροποίηση των εικόνων που λαμβάνονται έπειτα από την ακτινοβόληση.
Βιβλιογραφία

