Please use this identifier to cite or link to this item: http://hdl.handle.net/10889/2837
Title: Ιδιότητες και εκτίμηση για την γενικευμένη εκθετική κατανομή
Authors: Κάτρης, Χρήστος
Issue Date: 2010-04-12T06:28:23Z
Keywords: Γενικευμένη εκθετική κατανομή
Εκτίμηση
Μέγιστη πιθανοφάνεια
Ροπές
L-ροπές
Εκατοστημόρια
Ελάχιστα τετράγωνα
Εκτίμηση Bayes
Τετραγωνικά σφάλματα
Αναλογιστικοί πίνακες
Keywords (translated): Generalized exponential distribution
Estimation
Maximum likelihood
Moments
L-moments
Percentiles
Least squares
Bayes estimation
Squared errors
LINEX
Actuarial tables
Abstract: Αρχικά γίνεται μια ιστορική αναδρομή, μια παρουσίαση της διπαραμετρικής Γενικευμένης εκθετικής κατανομής (τύπος κατανομής, συνάρτηση πυκνότητας πιθανότητας κλπ) και αναφέρονται βασικά χαρακτηριστικά της κατανομής. Στη συνέχεια αναφέρονται βασικοί ορισμοί και θεωρήματα σχετικά κυρίως με τη σημειακή παραμετρική εκτίμηση καθώς και την εκτίμηση κατά Bayes. Το επόμενο κεφάλαιο πραγματεύεται την ανάλυση του μοντέλου και τις βασικές ιδιότητες της Γενικευμένης εκθετικής κατανομής. Επίσης μελετώνται ειδικά θέματα, όπως συναρτήσεις επιβίωσης, πληροφορία Fisher, διατεταγμένες παρατηρήσεις, κατανομή του αθροίσματος και παραγωγή τυχαίων αριθμών, στα πλαίσια της Γενικευμένης εκθετικής κατανομής. Στη συνέχεια αναλύονται και εφαρμόζονται μέθοδοι σημειακής εκτίμησης (Μέγιστη Πιθανοφάνεια, Μέθοδος ροπών, Μέθοδος εκατοστημορίων, Ελάχιστα και σταθμισμένα ελάχιστα Τετράγωνα, L-ροπές) για την εκτίμηση των παραμέτρων της κατανομής. Μελετάται και η απόδοση των εκτιμητών για τις διάφορες μεθόδους εκτίμησης. Ακολουθεί η εκτίμηση τύπου Bayes των παραμέτρων (με συναρτήσεις ζημίας τετραγωνικού σφάλματος και LINEX αντίστοιχα). Αναφέρονται πάλι συμπεράσματα για την απόδοση των εκτιμητών και σύγκριση με τους εκτιμητές μέγιστης πιθανοφάνειας. Τελικά παρουσιάζουμε την προσέγγιση ενός αναλογιστικού πίνακα μέσω της Γενικευμένης εκθετικής κατανομής.
Abstract (translated): In the beginning, we mention a historical recursion, a presentation of the 2-parameter Generalized exponential distribution ( distribution type, probability density function etc.) and we also mention basic characteristics of the distribution. Basic definitions and theorems about point estimation and Bayes estimation are reported. Furthermore, we discource on the analysis of the model and basic properties of the Generalized exponential distribution. Special themes, such as survival functions, Fisher information, order statistics, sum distribution and production of random numbers are analyzed in the frame of the Generalized exponential distribution. Moreover, we analyze and apply point estimation methods (maximum likelihood, method of moments, percentile estimation, least (and weighted least) squares, method of L-moments) in order to estimate parameters of the distribution. Performance of the estimators for different estimation methods is also analyzed. Next, bayesian estimation of the parameters (under squared error loss function and LINEX loss function) is coming up for discussion. We also analyze the performance of the estimators and compare them to the maximum likelihood estimators. Finally, we present approximation of an actuarial table via Generalized exponential distribution.
Appears in Collections:Τμήμα Μαθηματικών (ΜΔΕ)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.