ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ
ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ
ΤΟΜΕΑΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΓΕΩΦΥΣΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
«ΓΕΩΕΠΙΣΤΗΜΕΣ & ΠΕΡΙΒΑΛΛΟΝ»
ΚΑΤΕΥΘΥΝΣΗ: «ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΛΟΓΙΑ & ΓΕΩΦΥΣΙΚΗ»

«ΚΑΤΑΠΤΩΣΕΙΣ ΒΡΑΧΩΝ ΑΠΟ ΤΟΥΣ ΠΡΟΣΦΑΤΟΥΣ ΣΕΙΣΜΟΥΣ ΣΤΗ ΛΕΥΚΑΔΑ:
ΑΠΟΓΡΑΦΗ, ΤΕΧΝΙΚΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ, ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ»

ΣΑΝΤΑ ΝΙΚΟΛΕΤΑ

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΣΩΚΟΣ ΕΥΘΥΜΙΟΣ

ΠΑΤΡΑ 2017
Μέλη τριμελούς επιτροπής:
1) κ. Σώκος Ευθύμιος (Επιβλέπων)
2) κ. Σαμπατακάκης, Στ. Νικόλαος (Καθηγητής)
3) κ. Νικολακόπουλος Κωσταντίνος (Αναπλ. καθηγητής)
ΠΕΡΙΕΧΟΜΕΝΑ

ΕΥΧΑΡΙΣΤΙΕΣ ... 11
1.2.2. Νεοτεκτονική ... 18
1.2.3. Νεοτεκτονικές συνθήκες και σεισμικότητα ... 21
1.3 ΤΕΧΝΙΚΟΓΕΩΛΟΓΙΚΕΣ ΕΝΟΤΗΤΕΣ .. 22
1.4 ΚΑΤΑΣΚΕΥΗ ΤΕΧΝΙΚΟΓΕΩΛΟΓΙΚΟΥ ΧΑΡΤΗ .. 27
1.4 ΘΕΣΕΙΣ ΑΕΙΓΜΑΤΩΝ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΔΟΚΙΜΕΣ 29
1.4.1 Θέσεις δειγμάτων και έντονα διερρημμένον περιοχών 29
1.4.2 Εργαστηριακές δοκιμές και χαρακτηριστικά δειγμάτων 34
1.4.3 Προσδιορισμός πορόδου, πυκνότητας και λόγου κενών (με τη χρήση μικρομέτρου και συσκευής κενών) ... 38
1.4.4 Δοκιμή προσδιορισμού του δείκτη σημειακής φόρτισης βραχώδους δοκιμών (POINT LOAD INDEX) ... 46
1.4.4.5 Σχολιασμός των αποτελεσμάτων ... 55
2. ΣΕΙΣΜΙΚΟΤΗΤΑ .. 57
2.2.1 Γενικά ... 57
2.2.2 Στοιχεία σεισμικής επικινδυνότητας ... 57
2.2.3 Ο ΣΕΙΣΜΟΣ ΤΗΣ ΛΕΥΚΑΔΑΣ ΤΟ 2003 ΜΕΓΕΘΟΥΣ 6.3M 61
2.2.4 Ο ΣΕΙΣΜΟΣ ΤΗΣ ΛΕΥΚΑΔΑΣ ΤΟ 2015 6.4Mw 62
2.2.4.1 Έκσταση ... 62
2.2.4.2 Σεισμικότητα και Τεκτονική τοποθέτηση του σεισμού 64
2.2.4.3 Σεισμική Ολίσθηση .. 66
2.2.4.4 Δορυφορική Γεωδαιτική Δεδομένα ... 67
2.2.5 ΣΧΕΣΗ ΜΕΤΑΞΥ ΤΩΝ ΣΕΙΣΜΩΝ ΤΟΥ 2015 ΚΑΙ 2003 ΣΤΗ ΛΕΥΚΑΔΑ 68
2.2.6 ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΕΙΣΜΟΥ .. 70
2.2.6.1 Γεωπεριβαλλοντικά αποτελέσματα .. 70
2.2.6.2 Αστυχίες Πραγών ... 73
2.2.6.3 Ρευστοποίηση .. 74
3. ΚΑΤΑΓΡΑΦΕΣ ΣΧΥΡΗΣ ΕΛΑΦΙΚΗΣ ΚΙΝΗΣΗΣ .. 75
3.1 ΓΕΝΙΚΑ .. 75
3.2 ΣΤΑΘΜΟΣ ΛΕΥΚΑΔΑΣ (LEF2) ... 76
3.3 ΣΤΑΘΜΟΣ ΒΑΣΙΛΙΚΗΣ (VAS2) ... 78
3.3.1 ΣΤΑΘΜΟΣ ΘΑΛΚΗΣ (ITC1) ... 81
3.4 ΣΤΑΘΜΟΣ ΠΡΕΒΕΖΑΣ (PRE2) ... 83
3.5 ΣΥΓΚΡΙΣΗ ΜΕ ΤΗ ΣΧΕΣΗ ΑΠΟΣΒΕΣΗΣ Danciu and Tselentis,2007 (DA) 85
3.5.1 Γενικά .. 85
3.5.2 Σύγκριση αποτελεσμάτων με τη σχέση Danciu και Tselentis 87
3.5.3 Σύγκριση Φασμάτων Λέυκαδας με τον Ελληνικό Αντισεισμικό Κανονισμό ... 90
5. ΣΥΜΠΕΡΑΣΜΑΤΑ ... 94
5.1 ΕΝΤΥΠΑ ΔΟΚΙΜΩΝ ... 96
5.2 Έντυπα δοκιμών Προσδιορισμού του Πορόδου, της Πυκνότητας και του Λόγου Κενών 106
5.3 ΦΩΤΟΓΡΑΦΙΕΣ ΚΥΛΙΝΔΡΙΚΩΝ ΔΟΚΙΜΩΝ .. 128
5.4 ΦΩΤΟΓΡΑΦΙΕΣ ΑΚΑΝΟΝΙΣΤΩΝ ΔΟΚΙΜΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗ ΔΟΚΙΜΗ ΤΟΥ ΔΕΙΚΤΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ (POINT LOAD INDEX) 137
5.4 ΦΩΤΟΓΡΑΦΙΕΣ ΑΠΟ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΣΕΙΣΜΟΥ 144
5.5 ΕΠΙΤΑΧΥΝΣΙΟΓΡΑΦΟΙ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΑ ... 151
5. ΒΙΒΛΙΟΓΡΑΦΙΑ .. 155
ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΚΟΝΩΝ

Εικόνα 1. Γεωτεκτονικός χάρτης Ελλάδος. (Μουντράκης et al., 1983).......................... 15
Εικόνα 2: Τεκτονικός Χάρτης Νήσου Λευκάδας (Bathrellos et al., 2009, modified from Bornovas, 1963, 1964).... 18
Εικόνα 3: Γεωλογικός χάρτης της Λευκάδας (από Papathanassiou et al., 2017).......................... 21
Εικόνα 4: Διαμόρφωση κυλινδρικών δοκιμών με τη χρήση καροτήριας.............................. 23
Εικόνα 5: Τεχνικογεωλογικός Χάρτης της νήσου Λευκάδας.. 28
Εικόνα 6: Θέση συλλογής δεγμάτων, Α1, Α2 .. 29
Εικόνα 7: Ασβεστόλιθοι Παντοκράτορα (θέση 2)... 30
Εικόνα 8: Ασβεστόλιθοι Βέτιας (θέση 1)... 30
Εικόνα 9: Θέση συλλογής δείγματος Α3... 31
Εικόνα 10: Κυλινδρικά δοκίμα θέσης Α3... 32
Εικόνα 11: Διέγγειται θέσης Α3... 32
Εικόνα 12: Διέγγειται θέσης Α3... 32
Εικόνα 13: Θέση συλλογής δείγματος Α4... 33
Εικόνα 14: Διέγγειται θέσης Α4 (Καρούκ).. 34
Εικόνα 15: Εργαστηριακή καρωταρία για τη διαμόρφωση κυλινδρικών δοκιμών πετρώματος ... 35
Εικόνα 16: Αδαμαντοστροχός για κώνο δοκιμίων .. 36
Εικόνα 17: Εργαστηριακή καρωταρία για τη διαμόρφωση κυλινδρικών δοκιμίων πετρώματος ... 36
Εικόνα 18: Αδαμαντοστροχός για κώνο δοκιμίων .. 38
Εικόνα 19: Συσκευή δημιουργίας κενού... 39
Εικόνα 20: Κυλινδρικά δοκίμα δεγμάτων σε ζημές συνθήκες αμέσως μετά το φούρνο ζήμας... 41
Εικόνα 21: Σφαιρό Schmidt ... 42
Εικόνα 22: Διάγραμμα υπολογισμού της αντοχής σε ανεπάρκεια θάλαμη του ακάραου πετρώματος με βάση το μέσο όρο των μετρήσεων επικρότητας (SHV) και της πυκνότητάς του (pd) (Deere and Miller 1966)................................. 44
Εικόνα 23: Πρόσα για τη δοκιμή της σημειακής φόρτισης... 46
Εικόνα 24: Σχέσεις μεταξύ των διαστάσεων του δείγματος για τα διάφορα είδη των δοκιμών: (a) Διαμετρική δοκιμή, (β) Αξιονική δοκιμή, (γ) Δοκιμή σε ακανόνιστης μορφής δείγμα, (δ) Δοκιμή σε μορφής κύβου δείγμα (ISRM, 1985). (Κούκης και Σαμπατακάκης, 2002)................................. 47
Εικόνα 25: Τρόποι θρασίας σε έκτικες και άκυρες δοκιμές σημειακής φόρτισης (ISRM, 1985). (Κούκης και Σαμπατακάκης, 2002).. 49
Εικόνα 26: Διάγραμμα ακανόνιστου σχήματος, ασβεστόλιθοι του Παντοκράτορα (Ιόνια Ζώνη), θέση Α3, πριν τη θρασία (δοκιμή σημειακής φόρτισης, Point Load Index).. 54
Εικόνα 27: Διάγραμμα ακανόνιστου σχήματος, ασβεστόλιθοι του Παντοκράτορα (Ιόνια Ζώνη), θέση Α3, μετά τη θρασία (δοκιμή σημειακής φόρτισης, Point Load Index). Το κόκκινο βέλος δείχνει το ακανόνιστο σχήμα του δοκιμίου που αφορά το δείγμα αυτό άκυρη.. 54
Εικόνα 28: Νέος χάρτης σεισμικής επικινδυνότητας (ΠΗΓΗ: http://www.oasp.gr/) .. 58
Εικόνα 29: Χάρτης κατανομής σεισμών στην ευρύτερη περιοχή της νήσου Λευκάδας και των γύρω περιοχών.... 58
Εικόνα 31: Τα επίκεντρα των σεισμών, κύριος σεισμός και μεγαλύτεροι μετασεισμοί (http://bbnet.gein.noa.gr, 20/11/2015).. 63
Εικόνα 32: Ο κύριος σεισμός της 17 Νοεμβρίου κτίρινο αστέρι και τα επίκεντρα των μετασεισμών που καταγράφηκαν από το Εθνικό Αστεροσκοπείο Αθηνών. Λεξιστροφα ρήματα κατά μήκος των ορίων της Κεφαλλονίας-Λευκάδας, μανόρες γραμμές, πηγή:[Ganas et al,2015].. 65
Εικόνα 33: Συνολική σεισμική ολίσθηση η οποία προέκυψε από την αντιστροφή. Το πράσινο αστέρι είναι το υπόκεντρο, οι μανόρες βουλές είναι μετασεισμικά γεγονότα (Ganas et al, 2015) προβαλλόμενα πάνω στο επίπεδο του ρήματος. Πηγή [Melgar 2017].. 66
Εικόνα 34: Στημιώτυπα της εξάπλωσης της σεισμικής ολίσθησης. Το πράσινο αστέρι είναι το υπόκεντρο, οι μανόρες
βουλές είναι μετασεισμικά γεγονότα προβαλλόμενα πάνω στο επίπεδο του ρήματος. Οι γκρι «κόκκοι» παρουσιάζουν την χρονική εξέλιξη της διάρρηξης Melgar 2017. .. 67
Εικόνα 35 a) κατακόρυφη τομή κατά μήκος των τριών σεισμικών γεγονότων του 2015. b) Χάρτης που παρουσιάζει τις τοποθεσίες των σεισμών του 2003 (κόκκοι κόκκοι) στη Λευκάδα, του 2014 (πράσινοι κόκκοι) στην Κεφαλλονία και του 2015 (κτίρινο κόκκοι) στη Λευκάδα Sokos et al, 2016. .. 69
Εικόνα 36: Καταλίθηση πρανούς στην επαρχιακή οδό Τσουκαλάδες-Ληψι Νικήτας και καταστροφή μέτρων προετοιμασίας... 71
Εικόνα 37: Κατάπτωση βράχου στην παράκτια ζώνη της παραλίας Κάθισμα .. 71
Εικόνα 38: Καταστροφή δρόμου προς την παραλία Γιαλός (ανάμεσα από Εγγερμονούς-Πόρτο Καστίκι) [πηγή: Ganas et al,2015] 72
Εικόνα 39: Μακροποιητική φωτογραφία που απεικονίζει ροή του δρόμου στο χωριό Δράγανος.[πηγή: Ganas et al,2015].......................... 72
Εικόνα 41: Διαγράμματα επιτάχυνσης σε σχέση με το χρόνο για το σταθμό LEF2. .. 77
Εικόνα 42: Φάσματα απόκρισης για το σταθμό της Λευκάδας (LEF2). .. 78
Εικόνα 43: Διαγράμματα επιτάχυνσης σε σχέση με το χρόνο για το σταθμό Βασιλικής VAS2. .. 79
Εικόνα 44: Φάσματα απόκρισης για το σταθμό της Βασιλικής (VAS2). .. 80
Εικόνα 45: Διαγράμματα επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της Ιόνικης. .. 81
Εικόνα 46: Φάσματα απόκρισης για το σταθμό της Ιόνικης. ... 82
Εικόνα 47: Διαγράμματα επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της Πρέβεζας. .. 83
Εικόνα 48: Φάσματα απόκρισης για το σταθμό της Πρέβεζας. ... 84
Εικόνα 49: Διάγραμμα Φάσματος Απόκρισης για τον σταθμό της Βασιλικής (VAS2). Η μαύρη γραμμή αντιπροσωπεύει τον Ελληνικό Αντισεισμικό Κανονισμό. Ο άξονας X αφορά την χρονική περίοδο s του σεισμού, ενώ στον άξονα τον Ψ έχουμε την επιτάχυνση του φάσματος απόκρισης.......................... 90
Εικόνα 50: Διάγραμμα Φάσματος Απόκρισης για τον σταθμό της Λευκάδας (LEF2). Η μαύρη γραμμή αντιπροσωπεύει τον Ελληνικό Αντισεισμικό Κανονισμό. Ο άξονας X αφορά την χρονική περίοδο s του σεισμού, ενώ στον άξονα τον Ψ έχουμε την επιτάχυνση του φάσματος απόκρισης...91
Εικόνα 51:Διάγραμμα Φάσματος Απόκρισης για τον σταθμό της Πρέβεζας (PRE2). Η μαύρη γραμμή αντιπροσωπεύει τον Ελληνικό Αντισεισμικό Κανονισμό. Ο αξόνας X αφορά την χρονική περιόδο s του σεισμού, ενώ στον άξονα τον Ψ έχουμε την επιτάχυνση του φάσματος απόκρισης.

Εικόνα 52:Διάγραμμα Φάσματος Απόκρισης για τον σταθμό της Ίθακης (ICT1). Η μαύρη γραμμή αντιπροσωπεύει τον Ελληνικό Αντισεισμικό Κανονισμό. Ο αξόνας X αφορά την χρονική περιόδο s του σεισμού, ενώ στον άξονα τον Ψ έχουμε την επιτάχυνση του φάσματος απόκρισης.

Εικόνα 53: Ασβεστόλιθοι του Παντοκράτορα με εκτεταμένες ασυνέξεις, επαρχιακή οδός Τσουκαλάδες-Αγίου Νικήτας, θέση 2

Εικόνα 54: Ασβεστόλιθοι του Παντοκράτορα (ίδιος με την Εικόνα 43) από άλλη οπτική γωνία. Η εκτεταμένη ασυνέξεια έχει μεγάλο πάχος και αργιλικό συνδετικό υλικό καλύπτει την περιοχή της ασυνέξειας.

Εικόνα 55: Ασβεστόλιθοι του Παντοκράτορα. Το εκτεταμένο ύψος που δοκιμάζει και της αδύνατης διαμόρφωσης του σεισμικός τύπου επιτυγχάνει ένα διάστημα ηλικιακά μεταξύ 15 και 120. Η εκτεταμένη ασυνέξεια έχει μεγάλο πάχος και αργιλικό συνδετικό υλικό καλύπτει την περιοχή της ασυνέξειας, θέση Α3

Εικόνα 56: Ασβεστόλιθοι του Παντοκράτορα σε κατακόρυφο άξονα. Η εκτεταμένη ασυνέξεια έχει μεγάλο πάχος και αργιλικό συνδετικό υλικό καλύπτει την περιοχή της ασυνέξειας, θέση Α3

Εικόνα 57: Ασβεστόλιθοι του Παντοκράτορα θέση Α3 (είναι ακριβώς το ίδιο δοκίμιο με το δοκίμιο της εικόνας 45) από άλλη οπτική γωνία και εδώ τον Παντοκράτορα. Το άλλο ποσοστό εικόνα Παντοκράτορα της Αδαμαντίου-Μεταξιού Χριστιανού

Εικόνα 58: Ασβεστόλιθοι του Παντοκράτορα θέση Α3. Είναι ακριβώς το ίδιο πέτρωμα με το πέτρωμα της εικόνας 46(άλλα από άλλο δοκιμίο του αρχικού δείγματος) Είναι ακριβώς το ήδη δείγμα του Παντοκράτορα και εδώ τον Παντοκράτορα. Το παρόν αρχικό δείγμα διατηρεί ακόμη και τη συνδετική εικόνα της εικόνας 46(άλλα από άλλο δοκιμίο του αρχικού δείγματος) Είναι ακριβώς το ήδη δείγμα του Παντοκράτορα και εδώ τον Παντοκράτορα.
Εικόνα 68: Δοκίμιο $A_1\beta$ και της θέσης A_4 στην περιοχή της Καρυάς, σε κατακόρυφο και οριζόντιο άξονα. 136
Εικόνα 69: Δοκίμιο $A_1\gamma$ και της θέσης A_4 στην περιοχή της Καρυάς, σε κατακόρυφο και οριζόντιο άξονα........... 136
Εικόνα 70: Ασβεστόλιθος του Παντοκράτορα, Ιόνια Ζώνη, θραύση του δοκιμίου περίπου στη μέση κατά μήκος της έντονης εποχητικής ασυνέχειας που διατηρεί το πίστριμο ... 137
Εικόνα 71: Ασβεστόλιθος Παντοκράτορα, της Ιόνιας Ζώνης, είναι τόσο διερρημμένος που έφτασε στη θραύση με τη χρήση της σφυρας Schmitt... 137
Εικόνα 72: Ασβεστόλιθος του Παντοκράτορα, Ιόνια Ζώνης από τη θέση A_3, πριν τη θραύση................................. 138
Εικόνα 73: Ασβεστόλιθος του Παντοκράτορα, Ιόνια Ζώνης από τη θέση A_3 μετά τη θραύση................................. 138
Εικόνα 74: Ασβεστόλιθοι της Βίλας, πριν από τη θραύση................................. 139
Εικόνα 75: Ασβεστόλιθοι της Βίλας, πριν από τη θραύση................................. 139
Εικόνα 76: Δοκίμιο Point Load Index, θραύση του δείγματος A_3 (ασβεστόλιθος της Βίλας)................................. 140
Εικόνα 77: Ακανόνιστο δοκίμιο ασβεστόλιθου Παντοκράτορα της Ιόνιας Ζώνης μετά την ολοκλήρωση της δοκιμίας................................. 140
Εικόνα 78: Ακανόνιστο τύπον δοκίμιο, ασβεστόλιθος του Παντοκράτορα, πριν από τη θραύση................................. 141
Εικόνα 79: Παλαιοκανικός ασβεστόλιθος(αλυκικό υπόβαθρο ζώνης Παζον, θέση Α4), μετά τη θραύση................................. 141
Εικόνα 80: Δείγματα ακανόνιστου σχήματος, ασβεστόλιθοι του Παντοκράτορα(Ιόνια Ζώνη), θέση A_3, πριν τη θραύση (δοκιμή σημειακής φόρτισης, Point Load Index). Το κόκκινο βέλος δείχνει το ακανόνιστο σχήματος δοκίμιο το οποίο κατάστησε τη δοκιμή που αφορά το δείγμα αυτό άκυρη................................. 142
Εικόνα 81: Δείγματα ακανόνιστου σχήματος, ασβεστόλιθοι του Παντοκράτορα(Ιόνια Ζώνη), θέση A_3, μετά τη θραύση (δοκιμή σημειακής φόρτισης, Point Load Index). Το κόκκινο βέλος δείχνει το ακανόνιστο σχήματος δοκίμιο το οποίο κατάστησε τη δοκιμή που αφορά το δείγμα αυτό άκυρη................................. 143
Εικόνα 82: Κατάπτωση βράχου στην παράκτια ζώνη της παραλίας Κάθισμα................................. 144
Εικόνα 83: Καταλήψη πρανούς στην επαρχιακή οδό Τσουκλάδες-Αγίος Νικήτας και καταστροφή μέτρων προστασίας................................. 144
Εικόνα 84: Καταστροφή δρόμου προς την παραλία Γιάλος (ανάμεσα από Εγγρημούς-Πόρτο Κατσίκι) [πηγή Ganas et al,2015]... 145
Εικόνα 85: Μακροσκοπική φωτογραφία που απεικονίζει ροζμή του δρόμου στο χωριό Αράγανος [πηγή: Ganas et al,2015]................................. 145
Εικόνα 87: Σχεδόν ολική καταστροφή των μεταλλικών δύτιτων προστασίας τύπου Geobrug, κατά μήκος της επαρχιακής οδού Τσουκλάδες- Άγιος Νικήτας, λόγω εκτεταμένης συσσώρευσης υλικών σε αυτό το σημείο 146
Εικόνα 88: Καταστροφή μέτρων προστασίας. Ο τοίχος αντιστήριξης όπου πάνω του ήταν τοποθετημένο κατά μήκος της επαρχιακής οδού, Τσουκλάδες- Άγιος Νικήτας ... 147
Εικόνα 89: Ολική καταστροφή των μεταλλικών δύτιτων τύπου Geobrug. Επιπλέον, εκτεταμένη συσσώρευση υλικών (κατακερματισμένη/κονιορτοποιημένη ασβεστολιθική βραχώμα) στο υψός του δρόμου ... 147
Εικόνα 90: Εκτεταμένη συσσώρευση υλικών στα μεταλλικά δύτια τύπου Geobrug αλλά όχι αρκετή για να προκαλέσει αστοχία στα μέτρα προστασίας ... 148
Εικόνα 91: Προνές που δεν έχει επηρεαστεί η ευστάθεια του, τα μέτρα προστασίας δεν έχουν αστοχήσει υπό έχουν επηρεαστεί. Βρίσκεται κατά μήκος της επαρχιακής οδού Βασιλική-Άγιος Πέτρος ... 148
Εικόνα 92: Καταστροφή των μέτρων προστασίας και κατάπτωση μεγάλου όγκου βράχου
Εικόνα 93: Διάρρηξη του δρόμου στην επαρχιακή οδό που οδηγεί στην παραλία Κάθισμα
Εικόνα 94: Διάγραμμα χρονοιστορικών καμπυλών των τριών συνιστοσών της επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της πόλης στην Λευκάδα.
Εικόνα 95: Διάγραμμα κύριων συνιστοσών της επιτάχυνσης του φάσματος απόκρισης σε σχέση με τη χρονική περίοδο του σεισμού για το σταθμό της Λευκάδας.
Εικόνα 96: Χρονοιστορικών καμπυλών τριών συνιστοσών της επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της Βασιλικής.
Εικόνα 97: Διάγραμμα κύριων συνιστοσών της επιτάχυνσης του φάσματος απόκρισης σε σχέση με τη χρονική περίοδο του σεισμού για το σταθμό της Ιθάκης.
Εικόνα 98: Διάγραμμα χρονοιστορικών καμπυλών τριών συνιστοσών της επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της Πρέβεζας.
Εικόνα 99: Διάγραμμα κύριων συνιστοσών της επιτάχυνσης του φάσματος απόκρισης σε σχέση με τη χρονική περίοδο του σεισμού για το σταθμό της Πρέβεζας.
ΠΕΡΙΕΧΟΜΕΝΑ ΠΙΝΑΚΩΝ

Πίνακας 1: Ταξινόμηση των κύριων ρηματικών συστημάτων ανάλογα με τη συχνότητα εμφάνισης, την πυκνότητα και τον τύπο τους 19
Πίνακας 2: Πίνακας συχνότητας, πυκνότητας και κύριας εμφάνισης των παράκτιων γραμμικών συστημάτων πηγή: [Μπάθρελος,geo,balc,2009] Error! Bookmark not defined.
Πίνακας 5: Συγκεντρωτικός Πίνακας φυσικών χαρακτηριστικών των κυλινδρικών δοκιμών. Αναγράφεται επίσης η σκληρότητα SHV 40
Πίνακας 6: Ταξινόμηση ακέραιου πετρώματος με βάση τη σκληρότητα του. (ΚΟΥΚΗΣ & ΣΑΜΠΑΤΑΚΗΣ, 2002) 44
Πίνακας 7: Συγκεντρωτικός Πίνακας τιμών διέκτης σκληρότητας SHV 45
Πίνακας 8: Ταξινόμηση ακέραιου πετρώματος με βάση το διέκτη σημειακής φόρτισης IS(50) (BIENIAWSKI, 1975) 50
Πίνακας 10: : Φυσικά χαρακτηριστικά ακανόνιστων δειγμάτων 52
Πίνακας 12: Εκτιμήσεις στατικής μετατόπισης κατά των τριών συνιστωσών, πηγή: [Ganas et al,2015] 68
Συγκεντρωτικό Πίνακας 13: Πίνακας επιτάχυνσης 75
Πίνακας 14: Πίνακας απεικόνισης της μέγιστης εδαφικής επιτάχυνσης σε g (m/s²) και του επιμέρους σφάλματος απόκρισης των αντίστοιχων σταθμών. 86
ΕΥΧΑΡΙΣΤΙΕΣ

Από τη θέση αυτή, θα ήθελα να ευχαριστήσω θερμά όλους όσους συνέβαλαν στην περάτωση της παρούσας Διατριβής Διπλώματος Ειδικευμένης. Αρχικά θα ήθελα να ευχαριστήσω τον επιβλέποντα Αναπλ. Καθηγητή κ. Ευθύμιο Σώκο για την ευκαιρία που μου έδωσε να ασχοληθώ με πολύ ενδιαφέροντα θέματα της Τεχνικής Σεισμολογίας και τον Καθηγητή κ. Νικόλαο Σαμπατακάκη για την ευκαιρία που μου έδωσε να ασχοληθώ με ενδιαφέροντα θέματα Τεχνικής Γεωλογίας και εργασίες υπαίθρου σε όλη τη διάρκεια των σπουδών μου. Επιπλέον ευχαριστώ θερμά τον επιβλέποντα Αναπλ. Καθηγητή κ. Ευθύμιο Σώκο για την άρτια βοήθειά του και για τη συνεχή παρακολούθηση και καθοδήγησή στην εκπόνηση της παρούσας εργασίας και που ήταν δίπλα μου όλον αυτόν τον καιρό σε ό,τι απορίες και άγχος προέκυπταν. Επιπλέον ευχαριστώ θερμά το τρίτο μέλος της τμηματικής επιτροπής Αναπλ. Καθηγητή Κ. Νικολακόπουλο για τις γνώσεις της, την επίλυση αποριών και την καθοδήγηση για την εκπόνηση της Διατριβής.

Επίσης, ευχαριστώ ιδιαίτερα τους συνάδελφους γεωλόγους του Εργαστηρίου Τεχνικής Γεωλογίας και Σεισμολογίας για τη βοήθεια που προσέφεραν κατά τη διάρκεια του Μεταπτυχιακού Προγράμματος (2015-2017). Για τη βοήθεια στις εργασίες υπαίθρου, καθώς και για τη γενικότερη βοήθεια σε όλα τα στάδια της έρευνας σε όλη τη διάρκεια του Μεταπτυχιακού Προγράμματος ευχαριστώ την MsC και PhD Γεωλόγο Α. Κάβουρα. Για τη βοήθεια, καθοδήγηση και συλλογή πρώτων δεδομένων ευχαριστώ την MsC Γεωλόγο και PhD A. Σέρβου διότι χωρίς την παρουσία της η παρούσα Διατριβή δεν θα μπορούσε να εκπονηθεί. Επιπλέον θα ήθελα να ευχαριστήσω ξεχωριστά τον MsC και PhD N. Βαγενά για την αμέριστη βοήθειά κατά τη διάρκεια των σπουδών μου. Για την βοήθειά τους, συμπαράστασή τους και ανταλλαγή απόψεων, ευχαριστώ ξεχωριστά τους συνάδελφους μου Γεωλόγους: Σάββα Βασιλική, Διονυσάτου Κωσταντίνα, Λυσικάτου Γεωργία, Πολίτη Μιχαήλ και Μπη Κωσταντίνο που από την πρώτη στιγμή ήταν πάντα δίπλα μου και με στήριξαν σε Προπτυχιακό και Μεταπτυχιακό επίπεδο.

Επιπλέον, έχω την ανάγκη να ευχαριστήσω τους φίλους μου και ιδιαίτερα τον Δημήτρη Πετρόχειλο για τη συμμετοχή του και ανταλλαγή απόψεων καθ’ όλη τη διάρκεια των σπουδών μου. Επιπροσθέτως θα ήθελα να ευχαριστήσω ξεχωριστά τη φίλη μου και Ανθρωπολόγο Δήμητρα Ορφανού για την ανιδιοτελή βοήθειά της όλα αυτά τα χρόνια σε σχολικό, προπτυχιακό και μεταπτυχιακό επίπεδο και τον φίλο μου και Φυσικό Κωσταντίνο Μήλα που συνέβαλε και αυτός με τη σειρά του και τις γνώσεις του κατά τη διάρκεια των σπουδών μου.

Τέλος το μεγαλύτερο ευχαριστώ το οφέιλω στην Ο ικογένειά μου που με στηρίζει, με καθοδηγεί και μου συμπαραστέκεται σε ό,τι κάνω στη ζωή μου, στα καλά και στα άσχημα που έχουν λάβει χώρα, και κατά τη διάρκεια των σπουδών μου και όλης της ζωής μου.
ΠΕΡΙΛΗΨΗ

Στην παρούσα Διατριβή Διπλώματος Ειδίκευσης γίνεται ανάλυση, παρουσίαση και αξιολόγηση της υφιστάμενης κατάστασης των κατολισθητικών φαινομένων που εκδηλώθηκαν στο νησί της Λευκάδας από το σεισμικό γεγονός στις 17 Νοεμβρίου του 2015. Η περιοχή μελέτης είναι όλη τη νησί με ιδιαίτερη έμφαση στο δυτικό και νότιο-δυτικό τμήμα του νησιού όπου έλαβαν χώρα οι εκάστοτε κατολισθήσεις. Εκτεταμένες αστοχίες πραγμάτικα και πιο συγκεκριμένα καταπτώσεις βράχων και κατολισθήσεις έλαβαν χώρα στο δυτικό και νοτιοδυτικό τμήμα του νησιού με αποτέλεσμα να αστοχήσουν όχι μόνο τα ήδη υπάρχοντα μέτρα προστασίας αλλά και το οδόστρωμα των επαρχιακών οδών Τσουκαλάδες-Αγιος Νικήτας, Αγιος Νικήτας- Κομηλίο- Νότια Λευκάδα- Πόρτο Κατσίκι.

Η Λευκάδα, χρησιμοποιεί ενδιαφέροντος λόγω του ιστορικού κατολισθήσεων και σεισμικότητας που τη χαρακτηρίζουν, με σημαντικά γεγονότα όπως το 1955, 2003, και 2015. Σπουδαίο και κοινό χαρακτηριστικό των θέσεων είναι η μετακινήσεις επάνω σε ασβεστολιθική κατακερματισμένη βραχώματα. Ο ασβεστόλιθος αποτελεί έναν από τους πιο συνηθισμένους σχηματισμούς εκδηλώσεις καταπτώσεων και κατολισθήσεων στην Ελλάδα. Για τους παραπάνω λόγους κρίθηκε απαραίτητη η εκπόνηση επιτόπων μακροσκοπικής και εργαστηριακής της γεωτεχνικής έρευνας που περιελάμβανε την παρακολούθηση των κατολισθήσεων στο χρόνο και την επιμέρους εξέταση των επιμέρους φυσικών και γεωτεχνικών χαρακτηριστικών της βραχώματας. Η εργασία αυτή πραγματοποιήθηκε στο Εργαστήριο Τεχνικής Σεισμολογίας και στο Εργαστήριο Τεχνικής Γεωλογίας του Τμήματος Γεωλογίας του Πανεπιστημίου Πατρών.

Για την εκπόνηση της έρευνας ακολουθήθηκαν στάδια που αφορούσαν εργασία υπαίθρου, εργασία έργαστηρίου και γραφείου. Αρχικά έγινε η τεχνικογεωλογική χαρτογράφηση των επιμέρους σχηματισμών του νησιού, προκειμένου να αναλογούν τα νέα στοιχεία και να συγκρίθον με χάρτες που υπήρχαν από προηγούμενες μελέτες έτσι ώστε να καταλήξουμε στις πέντε τεχνικογεωλογικές ενότητες που είναι χωρισμένο το νησί. Επιχρόνως στο έργαστηριο διεξάγονταν οι απαραίτητες δοκιμές βραχομηχανικής των δειγμάτων που είχαν ληφθεί από τις θέσεις μελέτης οι στοιχεία αναλύοντας με την ποιότητα της βραχώματας. Επιχρόνως με χρήση Γεωγραφικών Συστημάτων Πληροφοριών – ΓΣΠ (Geographical Information System – GIS) δημιουργήθηκε τεχνικογεωλογικός χάρτης του νησιού σε κλίμακα 1:5000.

Στο δεύτερο στάδιο της μελέτης συλλέχθηκαν στοιχεία από τους 4 επιμέρους σταθμούς που ήταν τοποθετημένοι στην πόλη της Λευκάδας, στην Βασιλική, στην πόλη της Πρέβεζας και στο νησί της Ιθάκης και μέσω της γλώσσας προγραμματισμού Matlab αναλυτούν τα αντίστοιχα επιταχυνσιογραφήματα. Στη συνέχεια δημιουργήθηκαν και τα επιμέρους διαγράμματα φάσματος
απόκρισης της επιτάχυνσης και υπολογίσθηκαν οι μέγιστες τιμές των τριών συνιστωσών της εδαφικής επιτάχυνσης (PGA) των αντίστοιχων σταθμών. Καταλήξαμε στο συμπέρασμα ότι, όπως είναι φυσικό λόγω ενίσχυσης της σεισμικής ενέργειας και παράλληλα λόγω της μικρής απόστασης του σταθμού της Βασιλικής από το επίκεντρο του σεισμού (8 χιλιόμετρα), όλες οι μέγιστες τιμές των τριών συνιστωσών είναι αρκετά υψηλές σε σχέση με τους άλλους τρεις σταθμούς.
1. Γεωλογική θεώρηση της ευρύτερης περιοχής

1.1 Γεωλογία ευρύτερης περιοχής

Σύμφωνα με τους Bathrellos et al, 2009, η νήσος Λευκάδα, είναι τμήμα των δυτικών Ελληνιδών οροσειρών και τοποθετημένη γεωτεκτονικά στο μέτωπο του Ελληνικού ορογενετικού τόξου, μεταξύ των φλοιών Ευρώπης και Ανατ.Μεσογείου που συγκλίνουν, αποτελεί πεδίο εκθέλσης στειρικιών γεγονότων, συχνά καταστροφικών, όπως αυτών που την έπληξε στις 14 Αυγούστου 2003 (08:30 π.μ.) με μέγεθος 6,3 R και όπως αυτών που έπληξε το νησί στις 17 Νοεμβρίου του 2015 με μέγεθος 6,4R.

Η Λευκάδα ανήκει στην Αδριατικο-Ιόνια γεωτεκτονική ζώνη της δυτικής Ελλάδας, στην οποία ανήκουν η Ιθάκη, τμήμα της ανατολικής Κεφαλονιάς, καθώς και όλα τα νησιά κοντά στην ακτή της Ακαρνανίας. Η ομοιότητα της γεωλογικής της δομής με αυτήν της δυτικής Ακαρνανίας οδηγεί στην άποψη ότι το νησί από γεωτεκτονική άποψη αποτελεί κομμάτι που αποχωρίστηκε από την Ακαρνανία με ρήγματα, κατακρημνίσεις και καθιέρωσές, που έγιναν στη διάρκεια του νεογενούς.

Η Λευκάδα, και τα υπόλοιπα Επτάνησα, είναι αποτέλεσμα του μεγάλου παράκτιου ρήγματος που την απομόνωσε από την απέναντι ξηρά. Τεκτονικά η Λευκάδα και η Κεφαλονιά θεωρούνται τα πιο κατακρηματισμένα τμήματα του πεδίου καθήκοντης Άρτας-Αγρινίου. Μεταξύ Λευκάδας και Παξών διασταυρώνονται τα ρήγματα του Ιονίου με τα ρήγματα του κόλπου της Αρτας. Στο σύστημα των ρηγμάτων αυτών και αυτών που διασταυρώνονται πιο νότια με τις προεκτάσεις τους ρηγμάτων του Πατραϊκού κόλπου, εντοπίζονται πολλές σεισμικές εστίες. Οι δύο κύριες ζώνες που αναπτύσσονται στο νησί της Λευκάδος είναι η Ιόνια ζώνη και η ζώνη των Παξών. Το μεγαλύτερο και ανατολικό τμήμα της νήσου Λευκάδας γεωτεκτονικά ανήκει στην Ιόνιο ζώνη, ενώ ένα μικρό τμήμα της στα νοτιοδυτικά ανήκει στην Ιόνιο ζώνη των Παξών. Στη συνέχεια αναλύονται τα χαρακτηριστικά των δύο ζώνων.

ΙΟΝΙΟΣ ΖΩΝΗ

Σύμφωνα με την Α.Σέρβου, Διπλωματική έργασία, χαρακτηρίζεται από έντονο ανάγλυφο στο βόρειο και κεντρικό τμήμα της, ενώ στο νότιο η μορφολογία είναι πιο ήπια. Το γεωλογικό υπόβαθρο συνιστούν Τριαδικοί-Ιοουρασικοί σχηματισμοί, ακολουθούν οι ασβεστόλιθοι με ραδιολαρίτες του Τριαδικού, οι ασβεστόλιθοι με πυριτόλιθους του Ημικόχλιου και τέλος ο φλούς ης. Τα νεογενή μικτών φάσεων έχουν μεγάλο πάχος και οι πρόσφατες αποθέσεις καλύπτουν εκτεταμένες περιοχές.
Η Ιόνια ζώνη σύμφωνα με το γεωτεκτονικό μοντέλο της Ελλάδας ανήκει στις ζώνες των Εξωτερικών Ελληνίδων, οι οποίες γενικά χαρακτηρίζονται από ιζηματογενή πετρώματα κυρίως ανθρακικής ιζηματογένεσης. Οι Εξωτερικές Ελληνίδες βρίσκονται πάνω στην Απούλια μικροπλάκα η οποία περιορίζεται στον Ελλαδικό χώρο. Η Ιόνια ζώνη μαζί με τη ζώνη Γαβρόβου, αποτελούν τις δύο δυτικότερες ζώνες της Απούλιας μικροπλάκας. Η Απούλια επωθείται πάνω στην Προαπούλια μικροπλάκα δίνοντας έναν χαρακτήρα συμπίεσης στους σχηματισμούς των ζώνων των Εξωτερικών Ελληνίδων. Πηγή [διπλωματική εργασία Α.Σέρβου, 2013].

Εικόνα 1. Γεωτεκτονικός χάρτης Ελλάδος. (Μουντράκης et al., 1983)

Στην Ιόνια ενότητα της νήσου Λευκάδας διακρίνονται από τους κατώτερους προς τους ανώτερους ορίζοντες οι ακόλουθοι σχηματισμοί:
- Σχηματισμός Εβαποριτών (χημικά ιζήματα αποτελούμενα από γύψο μικροκρυσταλλική, με χρώμα γριζωπό-μαύρο λόγω των περιεχομένων βιτουμενίων).
- Σχηματισμός ασβεστόλιθων του Καρνίου
• Σχηματισμός δολομιτών του Τριαδικού
• Σχηματισμός ασβεστόλιθων του Παντοκράτορα
• Σχηματισμός ασβεστόλιθων φάσεως Ammonitico Rosso - σχιστών με Posidonies
• Σχηματισμός ασβεστόλιθων Βίγλας
• Σχηματισμός λατυποπαγών - μικροκροκαλοπαγών ασβεστόλιθων
• Σχηματισμός του φλύσχη

ΖΩΝΗ ΠΑΞΩΝ

Αντίθετα στο δυτικό τμήμα (χερσόνησος Λευκάτων ή Αθανίου), όπου αναπτύσσεται η ενότητα Παξών, οι ασβεστόλιθοι των μολασσικών σχηματισμών ιζήματα αποτελούν τα κατώτερα τμήματα της κλαστικής φλυσχειδούς σειράς της εν λόγω ενότητας. Τέλος, οι μεταλπικοί σχηματισμοί περιλαμβάνουν κλαστικά ιζήματα με λιμνοχερσαίους ή χερσαίους χαρακτήρες καθώς και τεταρτογενείς αποθέσεις παράκτιες, χερσαίες ή λιμνοθαλάσσιες. Στη γεωλογική - λιθοδομική δομή της υπόγειας περιοχής λαμβάνουν μέρος οι σχηματισμοί των ασβεστόλιθων του Παντοκράτορος και της Βίγλας.
1.2 ΤΕΚΤΟΝΙΚΕΣ ΣΥΝΘΗΚΕΣ

1.2.1 Γεωτεκτονική τοποθέτηση και τεκτονικά στοιχεία της ευρύτερης περιοχής

Σύμφωνα με τους Bathrellos et al, 2009, το ανατολικό τμήμα της νήσου Λευκάδας γεωλογικά ανήκει στην Ιόνια ζώνη, ενώ ένα μικρό τμήμα της στα νοτιοδυτικά ανήκει στην ζώνη των Παζών. Οι αλτικοί σχηματισμοί αποτελούνται από τους σχηματισμούς της ζώνης των Παζών και τους σχηματισμούς της Ιόνιας ζώνης.

Οι σχηματισμοί της ζώνης των Παζών βρίσκονται στο νοτιοδυτικό μέρος του νησιού της Λευκάδας και αποτελούνται από μια συνεχή ακολουθία από το ανώτερο Ιουρασικό έως τους Ολιγοκαινικούς ασβεστόλιθους, που ταξινομούνται, από τα κατώτερα προς τα ανώτερα μέλη με μια Μειοκαινική ακολουθία πυριτικού ασβεστόλιθου (Bornovas, 1964, Stamatakis και Hein, 1993).

Οι σχηματισμοί Ιόνιας ζώνης (Philipson, 1898; Nopcsa, 1921; Renz, 1940; Aubouin, 1959; Bornovas, 1964; Dercourt κ.α.) αποτελούνται από μια σειρά από το ανώτερο Ιουρασικό έως το κατώτερο Ηόκαινο με σχηματισμούς ανθρακικού άλατος που ταξινομούνται, από τα κατώτερα προς τα ανώτερα μέλη με μια ακολουθία ανθρακικού άλατος της Ιόνιας ζώνης αποτελούνται από τριαδικούς εβαπορίτες.

Οι μετά-αλπικοί σχηματισμοί είναι του ανώτερου Μειοκαινού, μολασσικού τύπου και Τεταρτογενείς αποθέσεις. Οι σχηματισμοί αυτοί ασύμφωνα επικαλύπτουν τους Ιόνιους σχηματισμούς της ζώνης και αποτελούνται από τα συστήματα, γαμματικών, μαργαρίτων και λατυποπαγών ασβεστόλιθων.

Το συνολικό πάχος από αυτούς τους σχηματισμούς είναι περίπου 500μ. Οι Τεταρτογενείς αποθέσεις βρίσκονται στις ορεινές-ημιορεινές λεκάνες και στην παραλιακή περιοχή συνήθως στην ανατολική παράκτια ζώνη. Αυτές οι αποθέσεις περιλαμβάνουν κυρίως τις ποτάμιες και παράκτιες αποθέσεις κλαστικών ιζήματος (χαλίκια, άμμο, μάργης, άργυριοι, κ.λπ.). Το πάχος αυτών των αποθέσεων ποικίλλει από μερικά σε αρκετά δεκάδες μέτρα.
1.2.2. Νεοτεκτονική

Πίνακας 1: Ταξινόμηση των κύριων συστημάτων ρηγμάτων ανάλογα με τη συχνότητα εμφάνισής της, την πυκνότητα και τον τύπο τους (Bathrellos et al, 2009)

Στη βάση αυτής της επώθησης, επικρατεί έντονος τεκτονισμός που προοδιορίστηκε με την παρουσία εκτενών δομών κατακεραυνισμού. Οι σηματισμοί του νησιού της Λευκάδας προέρχονται, συνήθως από τη νεοτεκτονική παραμόρφωση. Τα κύρια ρήγματα ή ζώνες ρηγμάτων όπως ταξινομούνται και ιεραρχούνται σε σχέση με τη συχνότητα, την πυκνότητα και τον τύπο παρουσιάζονται στον πίνακα 1. Η αξονική βύθιση των ρηξιγενών επιπέδων, σύμφωνα με τις επιτόπου μετρήσεις, έχει ένα μέσο όρο 60°.

Με βάση την κατανόηση και την αξιολόγηση των ρηγματικών δομών, οι σημαντικότερες είναι το ρήγμα Νυδρίου-Βασιλικής (NVF). Έχει προσανατολισμό N40°-60° και χαρακτηρίζεται, σύμφωνα με τα στοιχεία επιτόπου έρευνας, ως ένα ρήγμα οριζόντιας ολίσθησης. Αυτά τα κυρίαρχα τεκτονικά χαρακτηριστικά γνωρίζονται μαζί με την κύρια επώθηση διαιρούν το νησί σε τρεις μορφοτεκτονικές μονάδες (Bathrellos et al, 2009):

- η κεντρική-βόρεια μονάδα,
- νοτιοανατολική μονάδα και
- η νοτιοδυτική μονάδα.

Πιο συγκεκριμένα, η κεντρική-βόρεια μονάδα ονομάζεται μορφοτεκτονική μονάδα Καρυάς (KMTU), η νοτιοανατολική μονάδα ως μορφοτεκτονική μονάδα Μαραντοχωρίου (MMTU) και η νοτιοδυτική ως μορφοτεκτονική μονάδα Αθανίου (AMTU).

Τα ρήγματα N20°-40° χαρακτηρίζονται ως πλάγιο-κανονικά ρήγματα ολίσθησης. Αναπτύσσονται παράλληλα ή υπό-παράλληλα στις κύριες πτυχές και τάσεις με κυρίως αντισταθμιζόμενες κλίσεις. Αυτά τα ρήγματα έχουν επιπτώσεις κυρίως στις δυτικές παράκτιες ζώνες KMTU και AMTU και δεν εμφανίζονται στην κεντρική περιοχή του νησιού.
Τα ρήγματα N40°-60° χαρακτηρίζονται κυρίως ως ρήγματα οριζόντιας -ολίσθησης. Αυτά τα ρήγματα διακόπτουν οι Αλπικοί σχηματισμοί, οι άξονες πτυχών και οι τάσεις, προκαλώντας έντονη τεκτονική παραμόρφωση. Σε διάφορες τοποθεσίες, αυτά τα ρήγματα διακόπτονται από τα άλλα συστήματα ρηγμάτων. Με βάση τη στατιστική ανάλυση, είναι ταξινομημένοι ως μέσο διάδοσης και προσδιορίζεται σε KMTU και MMTU. Σε πολλές τοποθεσίες αυτά τα ρήγματα έχουν χαρακτήρα δεξιό-πλευρής πλάγιας ολίσθησης όπως η ζώνη ρηγμάτων Νυδριού-Βασιλικής.

Τα ρήγματα N70°-90° χαρακτηρίζονται ως πλάγια δεξιόστροφα ρήγματα που παρουσιάζουν την υψηλή πυκνότητα έναντι της συγνότητάς τους. Προσδιορίζονται σε πολλές τοποθεσίες στο νησί, κυρίως στη νότια παράκτια ζώνη MMTU και AMTU, όπου κόβονται κάθετα οι Αλπικοί και Μειοκαινοί σχηματισμοί.

Τα ρήγματα N110°-130° χαρακτηρίζονται σαν πλάγιο κανονικά ρήγματα ολίσθησης. Παρουσιάζουν υψηλή πυκνότητα σε σχέση με τη συγνότητά τους σε αυτή την κατεύθυνση και βρίσκονται κυρίως στην μονάδα KMTU, διακόπτοντας και τους δυό Αλπίκους και μετα-Αλπικούς σχηματισμούς της Ιόνιας ζώνης. Συχνά, παρατηρούνται σαν περιβόρια των Τεταρτογενών λεκανών. Η γενική τάση αυτών των ρηγμάτων ακολουθεί την κύρια τάση της επώδυνης. Στη περιοχή Εγκλουβή- Λαζαρά- Λευκάδα, σχηματίζουν μετατοπίσεις, δημιουργώντας τρεις κύριες επιφάνειες ομαλών πλαγιών (<10%) σε 800-900 μέτρα (Εγκλουβή), 300-400 μέτρα (Λαζαρά) και 0-100 μέτρα (Λευκάδα). Ένα σημαντικό χαρακτηριστικό γνώρισμα είναι ότι αυτά τα ρήγματα δεν προσδιορίζονται μέσα στην AMTU ενώ έχουν επιπτώσεις μόνο στο βόρειο τμήμα της MMTU όπου κόβουν τοπικά τη δομή NVF.

Τα ρήγματα διεύθυνσης N170°-190° χαρακτηρίζονται σαν πλάγια/ρήγματα κανονικής-ολίσθησης και αν και έχουν μια κυρίαρχη συγνότητα, εκθέτουν πολύ χαμηλή πυκνότητα (μήκος). Είναι παράλληλα στους κύριους άξονες πτυχών και κατευθύνουν ωθήσεων. Αυτά τα ρήγματα βρίσκονται στις παράκτιες ζώνες AMTU, MMTU και KMTU, ενώ απουσιάζουν από την κεντρική περιοχή του νησιού.

Τα ρήγματα N20°-40° ακολουθούν τις πτυχές και την ύπαρξη δομών που είναι παράλληλες στην κύρια ανάπτυξη του άξονα του νησιού. Το σύστημα ρηγμάτων N40°-60° αντιπροσωπεύει μια Μειοκαίνική ζώνη ρηγμάτων. Τα ρήγματα N70°-90° αντιστοιχούν σε ένα έντονο συμπεριφερικό επεισόδιο κατά τη διάρκεια του πρόσφατου Πλειστόκαινου (Mercier et al, 1987; Cushing, 1985 Sorel et al, 1988). Το σύστημα ρηγμάτων N110°-130° συσχετίζεται με την παραμόρφωση του πρόφορου Πλειστοκαινού, συμπεριφερικού καθεστώτος (Sorel and Cushing, 1982; Cushing, 1985). Τα ρήγματα N170°-190° όπως και τα ρήγματα με προσανατολισμό N20° 40°, είναι συνακόλουθα με τις πτυχές και τη δομή της επώδυνης και παράλληλες στον άξονα των τάφρων. Τα προαναφερθέντα
ρήγματα δομών διαφορετικού προσανατολισμού αντιπροσωπεύουν μια έκφραση από το συμπιεστικό τεκτονικό καθεστώς που είχε επιρροή στη μορφολογία του νησιού.

Εικόνα 3: Γεωλογικός χάρτης της Λευκάδας (από Papathanassiou et al, 2017)

1.2.3 Νεοτεκτονικές συνθήκες και σεισμικότητα

Σύμφωνα με τους Bathrellos et al, 2009, οι νεοτεκτονικές συνθήκες και η υψηλή σεισμικότητα της νήσου είναι άμεσα συνυφασμένες, αφού οι πρώτες ευθύνονται για τη δεύτερη και κατ’ επέκταση για τη γέννηση των σεισμών σε επίκεντρα που είναι τοποθετημένα κατά μήκος των κύριων ρηξιγενών δομών (νεοτεκτονικά ρήγματα).

Τη μεγαλύτερη κινητικότητα παρουσιάζουν γενικά δύο εστίες, από τις οποίες προέρχονται μεγάλου έως μεσαίου μεγέθους σεισμικές διεγέρσεις. Από αυτές, η μια βρίσκεται στο βορειοδυτικό τμήμα της νήσου και πιθανά στη διασταύρωση του μεγάλου ρήγματος Τσουκαλάδων με άλλο του Ιονίου, η άλλη δε βρίσκεται νοτιότερα του όρμου Βασιλικής και σε ρήγμα το οποίο διέρχεται μεταξύ
των δύο νήσων, με διεύθυνση ΒΑ-ΝΔ. (Λευκάδας - Ιθάκης). Η χωρική κατανομή των υπολογισμένων με ακρίβεια εστίων των σεισμών καθορίζει με λεπτομέρεια την κύρια διάρρηξη.

1.3 ΤΕΧΝΙΚΟΓΕΩΛΟΓΙΚΕΣ ΕΝΟΤΗΤΕΣ

Υστέρα από εκτενή αριθμό επισκέψεων στην ύπαιθρο, για μακροσκοπική έρευνα και καταγραφή των κατοικηθηκόντων φαινομένων που έλαβαν χώρα μετά την επίδραση των σεισμικών γεγονότων, συλλέχθηκαν μεγάλα βραχοτεμάχη επιφανειακής αδιατάραχτης βραχώμαζας από 4 έντονα διερρηγμένες περιοχές. Μαζί με τη συνάδελφο και υποψήφια διδάκτορα Σέρβου Αικατερίνη, συλλέχθηκαν τα επιμέρους βραχοτεμάχη και ακολούθησε εκτενής εργαστηριακή έρευνα επί τον δειγμάτων.

Αρχικά τα δείγματα, τοποθετήθηκαν σε ειδικό μηχάνημα (Καροταρία) κοπής κυλινδρικών δοκιμίων συγκεκριμένης διαμέτρου (Εικ.4). Ύστερα από την προετοιμασία των κυλινδρικών δοκιμίων, τοποθετήθηκαν σε ειδικό τροχό λειανσης των άκρων τους. Έπειτα, έλαβαν χώρα διαδικασίες με τις οποίες υπολογίστηκαν οι φυσικές παράμετροι των δειγμάτων (βάρη, ύψος, διάμετρος, φυσική ύγρασια, προσδιορισμός πορώδους και πυκνότητας). Τέλος, έλαβαν χώρα οι παρακάτω δοκιμές προσδιορισμού των μηχανικών παραμέτρων (όσες ήταν δυνατόν να πραγματοποιηθούν, λόγω καταλληλότητας των δειγμάτων):

- Προσδιορισμός αντοχής σε σημειακή φόρτιση (ολοκληρώθηκε με επιτυχία)
- Προσδιορισμός αντοχής σε μονοαξονική ανεμπόδιστη θλίψη (δεν ολοκληρώθηκε)
- Προσδιορισμός διατηρητικής αντοχής φυσικής και τεχνητής ασυνέχειας (δεν πραγματοποιήθηκε)
- Προσδιορισμός σκληρότητας με τη σφύρα Schmidt (ολοκληρώθηκε με επιτυχία)

Η επεξεργασία όλων των γεωτεχνικών πληροφοριών από παλαιότερες έρευνες και μελέτες, σε συνδυασμό με τα αποτελέσματα της προσωπικής γεωτεχνικής έρευνας, που έγινε στα πλαίσια του Μεταπτυχιακού προγράμματος και την επιτόπου μακροσκοπική παρατήρηση και εξέταση, οδήγησαν στο διαχωρισμό των σχηματισμών σε πέντε επιμέρους τεχνικογεωλογικές ενότητες. Ο διαχωρισμός αυτός έγινε με βάση τη σύσταση και δομή, τη γενικότερη στροματογραφία και κυρίως
τη μηχανική συμπεριφορά των σχηματισμών, όπως αυτή οριοθετείται από την ποιότητα και την κατάστασή τους.

Εικόνα 4: Διαμόρφωση κυλινδρικών δοκιμών με τη χρήση καροταρίας.

ΓΕΩΤΕΧНИΚΕΣ ΕΝΟΤΗΤΕΣ

△ ΓΕΩΤΕΧΝΙΚΗ ΕΝΟΤΗΤΑ 1: ΤΕΤΑΡΤΟΓΕΝΕΣ-ΤΕΤΑΡΤΟΓΕΝΕΙΣ ΑΠΟΘΕΣΕΙΣ

Α) Πρόσφατες επιχωματώσεις (αδρομερής φάση)

Αποτελούνται κυρίως από ασβεστολιθικά και λιγότερα κερατολιθικά θραύσματα ποικίλου μεγέθους, αργυρολιώδη λεπτομερή υλικά με άμμο, καθώς και ογκόλιθους ασβεστολίθους ποικίλου διαστάσεων. Χαλαρά υλικά με κακή γεωμηχανική συμπεριφορά, η απόθεση των οποίων σε σφαιρικούς συνήθως μεγάλου ύψους και έκτασης στα κατάντη του δρόμου πρανή, έχει σαν αποτέλεσμα κάτω από δυναμική φόρτιση την εκδήλωση αστοχών.

Β) Παράκτιες άμμοι

Άμμοι, υγρότητας, χάλκικες ποικίλου μεγέθους και κροκάλες που καλύπτουν την παράκτια ζώνη της περιοχής του χάρτη, με μικρή σχετικά επιφάνεια ανάπτυξης και πάχος. Χαλαρός σχηματισμός, με υποβαθμισμένη γεωμηχανική συμπεριφορά, αφού είναι συνήθως πτωχά διαβαθμισμένος, με υψηλό πορώδες, μηδενική σχεδόν συνοχή και πολύ αυξημένη υδροπερατότητα.

Γ) Αλλουβιακές αποθέσεις (RD)
Αποθέσεις με εναλλαγές αργίλων και αργιλοχαλικών με άμμο.

➢ ΓΕΩΤΕΧΝΙΚΗ ΕΝΟΤΗΤΑ ΙΙ: ΖΩΝΗ ΠΛΩΝ

Α) Νεογενείς σχηματισμοί (ψαμμιτικοί-αδρομερείς φάση)

B) Νεογενείς σχηματισμοί(μάργα-λεπτομερείς φάση)

➢ ΓΕΩΤΕΧΝΙΚΗ ΕΝΟΤΗΤΑ ΙΙΙ: ΑΛΠΙΚΟ ΥΠΟΒΑΘΡΟ ΖΩΝΗΣ ΠΛΩΝ

Α) Παλαιοκαινικοί ασβεστόλιθοι

Ασβεστόλιθοι λεπτοπλακώδεις, μικρολατυποπαγείς ή και θρο χρώματος, (πάχος στρώσεων 5 – 20cm) με ενστρώσεις πελαγικών ασβεστολίθων με πυριτολίθους. Πρόκειται για βραχώδεις σχηματισμούς, που τοπικά εμφανίζονται ισχυρά κερατομεμένιοι, λόγω της τεκτονικής δράσης. Στις θέσεις αυτές μειώνεται σημαντικά η γεωμηχανική τους συμπεριφορά και δημιουργούνται κάτω από δυναμική φόρτιση προβλήματα όπως αστοχιών πρανών (ολισθήσεις βραχωδών υλικών, κλπ.). Το πάχος τους φθάνει τα 150 μέτρα περίπου.

Β) Ανωκρητιδικοί ασβεστόλιθοι

Γα) Μεσοϊουρασικοί Σχιστόλιθοι

Κατακεραυνίων - βυσσινίτικοι εντελώς αποσαθρωμένοι και αποσυνθεμένοι μέσης χαμηλής αντοχής κερατών και πηλίτες. Εμφανίζονται πολύ διατηρημένοι με μηχανική συμπεριφορά καλωμών εδαφών-μαλακών βράχων.

Γβ) Κατωκρητικοί Ασβεστόλιθοι

Λευκοί ασβεστόλιθοι που απαντούν στη χερσονήσι Λευκάδας της Λευκάδας, έντονα κατακεραυνισμένοι και κατά θέσεις δευτερογενές συγκολλημένοι.

➢ ΓΕΩΤΕΧΝΙΚΗ ΕΝΟΤΗΤΑ IV: ΙΟΝΙΟΣ ΖΩΝΗ

Α) Νεογενείς σχηματισμοί_Μάργα
ΓΕΩΤΕΧΝΙΚΗ ΕΝΟΤΗΤΑ V: ΑΛΠΙΚΟ ΥΠΟΒΛΕΡΟ ΙΟΝΙΟΥ ΖΩΝΗΣ

Α) Φύσης
Κλαστικά ιζήματα με χαρακτηριστικές ρυθμικές εναλλαγές από αργίλους, μάργης, υλολίθους, ψαμμίτες και κροκαλοπαγή. Μέγιστο οριακό πάχος: 500 μ.

Β) Ανακρητικοί Ασβεστόλιθοι/ Παλαιοκαινικοί-Ανανεωκαινικοί Ασβεστόλιθοι
Αστροτοι δολομίτες και παχυστρωματώδεις ασβεστόλιθοι τριανθα-ιουρασικής ηλικίας. Ακολουθούν κονδυλώδεις ασβεστόλιθοι με αμμωνίτες ή πυριτικοί σχιστόλιθοι με Posidonia και στη συνέχεια ανθρακάκι πελαγικά ιζήματα, όπως λεπτοστρωματώδεις ασβεστόλιθοι σε εναλλαγες με κερατολίθους του Ανώτερου Ιουρασικού –Ανώτερου Κρητιδικού, μεσο-παχυστρωματώδεις, μικρολατυποπαγείς ασβεστόλιθοι του Ανώτερου Κρητιδικού και Ηλικιανού.

Γ) Ιουρασικοί Ασβεστόλιθοι (Βιγλών)
Ασβεστόλιθοι λεπτοπλακώδεις έως πλακώδεις τεφρού έως τεφρόλευκου χρώματος, (πάχος στρώσεων 5-30cm) με λεπτές διαστρώσεις (πάχους μέχρι 5cm), φακελίδες παρεμβολές ή και κονδυλώδεις πυριτολίθων ή και πυριτικών σχιστόλιθων. Πρόκειται για βραχώδεις σχηματισμούς, ισχυρά κερματισμένους έως τεκτονικά καταπονημένους (μυλωνιτισμένους) τοπικά, λόγω της τεκτονικής δράσης, με αποτέλεσμα να μειώνεται σημαντικά η γεωμηχανική τους συμπεριφορά και να δημιουργούνται κατά θέσεις ιδιαίτερα κάτω από δυναμική φόρτιση προβλήματα από πλευράς ευστάθειας πρανόν (ολισθήσεις βραχωδών υλικών, κλπ.). Το πάχος τους φθάνει τα 100 μέτρα περίπου.

Δ) Μεσοϊουρασικοί Σχιστόλιθοι
Ε) Τριανθικοί Ασβεστόλιθοι (Παντοκράτορα)
Ασβεστόλιθοι παχυστρωματώδεις έως άστροτοι, λευκού συνήθως χρώματος, νηριτικοί, μικροκονδυλώδεις, θρομβόμορφοι, συμπαγείς ή και σπηλαιώδεις με φύκη και θραύσεις διαφόρων μαλακών, που τοπικά εμφανίζονται δολομιτωμένοι. Πρόκειται για βραχώδεις σχηματισμούς με γενικά καλή γεωμηχανική συμπεριφορά. Όμως υπάρχουν περιοχές στην έκταση που μελετήθηκε που εμφανίζονται είτε ισχυρά κερματισμένους είτε μυλωνιτισμένους, λόγω της τεκτονικής δράσης, με αποτέλεσμα να μειώνεται σημαντικά η γεωμηχανική τους συμπεριφορά και να δημιουργούνται σημαντικά προβλήματα αστοχών ιδιαίτερα κάτω από δυναμική φόρτιση (ολισθήσεις και
καταπτώσεις βραχωδών μαζών, κλπ.). Το πάχος τους φθάνει τα 500 μέτρα περίπου.
1.4 ΚΑΤΑΣΚΕΥΗ ΤΕΧΝΙΚΟΓΕΩΛΟΓΙΚΟΥ ΧΑΡΤΗ

Μετά το διαχωρισμό των τεχνικογεωλογικών ενοτήτων που απαρτίζουν το νησί της Λευκάδας, τα στοιχεία αυτά καθώς επίσης και άλλα στοιχεία όπως το οδικό δίκτυο, η θέση των εκάστοτε κατολισθήσεων και καταπτώσεων, η τοποθεσία των επίμερους ρηγμάτων που εντοπίζονται στο νησί της Λευκάδας, κ.α., χρησιμοποιήθηκαν στην κατασκευή του Τεχνικογεωλογικού Χάρτη κλίμακας 1:5000 με τη χρήση του λογισμικού Γεωγραφικών Συστημάτων Πληροφοριών, ArcGIS.

Στο αρχικό στάδιο, ψηφιοποιήθηκαν οι ισοψηφίες με ισοδιάσταση 20 μέτρα και η ακτογραμμή, στη συνέχεια προστέθηκαν το οδικό δίκτυο και οι μάδες των ρηγμάτων και οριστικοποιήθηκε το τελικό αποτέλεσμα του χάρτη. Στο τελικό στάδιο του χάρτη προστέθηκαν τα σημεία όπου σημειώθηκαν καταπτώσεις και κατολισθήσεις στα πραγματικά Οσα σημεία είναι στο ύψος του οδικού δικτιού είναι ρυγές και διαρρήξεις του δρόμου. Ο Τεχνικογεωλογικός Χάρτης που δημιουργήθηκε στη διάρκεια της παρούσας Λιμενικής παρουσιάζεται στην Εικ.5.
Εικόνα 5: Τεχνικογεωλογικός Χάρτης της νήσου Λευκάδας
1.4 ΘΕΣΕΙΣ ΔΕΙΓΜΑΤΩΝ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΔΟΚΙΜΕΣ
1.4.1 Θέσεις δειγμάτων και έντονα διερρημένων περιοχών.

Στα πλαίσια του Μεταπτυχιακού Προγράμματος σπουδών Γεωεπιστήμες και Περιβάλλον στην κατεύθυνση Εφαρμοσμένη Γεωλογία και Γεωφυσική πραγματοποιήθηκαν εργασίες υπαίθρου στο νησί της Λευκάδας για τη συλλογή των επιμέρους δειγμάτων για εργαστηριακές δοκιμές. Η συλλογή των δειγμάτων έγινε με κριτήριο η βραχώμαξα να είναι όσο γίνεται πιο αδιατάραχτη.

Θέσες Α1,Α2

Η παρούσα θέση βρίσκεται στην επαρχιακή οδό Τσουκαλάδες-Αγιος Νικήτας και πιο συγκεκριμένα απέχει 8,41 χιλιόμετρα από το χωριό του Άγιου Νικήτα (Εικ.8). Πάρθηκε δείγμα από βραχώμαξα που ανήκει στην Ιόνια Ζώνη, ασβεστολιθικής σύστασης και σειρά Βίγλας. Καλό είναι να επισημάνουμε ότι κατά μήκος της επαρχιακής οδού Τσουκαλάδες – Αγιος Νικήτας πραγματοποιήθηκαν άλλες 2 στάσεις σε διαφορετικά σημεία επί της οδού. Αυτό συνέβη διότι κατά μήκος της περιοχής αυτής, η πυκνότητα των καταλισθήσεων ήταν πολύ μεγάλη. Αντίθετα, στο ανατολικό τμήμα του νησιού η πυκνότητα των καταπτώσεων και των κατολισθήσεων ήταν μηδενική έως μικρή. Επιπλέον, κατά μήκος της επαρχιακής οδού Τσουκαλάδες-Αγιος Νικήτας πρέπει να σημειωθεί ότι η ποιότητα της βραχώμαξας είναι ιδιαίτερα χαμηλή λόγω των ρηγμάτων που υπάρχουν στο εσωτερικό των πρανών κατά μήκος της οδού.

Από τη παρούσα θέση και 20 μέτρα παρακάτω βρίσκεται η θέση 2, και από τις δύο θέσεις και εφόσον οι συνθήκες της βραχώμαξας μας το επέτρεπαν, πάρθηκαν 2 μεγάλα βραχοτεμάχη διαστάσεων για το πρώτο 28*27 (A1) εκατοστά και 31*30 (A2) εκατοστά για το δεύτερο δείγμα.
αντίστοιχα. Τα δύο δείγματα ήταν ασβεστολιθικής σύστασης και εμπεριέχονταν στην Ιόνια ζώνη, με μία διαφορά ότι το πρώτο είναι πιο νέο στρωματογραφικά (Βίγλας), ενώ το δεύτερο είναι πιο παλαιό (Παντοκράτορας) και βρίσκεται πιο κάτω από τον ασβεστόλιθο της Βίγλας.

Στη συνέχεια τα δείγματα αυτά τοποθετήθηκαν σε ειδικό μηχάνημα 'καροταρία' για την κοπή και διαμόρφωση κυλινδρικών δοκιμών. Από το πρώτο δείγμα (Βίγλας)(A1) καταφέραμε και κόψαμε 3, A1α, A1β, A1γ, επιμέρους κυλινδρικά δοκίμια, ενώ από δεύτερο δείγμα κόψαμε 2, λόγω ακατάλληλητήτας του βραχοτεμάχου. Φωτογραφίες των διαμορφωμένων δειγμάτων στο εργαστήριο παρουσιάζονται στις Εικ. 7, 8.

Εικόνα 7: Ασβεστόλιθοι Παντοκράτορα (θέση 2)

Εικόνα 8: Ασβεστόλιθοι Βίγλας (θέση 1)
Η παρούσα θέση (Εικ.9) βρίσκεται 1500 μέτρα(m) από τη θέση Α2. Από τη συγκεκριμένη θέση συλλέχθηκε ένα δείγμα ασβεστόλιθου Παντοκράτορα, ο οποίος όπως αναφέρθηκε είναι παλαιότερος από τον ασβεστόλιθο της Βίγλας και συνεπώς βρίσκεται χαμηλότερα στροματογραφικά από το ύψος των ασβεστόλιθων της Βίγλας. Πιθανή αιτία της επιφανειακής εμφάνισης του συγκεκριμένου ασβεστολίθου είναι κάποιο εσωτερικό ρήγμα του πρανούς.

Το δείγμα αυτό δυστυχώς ήταν ιδιαίτερα καταπονημένο με αρκετές εσωτερικές ασυνέχειες, καταφέραμε να διαμορφώσουμε μόνο 2 κυλινδρικά δοκίμια μέσω της ειδικής καροταρίας, και με το υπόλοιπο δείγμα διαμορφώσαμε ακανόνιστα δείγματα για τη δοκιμή της σημειακής φόρτισης. Στις παρακάτω εικόνες (Εικ.12, 13, 14) είναι εμφανές το πλήθος των εσωτερικών ασυνεχειών και η ιδιαίτερη καταπόνηση της βραχύμαξας.
Εικόνα 10: Κυλινδρικά δοκίμα θέσης Α3

Εικόνα 11: Δείγμα θέσης Α3

Εικόνα 12: Δείγμα θέσης Α3
Η συγκεκριμένη θέση βρίσκεται στο χωριό της Καρυάς και έχει 500 μέτρα υψόμετρο. Η γεωλογία της θέσης A4 αφορά κύριως τους Παλαιοκαινικούς ασβεστόλιθους του αλπικού υποβάθρου της Ζώνης Παξών. Πρόκειται για βραχώδεις σχηματισμούς, που τοπικά εμφανίζονται ισχυρά κεραμισμένοι ως μυλωνιτεμένοι, λόγω της τεκτονικής δράσης. Στις θέσεις αυτές μειώνονται σημαντικά η γεωμηχανική τους συμπεριφορά και δημιουργούνται κάτω από δυναμική φόρτιση προβλήματα όπως αστοχίες πραγμάτων. Στην παρούσα περίπτωση όμως δεν παρατηρήθηκαν εκτεταμένες αστοχίες μόνο μικρής κλίμακας αστοχίες. Στη συνέχεια παρουσιάζονται τα επιμέρους κυλινδρικά δοκίμια που διαμορφώθηκαν από το αρχικό δείγμα.

Η ποιότητα του συγκεκριμένου δείγματος είναι μέτρια. Από το συγκεκριμένο δείγμα καταφέραμε και διαμορφώσαμε 3 κυλινδρικά δοκίμια με τη βοήθεια της ειδικής καροταρίας στο εργαστήριο Τεχνικής Γεωλογίας.
Εικόνα 14: Δείγμα θέσης Α4 (Καρυά)

1.4.2 Εργαστηριακές δοκιμές και χαρακτηριστικά δειγμάτων

Σύμφωνα με, τους Κούκη και Σαμπατακάκη, 2002, από τα δείγματα που έχουν συλλεχθεί και συγκεντρωθεί στο εργαστήριο πρέπει να διαμορφωθούν δοκίμα για την εκτέλεση των εργαστηριακών μετρήσεων.

Τα δοκίμα που χρησιμοποιούνται για τις εργαστηριακές δοκιμές είναι δυνατό να έχουν σχήμα:

- 1. Κανονικό, δηλαδή κυλινδρικής και σπανιότερα κυβικής μορφής
- 2. Ακανόνιστο.
- 3. Ειδικής μορφής.

Συνηθώς οι μηχανικές ιδιότητες προσδιορίζονται σε κυλινδρικά δοκίμα με τυπικές διαμέτρους μεταξύ 5.4 – 7.5cm, ενώ σπανιότερα χρησιμοποιούνται διάμετροι μέχρι 10 ή 15cm. Τα κυλινδρικά δοκίμα λαμβάνονται στο ύπαιθρο με την εκτέλεση δειγματοληπτικής γεώτρησης ενώ στο εργαστήριο με εργαστηριακό αδαμαντοτρύπανο (απλή καροταρία), που είναι εφοδιασμένο με
ειδικό κοπτικό άκρο λεπτού τοιχώματος με διαμάντια για οικονομία υλικού (Εικ 15). Το βραχώδες δείγμα, πριν τοποθετηθεί στην τράπεζα της εργαστηριακής καροταρίας για τη διάτρηση των
dοκιμιών, διαμορφώνεται με τη βοήθεια αδαμαντοτροχού σε μικρών διαστάσεων κυβόλιθο (μέχρι 30 cm περίπου πλευρά) με επίπεδη βάση για καλή έδραση στην τράπεζα.

Εικόνα 15: Εργαστηριακή καροταρία για τη διαμόρφωση κυλινδρικών δοκιμιών πετρώματος

Τα δοκίμια με μορφή πυρήνα, τα οποία προκύπτουν από τη διάτρηση του κυβόλιθου, ελέγχονται μακροσκοπικά και στη συνέχεια αποκόπτονται στα άκρα με αδαμαντοτροχό και σε κατάλληλα μήκη, ανάλογα με το είδος και τις προδιαγραφές της προβλεπόμενης εργαστηριακής
dοκιμής (την επιθυμητή σχέση μήκους προς διάμετρο πυρήνα). Ακολουθεί προσεκτική λείανσή της κυλινδρικής επιφάνειας, εάν είναι αναγκαία, σε τόρνο και των βάσεων σε ειδικό δίσκο λείανσης
(Εικ 16). Σε ένα ιδανικά διαμορφωμένο δοκίμιο, οι βάσεις πρέπει να είναι τελείως παράλληλες
μεταξύ τους και κάθετες προς το μεγάλο άξονα του δοκιμίου.

Σημειώνεται τέλος ότι, κατά τη λήψη των κυλινδρικών δοκιμιών από την εργαστηριακή
carotaria, αντί νερού μπορεί να χρησιμοποιηθεί για την ψ ύξη του κοπτικού άκρου και την
απαγωγή των θρασμάτων, πεπιεσμένου αέρας, στα πετρώματα εκείνα που επηρεάζονται από το
νερό (π.χ. μάργκες, υλολίθοι). Στην περίπτωση αυτή, η διάτρηση είναι βραδύτερη και χρειάζεται
μεγαλύτερη προσοχή.
Εικόνα 16: Αδαμαντοτροχός για κόψιμο δοκιμίων

Όταν όμως απαιτούνται δείγματα ακανόνιστης μορφής, αυτά γενικά διαμορφώνονται με τη βοήθεια ελαφρού σφυριού απομακρύνοντας όλες τις αιχμηρές προεξοχές, ώστε τελικά να σχηματισθεί δοκίμιο περίπου σφαιρικού σχήματος.

Εικόνα 17: Εργαστηριακή καροταρία για τη διαμόρφωση κυλινδρικών δοκιμίων πετρώματος
Σύμφωνα με τους Κούκης και Σαμπατακάκης, 2002, ανεξάρτητα από τη μεθοδολογία προετοιμασίας των δοκιμίων και την αυστηρή συμμόρφωση προς την πειραματική διαδικασία, η εκτέλεση της ιδίας δοκιμής σε δύο δοκίμα που έχουν διαμορφωθεί από ένα συγκεκριμένο μεγάλο δείγμα στάνταρν δεν ακριβώς ιδιαίτερα αποτελέσματα. Οι αποκλίσεις, που παρατηρούνται στα πετρώματα, είναι πολύ μεγαλύτερες από εκείνες των τεχνικών υλικών, διότι εκτός από τα συνήθη πειραματικά σφάλματα υπάρχουν και επιπρόσθετα, που προκύπτουν από τα εξής:

- Τη γεωμετρία του δοκιμίου, που δεν μπορεί να φτάσει σε τελειότητα εκείνη των δοκιμίων των τεχνικών υλικών και
- Τη δομή του πετρώματος, που λόγω της παρουσίας μικροασυνεχειών, δεν μπορεί να πλησιάσει εκείνη των τεχνικών υλικών.

Εάν συνεπώς απαιτείται σε ένα πέτρωμα πολύ καλή προσέγγιση μιας τιμής μιας εργαστηριακής παραμέτρου, τότε ο αριθμός των δοκιμίων που θα χρησιμοποιηθούν θα πρέπει να αυξηθεί σημαντικά, ώστε να έχουμε ένα σχετικό πλούσιο στατιστικό δείγμα.

Για τον περιορισμό όμως του κόστους των δοκιμίων και του χρόνου, χωρίς να μειωθεί η ζητούμενη αξιοπιστία των πειραματικών αποτελεσμάτων, είναι απαραίτητο να καθοριστεί ένας ελάχιστος για κάθε περίπτωση απαιτούμενος αριθμός δοκιμίων, που πρέπει να δοκιμαστούν εργαστηριακά. Ο αριθμός αυτός εξαρτάται από τη διασπορά των εργαστηριακών τιμών σε σχέση με τη μέση τιμή και από την επιθυμητή ακρίβεια. Η διασπορά εξαρτάται με τη σειρά της από την ανομοιογένεια του πετρώματος και από το μέγεθος του δοκιμίου, καθόσον τα μικρά δοκίμια δίνουν μεγαλύτερη διασπορά. Συνεπώς, όταν χρησιμοποιούνται για δοκιμές στο εργαστήριο μικρόν διαστάσεων δοκίμια, ο αριθμός τους πρέπει να είναι σχετικά μεγαλύτερος. Ικανοποιητική μαθηματική σχέση, που να καθορίζει για κάθε περίπτωση τον απαιτούμενο αριθμό δοκιμίων για δοκιμή, δεν υπάρχει.
Εικόνα 18: Αδαμαντοτροχοί για κόψιμο δοκιμών

Αρχικά, μετά τη βοήθεια του ειδικού μηχανήματος της καροταρίας τα δείγματα λειάνθηκαν (άκρα τους) εργαστηριακά μέσω ειδικού αδαμαντοτροχού λείανσης. Στη συνέχεια ξυγιστηκαν σε ζυγαριά ακριβείας και με τη χρήση παχώμετρου μετρήθηκαν οι διαστάσεις όλων των δειγμάτων (ψυχος, διάμετρος).

1.4.3 Προσδιορισμός πορώδους, πυκνότητας και λόγου κενών (με τη χρήση μικρομέτρου και συσκευής κενού)

Στη συνέχεια, τοποθετήθηκαν ένα ένα σε ειδική συσκευή κενού όπου παρέμειναν μια ώρα το κάθε δείγμα σε ειδικές συνθήκες (κενό 800 Pa και κορεσμένα σε νερό) για μια ώρα και μετά μετρήθηκαν τα βάρη τους για να υπολογιστεί η υγρή μάζα των δειγμάτων δηλαδή η μάζα του πετρώματος που έχει προέλθει από κορεσμένες σε νερό συνθήκες.
Σύμφωνα με τους Κούκης και Σαμπατακάκης, 2002, με τη μέθοδο αυτή προσδιορίζονται:

- η πυκνότητα (ή φαινόμενο βάρος),
- το πορώδες (n) και
- ο λόγος κενών (ε) σε δοκίμια πετρώματος κανονικού γεωμετρικού σχήματος.

Επίσης είναι δυνατός ο προσδιορισμός της υγρής πυκνότητας (psat).

Για την εκτέλεση της δοκιμής απαιτείται ο παρακάτω εξοπλισμός:

- Φούρνος που διατηρεί σταθερή θερμοκρασία στους 105 ± 5 °C
- Ξηραντήρας
- Ζυγός ακριβείας 0.01 gr
- Μικρόμετρο (παχύμετρο) ακριβείας 0.1 mm
- Συσκευή δημιουργίας κενού της τάξης των 800 Pa (Εικ 21)

Εικόνα 19: Συσκευή δημιουργίας κενού

Εκτέλεση δοκιμής - Υπολογισμοί:

1. Από ένα δείγμα πετρώματος διαμορφώνονται τρία δοκίμια σε κανονικό γεωμετρικό σχήμα (πρίσμα ή κύλινδρος) που το καθένα έχει μάζα μεγαλύτερη των 50 gr. Με μικρόμετρο
μετριούνται οι διαστάσεις κάθε δοκιμίου με ακρίβεια 0.1 mm και υπολογίζεται ο όγκος (Vt) του καθενός σε m3 (στο παρακάτω πίνακα 5 αναγράφονται οι διαστάσεις των κυλινδρικών δοκιμίων και τα φυσικά τους χαρακτηριστικά).

<table>
<thead>
<tr>
<th>Σχηματισμός</th>
<th>Αριθμός δείγματος (Θέσεις)</th>
<th>Αρμοδιότητας δείγματος (Kgr)</th>
<th>Αρμοδιότητας Κορωμένα (Kgr)</th>
<th>Ανάλεγο (m)</th>
<th>Διάμετρος D(m)</th>
<th>Υψός L(m)</th>
<th>Σκληρότητα SHV</th>
<th>Επιπέδεια Α(m2)</th>
<th>Ογκος Δειγματων (m3)</th>
<th>Μαζικότητα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ασβ. Διπλώς (Α. ΝΙΚΗΤΑΣ)</td>
<td>A1α</td>
<td>1,055</td>
<td>1,051</td>
<td>1,063</td>
<td>0,026</td>
<td>0,051</td>
<td>0,174</td>
<td>51</td>
<td>0,02041</td>
<td>0,000355</td>
</tr>
<tr>
<td></td>
<td>A1β</td>
<td>0,829</td>
<td>0,828</td>
<td>0,838</td>
<td>0,026</td>
<td>0,052</td>
<td>0,1385</td>
<td>50,8</td>
<td>0,00212</td>
<td>0,000293</td>
</tr>
<tr>
<td></td>
<td>A1γ</td>
<td>0,783</td>
<td>0,7809</td>
<td>0,789</td>
<td>0,025</td>
<td>0,051</td>
<td>0,1325</td>
<td>50,9</td>
<td>0,00204</td>
<td>0,00027</td>
</tr>
<tr>
<td>Ασβ. Παντοκρ</td>
<td>Α2α</td>
<td>0,0818</td>
<td>0,818</td>
<td>0,824</td>
<td>0,026</td>
<td>0,052</td>
<td>0,141</td>
<td>51,6</td>
<td>0,00208</td>
<td>0,000294</td>
</tr>
<tr>
<td>Ασβ. Παντοκρ</td>
<td>Α3</td>
<td>0,717</td>
<td>0,716</td>
<td>0,739</td>
<td>0,026</td>
<td>0,052</td>
<td>0,258</td>
<td>52,4</td>
<td>0,00298</td>
<td>0,000536</td>
</tr>
<tr>
<td></td>
<td>Α4α</td>
<td>1,036</td>
<td>1,035</td>
<td>1,038</td>
<td>0,027</td>
<td>0,053</td>
<td>0,171</td>
<td>52,4</td>
<td>0,00202</td>
<td>0,000027</td>
</tr>
<tr>
<td>Ασβ. Παντοκρ</td>
<td>Α4β</td>
<td>1,097</td>
<td>1,096</td>
<td>1,1</td>
<td>0,025</td>
<td>0,051</td>
<td>0,1885</td>
<td>45,9</td>
<td>0,00204</td>
<td>0,000385</td>
</tr>
<tr>
<td>ΚΑΡΥΑ</td>
<td>Δ1α</td>
<td>0,7214</td>
<td>0,717</td>
<td>0,723</td>
<td>0,025</td>
<td>0,051</td>
<td>0,122</td>
<td>45,9</td>
<td>0,00204</td>
<td>0,000249</td>
</tr>
<tr>
<td></td>
<td>Δ1β</td>
<td>0,8245</td>
<td>0,819</td>
<td>0,828</td>
<td>0,025</td>
<td>0,052</td>
<td>0,141</td>
<td>44,4</td>
<td>0,00200</td>
<td>0,000293</td>
</tr>
<tr>
<td></td>
<td>Δ1γ</td>
<td>0,846</td>
<td>0,841</td>
<td>0,849</td>
<td>0,026</td>
<td>0,052</td>
<td>0,144</td>
<td>44,5</td>
<td>0,0021</td>
<td>0,000306</td>
</tr>
</tbody>
</table>

Πίνακας 2: Συγκεντρωτικοί πίνακας φυσικών χαρακτηριστικών των κυλινδρικών δοκιμίων.
Αναγράφεται επίσης η σκληρότητα SHV

2. Τα δείγματα τοποθετούνται στη συσκευή κενού όπου και παραμένουν μία ώρα βιωμένα στο νερό ώστε να υποστούν κορεσμό. Η συσκευή ανακινείται περιοδικά για απομάκρυνση φυσιαλίδων αέρα.

3. Τα δείγματα απομακρύνονται από τη συσκευή ή κενού, σφυγίζοντας με υγρό πανί επωμανειακά, προσεκτικά ώστε να μην απομακρυνθεί κάποιο χαλαρωμένο κομμάτι πετρώματος, ζυγίζοντας και υπολογίζεται η υγρή μάζα του καθενός (Msat).

4. Τοποθετούνται σε ψυ ύψρο σε θερμοκρασία 105°C για 24 ώρες και στη συνέχεια σε ξηραντήρα για 1 ώρα. Ζυγίζονται και υπολογίζεται η μάζα του καθενός (Ms) (Εικ.22).
Εικόνα 20: Κυλινδρικά δοκίμια δειγμάτων σε ξηρές συνθήκες αμέσως μετά το φούρνο ξηρανσης.

Στη συνέχεια, πραγματοποιήθηκαν κάποιες δοκιμές για τον προσδιορισμό των παραμέτρων αντοχής των βραχωδών σχηματισμών και των δειγμάτων. Η πραγματοποίηση όλων των δοκιμών ήταν αδύνατη λόγω τεχνικών προβλημάτων και έλλειψης χρόνου.

Η πρώτη δοκιμή που έλαβε χώρα είναι η δοκιμή προσδιορισμού της σκληρότητας με τη χρήση της σφύρας Schmidt τύπου L, πραγματοποιήθηκε με επιτυχία σε όλα τα κυλινδρικά δείγματα. Σύμφωνα με τους, Κούκης και Σαμπατακάκης, 2002, η δοκιμή αυτή έχει σαν σκοπό τον καθορισμό της σκληρότητας δειγμάτων πετρώματος με τη χρήση του σφυριού αναπήδησης Schmidt τύπου L (Εικ. 21) και επίσης είναι δυνατή η εκτίμηση της αντοχής τους σε ανεμοδίστη θλίψη.
Εικόνα 21: σφυρί Schmidt

Το σφυρί Schmidt τύπου L είναι ελαφρύ και μπορεί να χρησιμοποιηθεί το ίδιο καλά στο εργαστήριο όσο και στην ύπαιθρο. Η ενέργεια κρουσης του είναι 0.74 N και είναι εφοδιασμένο με κλίμακα ενδείξεων των «τιμών αναπήδησης» που αντιστοιχούν στη σκληρότητα του πετρώματος. Για την εξέταση στο εργαστήριο κυλινδρικών δοκιμιών πετρώματος απαιτείται ειδική μεταλλική βάση βάρους 20 kg περίπου στην οποία είναι χαραγμένη αυλακωτή τομή σχήματος U ή V για τη συγκράτηση του δοκιμιού.

Το εξεταζόμενο στο εργαστήριο δοκίμιο, πρέπει να είναι ορθού κυλινδρικού σχήματος (πυρήνας γεωτρήσεις) με διάμετρο μεγαλύτερη των 54 mm (NX) ή κυβικού σχήματος με ακμή μεγαλύτερη των 6 cm. Στην περίπτωση που το σχήμα του δοκιμιού είναι διαφορετικό πρέπει να αναφέρεται στο έντυπο δοκιμής.

Η επιφάνεια του δοκιμίου πρέπει να είναι λεία και καθαρή χωρίς μικρορογμές ή άλλες ασυνέχειες μέχρι βάθους 6 cm τουλάχιστον. Στην ύπαιθρο η επιλογή των θέσεων δοκιμής πρέπει να γίνεται με προσοχή, ώστε τα αποτελέσματα των δοκιμιών να αντιστοιχούν στο σύνολο της βραχομάζας ή της εξεταζόμενης επιφάνειας ασυνέχειας. Το σφυρί χρησιμοποιείται σε θέση
οριζόντια, κατακόρυφη με το έμβολο προς τα κάτω, ή κατακόρυφη με το έμβολο προς τα πάνω. Στο εργαστήριο που χρησιμοποιείται η μεταλλική βάση, το σφυρί τοποθετείται σε κατακόρυφη θέση με το έμβολο προς τα κάτω, ενώ για κάθε άλλο προσανατολισμό χρησιμοποιούνται οι καμπύλες διάρθωσης του κατασκευαστή. Η διεύθυνση καθώς επίσης και οι διαταμωμένες τιμές αναγράφονται στο ειδικό έντυπο της δοκιμής. Επίσης στο έντυπο αναγράφονται οι διαστάσεις του δοκιμίου, διάμετρος (D), ύψος (H) καθώς και το βάρος (W) για τον προσδιορισμό της ζηρής πυκνότητάς του (ρd) με τη γεωμετρική μέθοδο.

Για κάθε δοκίμιο λαμβάνονται τουλάχιστον είκοσι (20) μετρήσεις αναπήδησης, από τις οποίες οι 10 με τις χαμηλότερες τιμές απορρίπτονται και από τις υπόλοιπες 10 υπολογίζεται ο μέσος αριθμός των κρούσεων (SHV) που αναγράφονται στο έντυπο της δοκιμής. Το έμβολο του σφυριού πιέζεται σταθερά πάνω στην επιφάνεια του δείγματος, μέχρι να απελευθερωθεί το ελατήριο κρούσης και να ακουστεί ο χαρακτηριστικός ήχος. Η ένδειξη σκληρότητας διαβάζεται στη βαθμονομημένη κλίμακα που υπάρχει στο κυρίως σώμα του σφυριού, ενώ κάθε κρούση που θα επιφέρει θραύση πρέπει να απορρίπτεται. Στην περίπτωση που τα πετρώματα είναι πολύ σκληρά ή πολύ μαλακά, η μέθοδος έχει περιορισμένη εφαρμογή.

Τα αποτελέσματα της δοκιμής (οι μέσοι όροι) χρησιμοποιούνται για την ταξινόμηση των πτερωμάτων με βάση μόνο τη σκληρότητά τους.

Η δοκιμή αυτή αποτελεί μία απλή μέθοδο για τον έμμεσο προσδιορισμό της αντοχής του πτερώματος σε ανεμπόδιστη θλίψη. Ο μέσος όρος από τις μετρήσεις αναπήδησης σε συνδυασμό με την ζηρή πυκνότητα του πτερώματος δίνει έμμεσα την αντοχή σε ανεμπόδιστη θλίψη (σc), όπως φαίνεται και στο ακόλουθο διάγραμμα (Εικ. 22) και στο Πίνακα 3.
Εικόνα 22: Διάγραμμα υπολογισμού της αντοχής σε ανεμπόδιστη θλίψη του ακέραιου πετρώματος με βάση το μέσο όρο των μετρήσεων σκληρότητας (SHV) και της πυκνότητάς του (ρd) (Deere and Miller 1966)

<table>
<thead>
<tr>
<th>Κατηγορία Πετρωμάτων</th>
<th>Μέση Ένδειξη Σφυριού (SHV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πολύ μαλακά πετρώματα</td>
<td><10</td>
</tr>
<tr>
<td>Μαλακά πετρώματα</td>
<td>10 - 20</td>
</tr>
<tr>
<td>Σκληρά πετρώματα</td>
<td>20 - 50</td>
</tr>
<tr>
<td>Πολύ σκληρά πετρώματα</td>
<td>>60</td>
</tr>
</tbody>
</table>

Πίνακας 3: Ταξινόμηση ακέραιου πετρώματος με βάση τη σκληρότητά του. (Κούκης και Σαμπατακάκης, 2002)
Τα αποτελέσματα της δοκιμής αναγράφονται στον Πίνακα 4, με κίτρινο χρώμα είναι οι τιμές που απορρίφθηκαν. Από τα αποτελέσματα της παραπάνω δοκιμής καταλήγουμε στο συμπέρασμα ότι τα πετρώματα που έχουν την υψηλότερη σκληρότητα, είναι κυρίως τα ασβεστολιθικά πετρώματα. Πιο συγκεκριμένα τα πετρώματα που έχουν τη μεγαλύτερη σκληρότητα SHV 52,4 είναι δύο ασβεστολίθιδα του Παντοκράτορα οι οποίοι ανήκουν και οι δύο στην Ιόνια Ζώνη. Συλλέχθηκαν και οι δύο από την περιοχή της επαρχιακής οδού Τσουκαλάδες-Αγίας Νικήτας αλλά από διαφορετική τοποθεσία. Αντιθέτως, το πέτρωμα που έχει την χαμηλότερη σκληρότητα είναι πέτρωμα το οποίο συλλέχθηκε από την περιοχή της Καρυάς.
1.4.4.4 Δοκιμή προσδιορισμού του δείκτη σημειακής φόρτισης βραχώδους δοκιμίου (POINT LOAD INDEX)

Σύμφωνα με τους Κούκης και Σαμπατακάκης, 2002, η δοκιμή σημειακής φόρτισης είναι μία απλή δοκιμή που έχει σαν σκοπό την ταξινόμηση του ακέραιου πετρώματος από πλευράς αντοχής, καθώς επίσης και τον έμμεσο προσδιορισμό της αντοχής σε μοναξονική θλίψη. Η δοκιμή γίνεται συνήθως στο εργαστήριο αλλά και επιτόπου του έργου, λόγω της σχετικά εύκολης μεταφοράς της ειδικής συσκευής που χρησιμοποιείται.

Η αντοχή του πετρώματος μετρείται με την εφαρμογή μιας αντιδιαμετρικά ασκούμενης δύναμης από τα δύο κονικά άκρα της ειδικής συσκευής και προσδιορίζεται ο δείκτης σημειακής φόρτισης (Is) (Εικ. 23). Συσκευές σημειακής φόρτισης υπάρχουν δώδεκα τύπων και αποτελούνται από ένα μεταλλικό πλαίσιο, δύο μεταλλικές πλάκες που φέρουν κονικά άκρα 60° με ακτίνα καμπυλότητας 5 mm, μία χειροκίνητη υδραυλική αντλία για την επιβολή της πίεσης, ένα έμβολο για τη μετακίνηση της μίας πλάκας και ένα ή δύο μανόμετρα για τη μέτρηση της πίεσης του εμβόλου ή του επιβαλλόμενου φορτίου.

Εικόνα 23: Πρέσα για τη δοκιμή της σημειακής φόρτισης
Εκτέλεση δοκιμής - υπολογισμοί:

Για την εκτέλεση της δοκιμής χρησιμοποιούνται συνήθως κυλινδρικά δοκίμια του πετρώματος για διαμετρική ή αξονική φόρτιση, αλλά είναι δυνατό να χρησιμοποιηθούν και δοκίμια σε μορφή κύβου ή ακόμα και σε ακανόνιστη μορφή. Βασική προϋπόθεση για τη δοκιμή κάποιου συγκεκριμένου είδους (διπλαίδι διαμετρική, αξονική ή σε ακανόνιστο δείγμα) είναι να ικανοποιούνται οι σχέσεις μεταξύ της απόστασης των κονικών άκρων (D), του μήκους (L) και της χαρακτηριστικής διάστασης (W) του δοκιμίου που φαίνονται στο αμέσως επόμενο σχήμα (Εικ. 24).

Εικόνα 24: Σχέσεις μεταξύ των διαστάσεων του δείγματος για τα διάφορα είδη των δοκιμών: (α) Διαμετρική δοκιμή, (β) Αξονική δοκιμή, (γ) Δοκιμή σε ακανόνιστης μορφής δείγμα, (δ) Δοκιμή σε μορφής κύβου δείγμα (ISRM, 1985). (Κούκης και Σαμπατακάκης, 2002)
Το δοκίμιο τοποθετείται μεταξύ των κονικών άκρων, ώστε η φόρτιση να γίνεται στο μέσο μήκος του δοκιμίου και κατά τη διάμετρο του. Η επιβολή του φορτίου πρέπει να γίνεται βαθμιαία και με σταθερή ταχύτητα μέχρι τη θραύση του δοκιμίου. Το φορτίο θραύσης σημειώνεται στο δελτίο δοκιμής.

Με την εκτέλεση της δοκιμής υπολογίζεται ο δείκτης σημειακής φόρτισης IS (Point Load Index), που είναι ο λόγος του φορτίου θραύσης (P) προς το τετράγωνο της ισοδύναμης διάστασης (De). Όπου: P σε N, De σε mm οπότε και Is σε MPa.

Η ισοδύναμη διάσταση ή διάμετρος (De) για διαμετρική δοκιμή είναι ίση με την απόσταση D (διάμετρος του δοκιμίου). Στους άλλους τύπους δοκιμών η ισοδύναμη διάσταση De δίνεται από τη σχέση:

\[I_z = \frac{P}{D_a^2} \]
\[D_e^2 = \frac{4DW}{\pi} \]

Στο έντυπο της δοκιμής αναγράφονται: στοιχεία του έργου, ο αριθμός γεωτρήσεως, το βάθος, ο τύπος της δοκιμής, η απόσταση D των κονικών άκρων σε mm, η χαρακτηριστική διάσταση (W) σε mm, το φορτίο θραύσης (P) σε N και διάφορες παρατηρήσεις σχετικά με τη θραύση.

Ο δείκτης σημειακής φόρτισης IS μεταβάλλεται ανάλογα με την ισοδύναμη διάμετρο του δοκιμίου (De). Για το λόγο αυτόν απαιτείται να γίνει διόρθωση του δείκτη αυτού και η εύρεση ενός ανηγμένου δείκτη σημειακής φόρτισης που θα αναφέρεται σε μια τυποποιημένη διάμετρο δοκιμίου. Ο νέος αυτός δείκτης IS(50) καλείται ανηγμένος δείκτης σημειακής φόρτισης και αναφέρεται για διαμετρική δοκιμή με τυποποιημένη διάμετρο δοκιμίου D = 50 mm. Ο δείκτης IS(50) υπολογίζεται από τη σχέση:

\[IS(50) = F \cdot Is \]

Όπου F είναι ένας συντελεστής διόρθωσης που εκτιμάται από τη σχέση:

\[F = \left(\frac{D_e}{50} \right)^{0.45} \]

Τελικά,

\[I_z(50) = \left(\frac{D_e}{50} \right)^{0.45} I_z \]

Ο ανηγμένος δείκτης IS(50) εκφράζεται επίσης σε MPa.
Σύμφωνα με τους Κούκης και Σαμπατακάκης, 2002, η αξιοπιστία εκτέλεσης της δοκιμής εξαρτάται από το είδος θραύσης των δοκιμίων. Η θραύση γενικά πρέπει να γίνεται κατά μήκος των δύο αιχμών της συσκευής, όπως φαίνεται και παρακάτω (Εικ. 25). Θα πρέπει να τονισθεί ότι η δοκιμή αυτή, δίνει αξιόπιστα αποτελέσματα για D μεγαλύτερο των 42 mm. Γενικά η διαμετρική δοκιμή είναι περισσότερο αξιόπιστη σε σχέση με την αξονική και τη δοκιμή σε ακανόνιστο ή κυβικού σχήματος δείγμα. Τα αποτελέσματα της δοκιμής μπορούν να χρησιμοποιηθούν για την ταξινόμηση των πετρωμάτων ως προς την αντοχή τους (Πίνακας 5).

Χαρακτηρισμός Αντοχής	Δείκτης Σημειακής Φόρτισης, $\text{Is}(\text{MPa})$
Pολύ υψηλής αντοχής | $>$ 8
Υψηλής αντοχής | 4-8
Μέσης αντοχής | 2-4
Χαμηλής αντοχής | 1-2
Πολύ χαμηλής αντοχής | Δεν συνιστάται η δοκιμή

$\text{Πίνακας 5: Ταξινόμηση ακέραιου πετρώματος με βάση το δείκτη σημειακής φόρτισης IS}(\text{50})$ (Bieniawski, 1975)

Η αντοχή σε μοναξονική θλίψη (σ_c) συνδέεται με τον ανηγμένο δείκτη σημειακής φόρτισης $\text{Is}(\text{50})$ με τη σχέση:

$$\sigma_c = K \cdot \text{Is}(\text{50})$$

Η τιμή του K είναι 24 για δοχώμα διαμέτρου NX (54 mm) (ISRM, 1981) (Πίνακας 8) αλλά νεότερες έρευνες έχουν δείξει ότι η τιμή του K μεταβάλλεται σημαντικά ανάλογα με το είδος του πετρώματος, το βαθμό διαγένεσης, την αποσάθρωση κ.τ.λ. Είναι αναγκαίο για κάθε είδος πετρώματος σε συγκεκριμένη θέση να υπολογίζεται το K στατιστικά, με την εκτέλεση δοκιμών σημειακής φόρτισης και μονο-αξονικής θλίψης και τη διατύπωση αντίστοιχης εμπειρικής σχέσης (Πίνακας 6).

Με τη δομική σημειακή φόρτιση υπολογίζεται και ο δείκτης ανισοτροπίας αντοχής (Strength Anisotropy Index, Ia(50)), που ορίζεται σαν ο λόγος της μέσης τιμής του Is(50) που μετριέται κάθετα στο επίπεδο αδυναμίας του βραχώδους υλικού (π.χ. σχιστότητα), προς αυτό που μετρίαται παράλληλα. Από θεωρητικής σκοπιάς, ισότροπο πέτρωμα, είναι όταν ο δείκτης Ia(50) έχει τιμές περίπου ένα (1) και όταν οι τιμές αυξηθούν γίνεται ανισότροπο.
Στον παρακάτω πίνακα (Πίνακας 7), αναγράφονται τα φυσικά χαρακτηριστικά από τα ακανόνιστου τύπου δείγματα, τα οποία, τα δημιουργήσαμε από τα αρχικά δείγματα βραχοτεμαχών όταν κάναμε μακροσκοπική επιτόπου έρευνα.

<table>
<thead>
<tr>
<th>Αρχικός δείγματος</th>
<th>Νάφας (πράσινος)</th>
<th>Ελατόμετρος (cm)</th>
<th>Υψόμ. (cm)</th>
<th>Χαρακτηριστικό διάπλατο €</th>
<th>Παραμέτρος</th>
<th>Φόρτο διάπλατο (kN)</th>
<th>Παραμέτρος</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w1 (cm)</td>
<td>w2 (cm)</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>αρχικό δείγμα Δ1 (ΚΑΡΤΑ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 165,5</td>
<td>7,7</td>
<td>7,9</td>
<td>12,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 165,7</td>
<td>5,4</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 165,1</td>
<td>10,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Αχ.δείγμα Δ3 (ΑΓ.ΝΙΚΗΤΑΣ-ΠΑΝΤΟΚΡΑΤΟΣ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Α1 165,5</td>
<td>8,3</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Α2 165,7</td>
<td>10,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Α3 165,1</td>
<td>11,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Πίνακας 7: Φυσικά χαρακτηριστικά ακανόνιστων δειγμάτων

Παρακάτω αναφέρονται σαν παράδειγμα το έντυπο της δοκιμής (τα υπόλοιπα έντυπα βρίσκονται στο Παράρτημα) δοκιμίου με αριθμό P1 το οποίο προέρχεται από το δείγμα που συλλέχθηκε με τη θέση A3. Είναι ασβεστόλιθος του Παντοκράτορα, ανήκει στην Ιώνια Ζώνη και όπως προκύπτει από τη δοκιμή του προσδιορισμού του δείκτη της σημειακής φόρτισης είναι πέτρωμα μέσης αντοχής. Ο δείκτης σημειακής φόρτισης ισούται με 2,45 MPa και με βάση τον χαρακτηρισμό της αντοχής κατά Bieniawski 1974, το πέτρωμα είναι μέσης αντοχής.
Τύπος Δοκίμης: Προσδιορισμού του Δείκτη Σημειακής Φόρτισης με τον Νόμο του Brake E. 103-84 (5), I.S.R.M. 1985

Παράδειγμα Εντύπου της Δοκιμής Σημειακής Φόρτισης

<table>
<thead>
<tr>
<th>Στοιχεία Δείγματος</th>
<th>Π1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γεώτρηση Δείγμα :</td>
<td>Π1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Τύπος Δοκίμης</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Απόσταση Δικλών</td>
<td>77,70 mm</td>
</tr>
<tr>
<td>Χαρακτηριστική Διαστάση</td>
<td>104,50 mm</td>
</tr>
<tr>
<td>Ισοδυναμική Διαστάση</td>
<td>101,70 mm</td>
</tr>
<tr>
<td>Φορτιστής</td>
<td>P</td>
</tr>
<tr>
<td>Δείκτης</td>
<td>I_s = P/De²</td>
</tr>
<tr>
<td>Συντελεστής Διορθώσης</td>
<td>F = (De/50)²</td>
</tr>
<tr>
<td>Ανθυγμένος Δείκτης</td>
<td>I_s(50) = I_s X F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Τύπος Δοκιμών:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Αξιόλογη δοκιμή σε πυρήνα</td>
</tr>
<tr>
<td>(b) Δοκιμή σε κυβικό δείγμα</td>
</tr>
<tr>
<td>(c) Διαμετρική δοκιμή σε πυρήνα</td>
</tr>
<tr>
<td>(d) Δοκιμή σε δείγμα ακανόνιστου σχήματος</td>
</tr>
</tbody>
</table>

Χαρακτηρισμός Αντοχής: BIENIAWSKI (1974)

Μέσης αντοχής: 3,33 MPa

Παράδειγμα εντύπου της δοκιμής σημειακής φόρτισης
Εικόνα 26: Δείγματα ακανόνιστου σχήματος, ασβεστόλιθοι του Παντοκράτορα (Ιόνια Ζώνη), θέση Α3, πριν τη θραύση (δοκιμή σημειακής φόρτισης, Point Load Index).

Εικόνα 27: Δείγματα ακανόνιστου σχήματος, ασβεστόλιθοι του Παντοκράτορα (Ιόνια Ζώνη), θέση Α3, μετά τη θραύση (δοκιμή σημειακής φόρτισης, Point Load Index). Το κόκκινο βέλος δείχνει το ακανόνιστο σχήμα του δοκίμου το οποίο κατέστησε τη δοκιμή που αφορά το δείγμα αυτό άκυρη.

Οι υπόλοιπες φωτογραφίες από τη θραύση των επιμέρους δοκιμιών είναι συγκεντρωμένες στο Παράρτημα.
1.4.4.5 Σχόλιασμος των αποτελεσμάτων

Από τις προηγούμενες δοκιμές και διαδικασίες προκύπτει ότι τα πετρώματα με τη μικρότερη σκληρότητα, είναι αυτά που η κατάσταση της βραχώμαξας τους είναι μέτρια, σύμφωνα με τα αποτελέσματα της δοκιμής του προσδιορισμού της σκληρότητας με τη χρήση σφύρας Schmith. Τα δείγματα αυτά είναι τα Δ1α, Δ1β, Δ1γ (Παλαιοκαινικός ασβεστόλιθος). Όλα τα υπόλοιπα δείγματα αντιστοιχούν σε σκληρά πετρώματα. Πιο συγκεκριμένα τα δείγματα με τα πετρώματα αυτά είναι: A1α, A1β, A1γ, A2α, A2β, A3, A4α, A4β. Όπως προκύπτει από τη δοκιμή ο ασβεστόλιθος του Παντοκράτορα (Ιόνια Ζώνη) και ο ασβεστόλιθος της Βίγλας (Ιόνιας Ζώνης) είναι και οι δύο ‘σκληρότεροι’ από τον Παλαιοκαινικό ασβεστόλιθο (Ζώνη Παζέν). Οι ασβεστόλιθοι Βίγλας και Παντοκράτορα συλλέχθηκαν από την επαρχιακή οδό Τσουκαλάδες-Άγιος Νικήτας ενώ ο Παλαιοκαινικός ασβεστόλιθος από την περιοχή της Καρυάς.

Όσον αφορά τα αποτελέσματα της δοκιμής προσδιορισμού του δείκτη σημειακής φόρτισης (Point Load Index) έδειξαν ότι το πέτρωμα με το μικρότερο φορτίο θραύσης (P=10kN) είναι το ακανόνιστο δοκίμιο K6 από την περιοχή της Καρυάς (Παλαιοκαινικός ασβεστόλιθος). Η αντοχή του χαρακτηρίζεται με βάση τον Bieniawski, 1975, ως χαμηλή. Αντίθετα, το πέτρωμα με το μεγαλύτερο φορτίο θραύσης είναι ο ασβεστόλιθος του Παντοκράτορα και είναι το ακανόνιστο σχήματος δοκίμιο P1. Επιπλέον το δοκίμιο με αριθμό δείγματος P4 παρουσιάζει επίσης μεγαλύτερο φορτίο θραύσης (20kN). Αυτό σημαίνει ότι χρειάζεται παραπάνω φορτίο από το δείγμα P6 το οποίο έσπασε με το μισό φορτίο σε σχέση με το δείγμα P1. Αυτό έχει σαν αποτέλεσμα, το δείγμα με το μεγαλύτερο φορτίο να έχει μεγαλύτερη αντοχή από ότι το δείγμα K6. Επιπλέον και τα δύο δείγματα με τη μεγαλύτερη αντοχή προέρχονται από το ίδιο αρχικό δείγμα που συλλέχθηκε από την επαρχιακή οδό Τσουκαλάδες-Άγιος Νικήτας. Τα υπόλοιπα δείγματα με φορτίο θραύσης από 16kN έως 25 kN και δείκτη σημειακής φόρτισης από 1,20MPa 2,42 MPa η αντοχή τους χαρακτηρίζεται ως μέτρια.

Συνοψίζοντας και με βάση τις δύο παραπάνω δοκιμές, οδηγούμαστε στα εξής συμπεράσματα:

- Η ισχύς της βραχώμαξας στο δυτικό τμήμα του νησιού, είναι μέτρια και η αντοχή επίσης μέτρια. Η δοκιμή του προσδιορισμού της σκληρότητας δείχνει ότι, τα περισσότερα πετρώματα είναι σκληρά στο δυτικό τμήμα του νησιού και πιο
συγκεκριμένα αναφερόμαστε σε ασβεστόλιθους της Βίγλας και του Παντοκράτορα οι οποίοι κυριαρχούν με μεγάλη εξάπλωση. Τα αποτελέσματα της δοκιμής διαφωνούν λίγο με τις πραγματικές συνθήκες, όσον αφορά τα πραγματικά και την ευστάθεια τους. Πιο συγκεκριμένα οι πραγματικές συνθήκες και τα αποτελέσματα του σεισμού της Λευκάδας το 2015, οδήγησαν πολλά πραγματικά και ευστάθεια τους. Να αρχίσουν να ολισθαίνουν μεγάλες μάζες βραχωτεμαχών και να δημιουργούν προβλήματα τόσο στο οικό δίκτυο και σε κτήρια. Τέλος, τα νούμερα της δοκιμής δεν συμπίπτουν τόσο με τη πραγματικότητα διότι τα δείγματα εξετάστηκαν εργαστηριακά και επηρεάστηκαν από άλλες συνθήκες. Επιπλέον, όταν τα δείγματα εξετάστηκαν εργαστηριακά, δεν λήφθηκαν υπόψη τα εσωτερικά ρήγματα που καταπονούν και ταπεινώνουν την ποιότητα της βραχώμαζας έτοιμων το πλήθος των εσωτερικών ασυνεχείων το οποίο και κατέστησε την σκληρότητα της βραχώμαζας μέτρια.

• Από την δοκιμή του προσδιορισμού του δείκτη σημειακής φόρτισης (point load index), οδηγηθήκαμε στην συμπέρασμα ότι η αντοχή των ασβεστόλιθικών πετρωμάτων (Βίγλας και Παντοκράτορα της Ιόνιας Ζώνης) που εξετάστηκαν εργαστηριακά και ανήκουν στο δυτικό τμήμα του νησιού, είναι μέτρια. Η αντοχή των Παλαιοκαινικών ασβεστόλιθικών πετρωμάτων (Ζώνη Παξών) από την άλλη, οι οποίοι συλλέχθηκαν από την περιοχή της Καρνάς, είναι χαμηλή. Αυτό οφείλεται στο γεγονός ότι είναι νεότεροι και έχουν εκτεθεί περισσότερο στις εξωγενείς διεργασίες π.χ. αποσάθρωση και διάβρωση, ενώ οι μεγαλύτεροι ηλικιακά ασβεστόλιθοι είναι πιο όριμοι και πιο κάτω στροματογραφικά με αποτέλεσμα να μην επηρεάζονται από τις καιρικές συνθήκες και τις εξωγενείς διαδικασίες.
2. ΣΕΙΣΜΙΚΟΤΗΤΑ

2.2.1 Γενικά

Όπως γνωρίζουμε η Ελλάδα χαρακτηρίζεται από έντονη σεισμικότητα. Οι σεισμοί αυτοί είναι επιφανειακοί και ενδιάμεσου βάθους μέχρι 190 χλμ. Η περιοχή της Λευκάδας, λόγω κυρίως της τεκτονικής διαμόρφωσης της, κατατάσσεται μεταξύ των πλέον σεισμογενών περιοχών του Ελληνικού χώρου. Από τους αρχαίους χρόνους έχει υποστεί, μαζί με τα υπόλοιπα νησιά του Ιονίου πελάγους, σημαντικές και ιστορικές καταστροφές σε μεγάλη έκταση. Χιλιάδες κτίσματα έχουν καταστραφεί και ισοπεδωθεί από τους ισχυρούς σεισμούς των οποίων οι εστίες είναι κυρίως υποθαλάσσιες.

Η αιτία της μόνιμης σεισμικότητας που παρατηρείται σε ολόκληρη τη σειρά των Ιονίων νήσων και στη Λευκάδα, οφείλεται κυρίως στα ρήγματα του Ιονίου πελάγους (οριζόντιο ρήγμα Κεφαλλονιάς – Λευκάδας), το οποίο εντοπίζονται στα δυτικά και βόρειο δυτικά του νησιού (Εικ.31).

2.2.2 Στοιχεία σεισμικής επικινδυνότητας

Ο χάρτης της Εικ.30 απεικονίζει τη γεωγραφική κατανομή της σεισμικής επικινδυνότητας στον ελλαδικό χώρο με βάση τις αναμενόμενες εδαφικές επιταχύνσεις από μελλοντικούς σεισμούς και προβλέπει τρεις ζώνες ίσης επικινδυνότητας. Όπως φαίνεται, η Λευκάδα μαζί με την Ζάκυνθο και την Κεφαλονιά κατατάσσονται στη ζώνη ΙΙΙ με ημι της σεισμικής επιπλέον 36σ του εδάφους Α=0,36g, που είναι η πιο σημαντική.
Εικόνα 28: Νέος χάρτης σεισμικής επικινδυνότητας (ΠΗΓΗ: http://www.oasp.gr/)

Εικόνα 29: Χάρτης κατανομής σεισμών στην ευρύτερη περιοχή της νήσου Λευκάδας και των γύρω περιοχών
Σύμφωνα με μια μελέτη που δημοσιεύτηκε από τους Papadopoulos and Arvanitides (1996), η οποία είχε στόχο τον προσδιορισμό των αναμενόμενων επιπτώσεων από μελλοντικούς σεισμούς, προέκυψε ότι παρόλο που η Λευκάδα και η ευρύτερη περιοχή κατατάσσονται στις περιοχές πολύ υψηλής σεισμικότητας (σεισμική επικινδυνότητα), ο σεισμικός κίνδυνος (αναμενόμενες επιπτώσεις) είναι μέσος. Το γεγονός αυτό πιθανόν να οφείλεται στο ότι οι περισσότεροι σεισμοί γίνονται στη θάλασσα ή σε ενδιάμεσα εστιακά βάθη, δηλαδή σε απόσταση από κατοικημένες περιοχές (φυσικά χαρακτηριστικά), και στο ότι οι περιοχές αυτές δεν χαρακτηρίζονται από υπερφυσικό επιπτώσεις πληθυσμού και τεχνικών κατασκευών (κοινωνικοοικονομικά χαρακτηριστικά) σε σχέση με άλλες περιοχές.

Δύο εστίες δεσπόζουν, η μία βρίσκεται βορειοδυτικά του νησιού και στη διασταύρωση του μεγάλου ρήγματος Τσουκαλάδων, με το ρήγμα Κεφαλλονίας – Λευκάδας, και η δεύτερη εντοπίζεται λίγο νοτιότερα του όρμου Βασιλικής (μεταξύ Λευκάδας και Ίθακης) και σε ρήγμα μεταξύ των δύο νησιών. Άλλες δύο εστίες μικρού βάθους σεισμών εντοπίζονται κοντά στο νησί. Η μία βρίσκεται δυτικά και κοντά στη βραχονησίδα Σέσουλα και η άλλη που εντοπίζεται στην ανατολική παράκτια ζώνη μεταξύ του όρμου Ρούδα και νησιάδας Αρκούδι (Παπαθεοδώρου, 1993:8-10).

Σύμφωνα με τον Παπαθεοδώρου, 1993, οι μεγάλες καταστροφές που υφίσταται η περιοχή και ιδιαίτερα η πόλη της Λευκάδας, οφείλονται κατά κύριο λόγο στο επισφαλές έδαφος θεμελιώσεως. Συγκεκριμένα, το βόρειο μισό της πόλης έχει οικοδομηθεί σε περιοχή που δημιουργήθηκε τεχνητά με επιχειρηματίες. Αυτός είναι ο λόγος για τον οποίο και το εδάφος υφίσταται ρωγμές και καθιζήσεις συχνά σημαντικές.
Στοιχεία σεισμικότητας

- 26 Μαΐου 1612, 6,6M
- 12 Οκτωβρίου 1613, 6,4M
- 28 Ιουνίου 1625, 6,6M
- 2 Ιουλίου 1630, 6,6M
- 22 Νοεμβρίου 1704, 6,6M
- 5 Ιουνίου 1722, 6,3M
- 22 Φεβρουαρίου 1723, 7,0M
- 12 Οκτωβρίου 6,8M
- 23 Μαρτίου 1783, 7,0M
- 7 Ιουνίου 1783, 7,0M
- 1815, 6,3M
- 17 Μαρτίου 1820, 6,3M
- 19 Ιανουαρίου 1825, 6,7M
- 28 Δεκεμβρίου 1869, 6,6M
- 27 Νοεμβρίου 1914, 6,3M
- 22 Απριλίου 1948, 6,5M
- 30 Ιουνίου 1970, 4M
- 19 Απριλίου 1971, 5,2M
- 23 Μαρτίου 1983, 5,3M
- 29 Νοεμβρίου 1994, 5,3M
- 1 Δεκεμβρίου 1994, 5,2M
- 14 Αυγούστου 2003, 6,3M
- 17 Νοεμβρίου 2015, 6,4M
2.2.3 Ο ΣΕΙΣΜΟΣ ΤΗΣ ΛΕΥΚΑΔΑΣ ΤΟ 2003 ΜΕΓΕΘΟΥΣ 6.3M

Στην Εικ. 30 παρουσιάζεται το επίκεντρο του σεισμού που έληξε τη Λευκάδα (14 Αυγούστου 2004) και οι περιοχές όπου εντοπίστηκαν διαρρήξεις του εδάφους και φαινόμενα ρευστοποίησης, τα οποία αποτελούν το βασικό παράγωγο που συντέλεσε στην αστοχία μερικών λιμνηκών έργων στο νησί της Λευκάδας:

![The 14th August 2003 Lefkada Earthquake (Ms = 6.4) map](image)

Εικόνα 30: Διάρρηξη του εδάφους μετά από το σεισμό της 14ης Αυγούστου 2003, [Πηγή: Pavlides et al, 2004]

Παρατηρείται ότι οι επιπτώσεις των κατολισθήσεων και των καταπτώσεων ήταν μεγαλύτερες στο δυτικό τμήμα από ότι στο ανατολικό τμήμα. Συγκεκριμένα, στην πόλη της Λευκάδας παρατηρήθηκαν οριζόντιες μετακινήσεις και στροφές κρηπιδότοιχων καθώς και βυθίσεις υλικού επιχώσης πίσω από τους κρηπιδότοιχους. Επίσης σημαντικές βλάβες υπέστη τόσο η πλωτή γέφυρα που συνδέει τη Λευκάδα με τη Δυτική Στερεά Ελλάδα όσο και ο διάυλος που οδηγεί στην πόλη της Λευκάδας όπου παρατηρήθηκαν δυναμικές διαφορικές καθιζήσεις. Στα λιμάνια του Νυδρίου και της Λυγιάς, παρατηρήθηκαν ρωγμές πίσω από τον κρηπιδότοιχο
και παράλληλα προς αυτόν καθώς και διαφορικές καθιζήσεις. Ο βαθμός επιρροής των ρευστοποιημένων εδαφικών στρωμάτων στις βλάβες των λιμενικών έργων θα μπορούσε να αποσαφηνιστεί με τη διάνοιξή γεωτρήσεων και επί τόπου δοκιμών στις συγκεκριμένες περιοχές (Παπαθανασίου κ.α., 2004).

2.2.4 Ο ΣΕΙΣΜΟΣ ΤΗΣ ΛΕΥΚΑΔΑΣ ΤΟ 2015 6.4Mw

2.2.4.1 Εισαγωγή

Σύμφωνα με τους Ιωάννης Καλογεράς & Νικόλαος Μελής Γεωδυναμικό Ινστιτούτο, Εθνικό Αστεροσκοπείο Αθηνών ΠΡΟΚΑΤΑΡΚΤΙΚΟ ΔΕΛΤΙΟ, στις 09:10 τοπική ώρα της 17ης Νοεμβρίου 2015 σημειώθηκε ισχυρή σεισμική δόνηση μεγέθους ML6.0 (Mw6.4) και εστιακού βάθους 11 km, με επίκεντρο στην περιοχή της ΝΔ Λευκάδας (Εικ. 31). Το ρήγμα που έδρασε είχε προσανατολισμό N20±5°E με πλάγια-δεξιόστροφη ολίσθηση. Ο σεισμός προκάλεσε πολλές δομικές ζημιές στα χωριά Αγίου Πέτρου, Αθάνα, Δράγκανο και Κομιλίο.

Οι περιβαλλοντικές επιπτώσεις περιλαμβάνουν ρευστοποιήσεις, παρατεταμένες καταπτώσεις βράχων και κατολισθήσεις. Αντιθέτως απουσίαζαν οι επιφανειακές ρωγμές. Στα δευτερογενή φαινόμενα εντάσσονται οι ρωγμές που έλαβαν χώρα στο οδικό δίκτυο σαν αποτέλεσμα βαρυτικών κινήσεων του εδάφους. Η προκαταρκτική αναστροφή των γεωδαιτικών δεδομένων προσδιορίζει το ανώτερο τμήμα του ρήγματος πολύ κοντά στην ακτή και σε πολύ μικρό βάθος (0,5 ± 0,5 km), όπως καθορίζεται από το αζικομόυ θέση και το πλάτος της κίνησης στους σταθμούς GPS NOA PONT (36cm προς τα νότια) και SPAN. Σημαντική κατακόρυφη κίνηση της ακτογραμμής δεν παρατηρήθηκε και αυτό συμβαδίζει με τις προβλέψεις του μοντέλου. [Ganas et al., 2015]

Το σεισμικό γεγονός ακολούθησε ισχυρός μετασεισμός στις 10:33 τοπική ώρα με μέγεθος ML5.1 (Mw5.0) με επίκεντρο την ίδια περιοχή (Εικ. 31Β), ενώ την 18/11/2015 στις 14:15 τοπική ώρα σημειώθηκε σεισμός με μέγεθος ML4.9 (Mw5.0) και εστιακό βάθος 17km, με επίκεντρο το θαλάσσιο χώρο πλησίον και δυτικά της πόλης της Λευκάδας (Εικ.33Γ).
Εικόνα 31: Τα επίκεντρα των σεισμών, κύριος σεισμός και μεγαλύτεροι μετασεισμοί (http://bbnet.gein.noa/gr, 20/11/2015)

Ο σεισμός της 17/11/2015 07:10 (GMT) έγινε αισθητός σε μεγάλες αποστάσεις (πχ στο κέντρο της Αθήνας από άτομα που βρίσκονταν σε υψηλότερους ορόφους), ενώ προκάλεσε σημαντικές βλάβες στους οικισμούς του ΝΔ τμήματος του νησιού, προκάλεσε το θάνατο 2 ατόμων και τον τραυματισμό 8 άλλων, καθώς και εκτεταμένες βλάβες στο νότιο οδικό δίκτυο του νησιού και κατολισθήσεις στη δυτική παράκτια ζώνη (πηγή ΜΜΕ). Ο μετασεισμός της 18/11/2015 έγινε περισσότερο αισθητός από τους κατοίκους της πόλης της Λευκάδας σε σχέση με τον μεγάλο σεισμό της 17/11/2015 (προσωπικές μαρτυρίες) ως πλησιέστερος στην πόλη.
2.2.4.2 Σεισμικότητα και Τεκτονική τοποθέτηση του σεισμού.

Η Λευκάδα (Ιόνιο Πέλαγος, Ελλάδα) θεωρείται ως μία από τις πιο τεκτονικά ενεργές περιοχές στην Ευρώπη και μια από τις πιο ενεργές ζώνες της ανατολικής Μεσογείου. Η Λευκάδα έχει επανειλημμένα υποβληθεί σε δυνατές εδαφικές κινήσεις, λόγο της εγγύτητας του νησιού με το Ρήγμα Μετασχηματισμού Κεφαλληνίας-Λευκάδας (CTF), Louvari et al., 1999; Sachpazi et al., 2000. Ο πιο πρόσφατος ισχυρός σεισμός, μεγέθους 6.4 Mw έλαβε χώρα στις 14 Αυγούστου 2003, κοντά στη δυτική ακτή της Λευκάδος, προκαλώντας σοβαρές ζημιές σε όλο το νησί (Papadopoulos et al., 2003; Karakostas et al. 2004; Paphathanassiou et al., 2005).

Η Λευκάδα αποτελείται από ιζηματογενή πετρώματα (κυρίως ανθρακικά) που ανήκουν στις εξωτερικές Ελληνίδες (Jacobshagen, 1979). Συγκεκριμένα, το όριο μεταξύ των δύο διαφορετικών γεωλογικών ζώνων, Ιόνια και Παξών, εμφανίζεται στη Λευκάδα, σχηματίζοντας την Ιόνια Επώθηση. Το κύριο τμήμα του νησιού θεωρείται ανθρακικής σύστασης της ακολουθίας της Ιόνιας Ζώνης, ενώ το ΝΔ τμήμα του νησιού αποτελείται από ασβεστόλιθο της γεωλογικής ζώνης των Παξών (Bornovas, 1964). Η επιτόπου παρατήρηση στη νότια Λευκάδα (Cushing M, 1985; Lekkas et al., 2001; Rondoyanni et al., 2012) ανέδειξε αρκετά ενεργά νεοτεκτονικά ρήγματα που ολισθαίνουν Β-Ν και ΒΑ-ΝΔ, εκ των οποίων το πιο σημαντικό μπορεί να θεωρηθεί το ρήγμα στο Αθάνα. Αυτό είναι ένα ρήγμα διεύθυνσης ΒΒΑ-DND που βυθίζεται βόρεια-δυτικά, εκφράζεται πολύ καλά στη μορφολογία της περιοχής το οποίο φαίνεται σε φωτογραφίες από δορυφόρο και αεροφωτογραφίες (Ganas et al, 2015).
Εικόνα 32: Ο κύριος σεισμός της 17 Νοεμβρίου κίτρινο αστέρι και τα επίκεντρα των μετασεισμών που καταγράφηκαν από το Εθνικό Αστεροσκοπείο Αθηνών. Δεξιόστροφα ρήγματα κατά μήκος των ορίων της Κεφαλονιάς-Λευκάδας, μαύρες γραμμές, πηγή:[Ganas et al, 2015].
2.2.4.3 Σεισμική Ολίσθηση

Η σεισμική ολίσθηση του σεισμού της 17/11/2015, όπως υπολογίστηκε μέσω αντιστροφής κυματομορφών και η συνάρτηση ολίσθησης φαίνεται στην Εικ.35 (Ganas et al, 2015). Η ολίσθηση επικεντρώνεται κυρίως στα νότια του υποκέντρου σε μια περιοχή ~30*10km με συνολική διάρκεια περίπου 17 δευτερόλεπτων με μέγιστη έκλυση ροπής στα ~6s. Η μέγιστη ολίσθηση υπολογίστηκε ~1.6 m και κύρια οριζόντια μετατόπιση.

Η συμπεριφορά των στιγμιότυπων της χρονικής διάρκειας της διάρρηξης (Εικ.36) δείχνει αρκετό ενδιαφέρον. Μετά από μια αρχική έκλυση ενέργειας μεταξύ 0 και 5 δευτερόλεπτων, η διάρρηξη εξαπλώνεται αντίθετα από την κλίση του επιπέδου του ρήγματος. Η στιγμή που φτάνει την επιφάνεια διαδίδεται αμφίπλευρα με το κύριο μέρος της ολίσθησης να είναι προς τα νότια του υποκέντρου. Το μοτίβο με το οποίο εξαπλώνεται η διάρρηξη δείχνει ότι οι περιοχές μεγάλης ολίσθησης συμπίπτουν με περιοχές στις οποίες λαμβάνουν χώρα πολυάριθμοι μετασεισμοί [Melgar 2017]. Πιο συγκεκριμένα παρατηρήθηκε ότι η σεισμική ολίσθηση δεν ήταν σταθερή καθ’ όλη τη διάρκεια του σεισμικού γεγονότος. Παρατηρείται ότι κάθε δευτερόλεπτο της χρονικής διάρκειας διάδοσης της σεισμικής ολίσθησης, η ολίσθηση εξαπλωνόταν και μεταφερόταν νότιο ανατολικά (Εικ.36).

Εικόνα 33: Συνολική σεισμική ολίσθηση η οποία προέκυψε από την αντιστροφή. Το πράσινο αστέρι είναι το υπόκεντρο, οι μαύρες βούλες είναι μετασεισμικά γεγονότα (Ganas et.al 2015) προκαλούμενα πάνω στο επίπεδο του ρήγματος. Ηθη [Melgar 2017]
Εικόνα 34: Στιγμιότυπα της εξάπλωσης της σεισμικής ολίσθησης. Το πράσινο αστέρι είναι το υπόκεντρο, οι μαύρες βούλες είναι μετασεισμικά γεγονότα προβαλλόμενα πάνω στο επίπεδο του ρήγματος. Οι γκρι «κύκλοι» παρουσιάζουν την χρονική εξέλιξη της διάρρηξης Melgar 2017.

2.2.4.4 Δορυφορικά Γεωδαιτικά Δεδομένα

Σύμφωνα με τους Ganas et. al (2015) τα γεωδαιτικά δεδομένα, δείχνουν Β-Ν συμπίεση του φλοιού της χέρσου της νήσου Λευκάδας της τάξης των 2-3mm/χρόνο, το οποίο οι συγγραφείς απέδωσαν στο «κλείδωμα», των δύο τεμαχίων του ρήγματος υπονοούντας προσεισμική παραμόρφωση.

Οι Ganas et.al 2015 παρουσιάζουν αποτελέσματα από δεδομένα που πάρθηκαν από δύο (2) μόνιμους GPS σταθμούς στη χέρσο της Λευκάδας (SPAN και PONT) και έναν σταθμό στην Κεφαλονιά (VLSM). Τα αρχικά τους αποτελέσματα περιλαμβάνουν χρονικές ακολουθίες
1-s θέσεις για τους σταθμούς SPAN, PONT και εκτιμήσεις στατικής μετατόπισης (Πίνακας 11) λόγω της σεισμικής ακολουθίας του σεισμού της 17 Νοε. 2015.

<table>
<thead>
<tr>
<th>Σταθμός</th>
<th>dE(mm)</th>
<th>dN (mm)</th>
<th>dUP (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PONT</td>
<td>-201</td>
<td>-365.</td>
<td>-65</td>
</tr>
<tr>
<td>SPAN</td>
<td>-59</td>
<td>-45</td>
<td>-3</td>
</tr>
<tr>
<td>VLSM</td>
<td>-4</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Πίνακας 8: Εκτιμήσεις στατικής μετατόπισης κατά των τριών συνιστωσών. πηγή:[Ganas et al, 2015]

2.2.5 ΣΧΕΣΗ ΜΕΤΑΞΥ ΤΩΝ ΣΕΙΣΜΩΝ ΤΟΥ 2015 ΚΑΙ 2003 ΣΤΗ ΛΕΥΚΑΔΑ.

Η ολίσθηση του προηγούμενου ισχυρού σεισμού (Mw=6.3) ο οποίος έλαβε χώρα το 2003 στο νησί της Λευκάδας αναλόγηθηκε από δύο ομάδες (Zahradník et al., 2005; Benetatos et al., 2005, 2007). Το πιο εντυπωσιακό χαρακτηριστικό ήταν ότι το συμβάν αποτελούνταν από δύο κύρια υποσυμβάντα τα οποία διέφεραν τόσο από θέμα απόστασης (40km) όσο και από θέμα χρόνου (15 δευτερόλεπτα).

Το πρώτο υποσυμβάν (Mw6.0-6.2) εντοπίστηκε στο βόρειο άκρο του τμήματος της Λευκάδας και το δεύτερο (Mw5.8-6.0) στο νοτίοτερο άκρο, εκεί δηλαδή που τέμνεται το ρήγμα της Λευκάδας με το τμήμα του ρήγματος της Κεφαλονίας (sub1 και sub2 αντίστοιχα στην Εικ. 35). Σύμφωνα με τους Sokos et al., 2016 ο σεισμός του 2015 ενεργοποίησε το τμήμα του ρήγματος Κεφαλονίας-Λευκάδας που δεν είχε ενεργοποιηθεί κατά το συμβάν του 2003 (Εικ. 35). Αξίζει να σημειωθεί ότι αυτό το τμήμα δεν είχε σχεδόν καθόλου μετασεισμούς, όχι μόνο μετά το συμβάν του 2003 αλλά και μετά το συμβάν του 2015 (Εικ.35), και επίσης παρέμεινε ανενεργό κατά την περιόδο των δύο κύριων σεισμών, αντιπροσωπεύοντας κατά συνέπεια ένα σημαντικό σεισμικό κενό.

Είναι καλό να επισημάνουμε ότι η εξέλιξη των συμβάντων του 2003 και 2015 είναι ασυνήθιστη. Οπως φαίνεται στην Εικ.35, στο σεισμό του 2003, η διάρρηξη σταμάτησε στο ΒΑ άκρο της διάρρηξης του 2015 ενώ το δεύτερο υπογεγονός του 2003 συνέβη μετά από 10s, σε απόσταση 20km προς ΝΔ. Μία πεθανή εξήγηση για τη γένεση του δεύτερου υπογεγονότος αποτελεί η δυναμική μεταφορά τάσης κατά τη διάρρηξη του πρώτου υπογεγονότος (Sokos.
et.al 2016). Με αυτόν τον τρόπο, ο σεισμός του 2003 παρέκαμψε το μεσαίο τμήμα του ρήγματος, αφήνοντάς το αδιάρρηκτο. Χρειάζτηκαν 12 χρόνια για να φτάσει αυτό το τμήμα σε διάρρηξη, με το σεισμό του 2015, και έτσι να αντισταθμιστεί και να αποσβέσει το έλλειμμα ολίσθησης στη περιοχή του ρήγματος. Το ερώτημα παραμένει ας προς το εάν το τμήμα φορτίστηκε από τοπικές τεκτονικές δυνάμεις μόνο ή και από άλλους μηχανισμούς, όπως για παράδειγμα αργή ολίσθηση που λαμβάνει χώρα στα χαμηλότερα μέρη του επιπέδου του ρήγματος. Σε κάθε περίπτωση, μπορούμε να θεωρήσουμε αυτό το τμήμα του ρήγματος της Λευκάδας του CTF ως ισχυρά κατακερματισμένο (Sokos et al., 2016).

Εικόνα 35 a) κατακόρυφη τομή κατά μήκος των τριών σεισμικών γεγονότων του 2015. b) Χάρτης που παρουσιάζει τις τοποθεσίες των σεισμών του 2003 (κόκκινοι κύκλοι) στη Λευκάδα, του 2014 (πράσινοι κύκλοι) στην Κεφαλλονιά και του 2015 (κίτρινοι κύκλοι) στη Λευκάδα Sokos et al., 2016.
2.2.6 ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΕΙΣΜΟΥ

2.2.6.1 Γεωπεριβαλλοντικά αποτελέσματα

Τα γεωπεριβαλλοντικά αποτελέσματα που θα αναλυθούν προέκυψαν επειτα από προσωπική επιτόπου μακροςκοπική έρευνα, σε συνδυασμό με την μετασεισμική μακροσκοπική έρευνα που οργανώθηκε από το ΕΑΑ (Α. Γκανάζ), σε συνεργασία με το Τμήμα Γεωλογίας του ΑΠΘ (Γ. Παπαθανασίου). Η συνδυαστική μακροσκοπική επιτόπου έρευνα του ΕΑΑ και του πανεπιστημίου ΑΠΘ έλαβε χώρα αμέσως μετά τον σεισμό (19-22 Νοε. 2015), ενώ η προσωπική μακροσκοπική έρευνα έλαβε χώρα 2 μήνες μετά το συμβάν.

Η πλειονότητα των σχετιζόμενων με τον σεισμό φαινομένων ήταν καταπτώσεις βράχων (Εικ.39), κατολισθήσεις (Εικ.38), αστοχίες οδικού δικτύου, καταστροφή μέτρων προστασίας πρανών και ρευστοποιήσεις μικρής κλίμακας. Η περιοχή που επηρεάστηκε ευρέως από αυτά τα φαινόμενα οριοθετείται ανατολικά από τα χωριά Κομηλιό, Δράγανο και Αθάνα, και στα δυτικά από την παράκτια ζώνη στο Πόρτο Καστική μέχρι τον Αγ. Νικήτα. Αυτή η ζώνη είναι ιδιαίτερα επιρρεπής σε αστοχίες πρανών, λόγω του συνδυασμού γεωμορφολογικών παραμέτρων (υψηλή ανύψωση και απότομο πρανές) με την υψηλού βαθμού κατακερματισμένη βραχομάζα λόγω τεκτονικών επιδράσεων (Papathanasiou et al., 2005).

Σχετικά με το ανατολικό τμήμα του νησιού, ο σεισμός ενεργοποίησε αραιά και μικρής κλίμακας καταπτώσεις βράχων σε σημεία ιδιαίτερα επιρρεπή σε αστοχίες πη. road cuts, ενώ στο βόρειο τμήμα του νησιού, όπου και βρίσκεται η πόλη της Λευκάδας, δεν αναφέρθηκαν γεωπεριβαλλοντικές επιδράσεις. Η τεκμηρίωση των περιβαλλοντικών φαινομένων που προκλήθηκαν από τον σεισμό υλοποιήθηκε χρησιμοποιώντας το Earthquake Geo Survey App. (για Android OS). Αρκετές επιτόπου φωτογραφίες φαίνονται στο παράρτημα αυτής της αναφοράς. [πηγή: Ganas et al, 2015]
Εικόνα 36: Κατολίσθηση πρανούς στην επαρχιακή οδό Τσουκαλάδες-Αγιος Νικήτας και καταστροφή μέτρων προστασίας

Εικόνα 37: Κατάπτωση βράχου στη παράκτια ζώνη της παραλίας Κάθισμα
Εικόνα 38: Καταστροφή δρόμου προς την παραλία Γιαλός (ανάμεσα από Εγγερμνούς-Πόρτο Κατσίκι) [πηγή Ganas et al, 2015].

2.2.6.2 Αστοχίες Πρανών

Σύμφωνα με τον Α. Γκανά οι κύριες γεωπεριβαλλοντικές επιδράσεις που προκλήθηκαν από το σεισμό της Λευκάδας το 2015 σχετίζονται με αστοχίες των πρανών. Οι καταπτώσεις βράχων και επιφανειακές κατολισθήσεις ήταν εκτενείς στο δυτικό τμήμα του νησιού και στο κέντρο του, τόσο σε φυσικό όσο και τεχνητά πρανή. Η πιο πυκνή συγκέντρωση αυτού του είδους των σεισμογενών παραμορφώσεων αναφέρθηκε στην παράκτια ζώνη από το Πόρτο Κατσίκι μέχρι τους Εγγρεμνούς και κατά μήκος του δρόμου των 6km μεταξύ Τσουκαλάδες – Αγ. Νικήτας, συνοδευόμενο από μικρές και μεγάλες πτώσεις βράχων, ολισθήσεις βραχομάζας και επιφανειακές κατολισθήσεις. Στις περισσότερες των περιπτώσεων, οι πτώσεις βράχων συνδέονται άμεσα με προπαράρχουσες τεκτονικές ασυνέχειες και απότομα πρανή ιζηματογενών πετρωμάτων.

Οι επιφανειακές κατολισθήσεις έγιναν κυρίως σε περιοχές που τα κλαστικά υλικά κάλυπταν το υπόβαθρο και συγκρεμμένα σε μέρη όπου η βραχομάζα ήταν σημαντικά κατακερματισμένη. Πρέπει να σημειωθεί ότι αυτή η ακολουθία-ζώνη πρανών έχει χαρακτηριστεί ως ιδιαίτερα επιρρεπής σε αστοχίες από τον Παπαθανασίου et al (2013). Επιπροσθέτως, παρατηρήθηκαν ρωγμές σε στρομένους δρόμους, στο οδικό δίκτυο στο κεντρικό και δυτικό τμήμα του νησιού, κυρίως εντός της ζώνης που προαναφέρθηκε. Μία από τις πιο αντιπροσωπευτικές περιπτώσεις αυτού του είδους αστοχίας παρατηρήθηκε στην είσοδο του χωριού Αθάνη, η οποία είχε ως αποτέλεσμα το κλείσιμο του δρόμου.

Έπειτα από μακροσκοπική επιτόπια παρατήρηση, εκτεταμένες καταπτώσεις βράχων και μεγάλος αριθμός κατολισθήσεων έλαβαν χώρα κατά μήκος της επαρχιακής οδού Τσουκαλάδες-Αγιος Νικήτας. Επιπλέον καταγράφηκε μεγάλος αριθμός κατολισθήσεων στο χωρίο Καλαμίτη και κατά μήκος του επαρχιακού δρόμου που οδηγεί στις παραλίες Αβάλι και Μεγάλη Πέτρα. Κατά μήκος της επαρχιακής οδού Εγγρεμνών-Πόρτο Κατσίκι σημειώθηκε μεγάλος αριθμός κατολισθήσεων που οδηγήσαν στο κλείσιμο του δρόμου που οδηγεί στην παραλία Γυαλός καθώς επίσης και ο δρόμος που οδηγεί στην παραλία των Εγγρεμνών η οποία καταστράφηκε ολοσχερώς χωρίς να υπάρχει κάποια οδική πρόσβαση.

Κατά μήκος της επαρχιακής οδού Πόρτο Κατσίκι-Αγιος Πέτρος-Βασιλική, δεν σημειώθηκε μεγάλος αριθμός κατολισθήσεων παρά μόνο σε σημεία όπου η βραχομάζα ήταν πολύ κατακερματισμένη και απουσίαζε η έντονη βλάστηση. Μικρός αριθμός καταπτώσεων
βράχων σημειώθηκε σε περιοχές με μεγάλο υψόμετρο όπως τα χωριά Νικολής και Μανάσης λόγω της έντονης διαφοροποίησης της γεωμορφολογίας.

2.2.6.3 Ρευστοποίηση

Παρά το γεγονός ότι αυτό το συμβάν χαρακτηρίζεται ως ένα από τα πιο ισχυρά πλήγματα σεισμού που έλαβαν χώρα στο νησί της Λευκάδας, η δημιουργία εδαφικών αστοχών λόγω ρευστοποίησης παρατηρήθηκε κυρίως κατά μήκος της παράκτιας ζώνης μεταξύ των χωριών Βασιλική και Πόντι. Συγκεκριμένα, αναφέρθηκαν σημεία μικρής κλίμακας ρευστοποίησης όπως πχ. κρατήρες άμμου και μία εδαφική ρωγμή περίπου 5m μήκους και 10cm πλάτους από την οποία εκτοξεύτηκε γκρι λεπτόκοκκο υλικό. Στο Νυδρί, σε σημείο που είχαν παρατηρηθεί φαινόμενα ρευστοποίησης από το συμβάν του 2003 (Παπαθανασίου et al., 2005) παρατηρήθηκε μόνο ένας μικρού μεγέθους κρατήρας άμμου.

Ωστόσο, ο σεισμός του 2015 προκάλεσε εκτενείς ζημιές στην προκυμαία της Βασιλικής, και συγκεκριμένα στην πρόσφατα κατασκευασμένη αποβάθρα και προβλήτα (πχ. Εικ.40). Πρέπει να σημειωθεί ότι δεν υπήρξαν αποδείξεις ρευστοποίησης, όπως εκτοξευόμενο υλικό από τις ρωγμές.

Εικόνα 40: Φωτογραφία επιτόπου μικροσκοπικής έρευνας, ρωγμές ασφάλτου στο λιμάνι της Βασιλικής. Ημερομηνία φωτογραφίας, 20 Νοεμβρίου 2015. [πηγή: Report on the Nov 17,
3. ΚΑΤΑΓΡΑΦΕΣ ΙΣΧΥΡΗΣ ΕΔΑΦΙΚΗΣ ΚΙΝΗΣΗΣ

3.1 ΓΕΝΙΚΑ

Σύμφωνα με το Εθνικό Αστεροσκοπείο Αθηνών και το Ινστιτούτο Τεχνικής Σεισμολογίας και Αντισεισμικών κατασκευών, 4 επιταχυνσιογράφοι κατέγραψαν το σεισμό της 17ης Νοεμβρίου 2015. Ο ένας στην περιοχή της Πρέβεζας (PRE2), απείχε 35 χιλιόμετρα από το επίκεντρο. Ο δεύτερος στην περιοχή της Ιθάκης (ITC1) απείχε 31 χιλιόμετρα. Τέλος οι άλλοι ήταν στην περιοχή της Λευκάδας. Ο ένας από αυτούς ήταν τοποθετημένος στο κέντρο της πόλης και απείχε 20 χιλιόμετρα από το επίκεντρο (LEF2), ο δεύτερος ήταν στο λιμάνι της Βασιλικής και απείχε μόνο 8 χιλιόμετρα από το επίκεντρο.

Στον Πίνακα 9 και στον Πίνακα 10 παρουσιάζονται οι γεωγραφικές συντεταγμένες των σταθμών (Lat, Lon) και οι μέγιστες τιμές που υπολογίστηκαν για

α) τη μέγιστη εδαφική επιτάχυνση (PGA),
β) την ένταση Arias, και
γ) οι μέγιστες τιμές των φασμάτων απόκρισης (για επιτάχυνση) PGA_SP.

Τα αποτελέσματα παρουσιάζονται και για τις τρεις συνιστώσες καταγραφής (North-South, East-West, UP). Η επεξεργασία των καταγραφών έγινε με το λογισμικό Matlab.

Πίνακας 9: Αποτελέσματα μέγιστων τιμών εδαφικής επιτάχυνσης

<table>
<thead>
<tr>
<th>ΣΤΑΘΜΟΙ</th>
<th>PGA_NS (cm/s²)</th>
<th>PGA_EW (cm/s²)</th>
<th>PGA_UD (cm/s²)</th>
<th>Arias</th>
<th>SUM_PGA_(NS-EW) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEF2</td>
<td>102.1100</td>
<td>85.896</td>
<td>55.3410</td>
<td>0.28</td>
<td>0.096</td>
</tr>
<tr>
<td>VAS2</td>
<td>363.0310</td>
<td>326.6420</td>
<td>257.4600</td>
<td>2.75</td>
<td>0.356</td>
</tr>
<tr>
<td>PRE2</td>
<td>49.1990</td>
<td>35.0700</td>
<td>19.7140</td>
<td>0.06</td>
<td>0.043</td>
</tr>
<tr>
<td>ICT2</td>
<td>117.2110</td>
<td>78.6280</td>
<td>45.3290</td>
<td>0.007</td>
<td>0.0999</td>
</tr>
</tbody>
</table>
Πίνακας 10: Αποτελέσματα μέγιστων φασματικών τιμών εδαφικής επιτάχυνσης

<table>
<thead>
<tr>
<th>ΣΤΑΘΜΟΙ</th>
<th>PGA_SP_NS (cm/s²)</th>
<th>PGA_SP_EW (cm/s²)</th>
<th>PGA_SP_UD (cm/s²)</th>
<th>Lat °N</th>
<th>Lon °E</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEF2</td>
<td>446.5600</td>
<td>316.1900</td>
<td>169.1300</td>
<td>38.830093</td>
<td>20.708346</td>
</tr>
<tr>
<td>PRE2</td>
<td>151.8900</td>
<td>157.6600</td>
<td>74.4120</td>
<td>38.957733</td>
<td>20.754750</td>
</tr>
<tr>
<td>VAS2</td>
<td>1,464.4</td>
<td>1,004.5</td>
<td>844.0400</td>
<td>38.630558</td>
<td>20.608081</td>
</tr>
<tr>
<td>ICT2</td>
<td>493.6600</td>
<td>276.4900</td>
<td>144.0400</td>
<td>38.364680</td>
<td>20.715610</td>
</tr>
</tbody>
</table>

ΣΥΝΙΣΤΩΣΕΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ

3.2 ΣΤΑΘΜΟΣ ΛΕΥΚΑΔΑΣ (LEF2)

Ο σταθμός είναι τοποθετημένος στο κτίριο του ΟΤΕ στο κέντρο της πόλης της Λευκάδας και απέχει 20 χιλιόμετρα από το επίκεντρο (Άγιος Πέτρος). Επιπλέον, είναι καλό να επισημανθεί ότι το έδαφος θεμελίωσης του σταθμού είναι αλλούβιες αποθέσεις (soft soil).

Οι συντεταγμένες του είναι οι εξής: X: 20.708346°, Ψ: 38.830093°

Οι μέγιστες τιμές των κύριων συνιστώσων της επιτάχυνσης είναι για τις οριζόντιες συνιστώσες (Εικ.41):

PGA_NS: 102.1100 cm/s²
PGA_EW: 85.896 cm/s²

Η μέγιστη τιμή της κάθετης συνιστώσας έχει τιμή:

PGA_UD: 55.3410 cm/s²

Η ένταση Arias έχει τιμή 0.2805 m/s και είναι και η δεύτερη μεγαλύτερη τιμή της έντασης σε σχέση με τους υπόλοιπους σταθμούς.
Εικόνα 41: Διαγράμματα επιτάχυνσης σε σχέση με το χρόνο για το σταθμό LEF2.

❖ ΦΑΣΜΑΤΑ ΑΠΟΚΡΙΣΗΣ

ΣΤΑΘΜΟΣ ΛΕΥΚΑΔΑΣ (LEF2_SP)

Στην Εικ.42 απεικονίζονται οι 3 διαφορετικές συνιστώσες του φάσματος απόκρισης της επιτάχυνσης για το σταθμό LEF2. Η κόκκινη καμπύλη αφορά την συνιστώσα του φάσματος απόκρισης της επιτάχυνσης με προσανατολισμό Ανατολή-Δύση. Η μέγιστη τιμή της συνιστώσας αυτής είναι: 316.1900 cm/s² - 0.316 m/s². Η μπλε καμπύλη αφορά την οριζόντια συνιστώσα του φάσματος απόκρισης της επιτάχυνσης με προσανατολισμό Βορρά-Νότο. Η μέγιστη τιμή της οριζόντιας συνιστώσας της επιτάχυνσης του φάσματος απόκρισης ορίζεται 446.5600 cm/s² - 0.447 m/s². Η πράσινη καμπύλη αφορά την κάθετη συνιστώσα της επιτάχυνσης του φάσματος απόκρισης η οποία έχει μέγιστη τιμή 169.1300 cm/s² - 0.17 m/s².
Εικόνα 42: Φάσματα απόκρισης για το σταθμό της Λευκάδας (LEF2).

◊ ΣΥΝΙΣΤΩΣΕΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ

3.3 ΣΤΑΘΜΟΣ ΒΑΣΙΛΙΚΗΣ (VAS2)

Ο δεύτερος σταθμός που είναι τοποθετημένος στο νησί της Λευκάδας, βρίσκεται στην περιοχή της Βασιλικής και απέχει μόνο 8 χιλιόμετρα από το επίκεντρο (Αγιος Πέτρος). Είναι τοποθετημένος στο λιμάνι της Βασιλικής και ο τύπος εδάφους που είναι θεμελιωμένος είναι stiff soil. Είναι ο κοντινότερος σταθμός από όλους στο επίκεντρο με αποτέλεσμα οι τιμές των τριών συνιστοσών καθώς και της έντασης Arias να είναι ιδιαίτερα υψηλές σε σχέση με τις τιμές των υπόλοιπων σταθμών.

Οι συντεταγμένες είναι οι εξής: Χ:20.608081, Ψ: 38.630558
Οι μέγιστες τιμές των κύριων συνιστοσών της επιτάχυνσης είναι για τις οριζόντιες συνιστώσες: PGA_NS: 0.363 m/s² PGA_EW: 0.326m/s². Η μέγιστη τιμή της κάθετης συνιστώσας έχει τιμή: PGA_UD: 0.257m/s²
Η ένταση Arias έχει τιμή 2.7518 m/s και είναι και η μεγαλύτερη τιμή της έντασης σε σχέση με τους υπόλοιπους σταθμούς που έχουν τοποθετηθεί λόγω ότι ο σταθμός αυτός είναι ο κοντινότερος στην επικεντρική απόσταση.

![Diagram](image)

Εικόνα 43: Διαγράμματα επιτάχυνσης σε σχέση με το χρόνο για το σταθμό Βασιλικής VAS2

ΦΑΣΜΑΤΑ ΑΠΟΚΡΙΣΗΣ

ΣΤΑΘΜΟΣ ΒΑΣΙΛΙΚΗΣ (VAS2_SP)

Στην Εικ.44 οπεικονιζούνται οι 3 διαφορετικές συνιστώσες του φάσματος απόκρισης της επιτάχυνσης το οποίο αφορά τον σταθμό στην περιοχή της Βασιλικής. Απέχει μόλις 8 χιλιόμετρα από το επίκεντρο, το οποίο έχει σαν αποτέλεσμα οι μέγιστες τιμές των συνιστωσών της επιτάχυνσης του φάσματος απόκρισης να είναι πιο υψηλές από τις μέγιστες τιμές των άλλων σταθμών.
Η κόκκινη καμπύλη αντιπροσωπεύει την οριζόντια συνιστώσα της επιτάχυνσης του φάσματος απόκρισης με προσανατολισμό Ανατολή-Δύση. Η μέγιστη τιμή της παρούσας συνιστώσας ισούται με $1.4644 \times 10^3 = 1.464 \text{ m/s}^2$. Η πράσινη καμπύλη αφορά την κάθετη συνιστώσα του φάσματος απόκρισης όπου η μέγιστη τιμή της παρούσας συνιστώσας ισούται με 0.844 m/s^2. Η μπλε καμπύλη αποτελεί την δεύτερη οριζόντια συνιστώσα της επιτάχυνσης του φάσματος απόκρισης. Η μέγιστη τιμή ισούται με 1.005 m/s^2.

Όλες οι τιμές της φασματικής επιτάχυνσης είναι ιδιαίτερα υψηλές διότι είναι ο κοντινότερος σταθμός στο επίκεντρο του σεισμού και όλες οι τιμές ενισχύονται.

Εικόνα 44: Φάσματα απόκρισης για το σταθμό της Βασιλικής (VAS2).
ΣΥΝΙΣΤΩΣΕΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ

3.3 ΣΤΑΘΜΟΣ ΙΘΑΚΗΣ (ITC1)

Ο συγκεκριμένος σταθμός βρίσκεται στο νησί της Ιθάκης και απέχει 31 χιλιόμετρα από το επίκεντρο. Ο σταθμός είναι θεμελιωμένος σε βράχο. Πιο συγκεκριμένα το υπόβαθρο αποτελείται από ασβεστόλιθους ηλικίας από Ιουρασικό έως Κρητιδικό. Οι συντεταγμένες είναι οι εξής: Χ: 20.715610, Ψ: 38.364680. Οι μέγιστες τιμές των κύριων συνιστώσων της επιτάχυνσης είναι για τις οριζόντιες συνιστώσες PGA_NS: 0.117m/s², PGA_EW: 0.078m/s². Η μέγιστη τιμή της κάθετης συνιστώσας έχει τιμή: PGA_UD: 0.045m/s². Η ένταση Arias έχει τιμή 0.00716 m/s και είναι και η μικρότερη τιμή της έντασης σε σχέση με τους υπόλοιπους σταθμούς. Αυτό οφείλεται λόγω μεγάλης απόστασης μεταξύ του σταθμού και επικέντρου και επιπλέον διαφέρει η γεωλογία του νησιού. Πιο συγκεκριμένα η διαφορά είναι στο υπόβαθρο που είναι θεμελιωμένος ο σταθμός, είναι δηλαδή βράχος και όχι έδαφος που ισχύει για τους άλλους 3 σταθμούς.

Εικόνα 45: Διαγράμματα επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της Ιθάκης.
ΦΑΣΜΑΤΑ ΑΠΟΚΡΙΣΗΣ

ΣΤΑΘΜΟΣ ΙΘΑΚΗΣ (ITC1_SP)

Στην Εικ.46 απεικονίζονται οι 3 διαφορετικές συνιστώσες του φάσματος απόκρισης της επιτάχυνσης για τον σταθμό στο νησί της Ιθάκης. Απέχει 31 χιλιόμετρα από το επίκεντρο του σεισμού και ο σταθμός είναι θεμελιωμένος σε ασβεστολιθικό υπόβαθρο. Αυτό έχει σαν αποτέλεσμα οι τιμές των εδαφικών παραμέτρων να μην ενισχύονται αρκετά σε σχέση με τους σταθμούς της Πρέβεζας και Λευκάδας. Η μπλε καμπύλη αντιπροσωπεύει την οριζόντια φασματική συνιστώσα απόκρισης της επιτάχυνσης με διεύθυνση ΒΝ. Η μέγιστη τιμή της παρόντων συνιστώσας ισούται με 493.6600 cm/s²-4.93 m/s². Η πράσινη καμπύλη αποτελεί την κάθετη συνιστώσα της επιτάχυνσης του φάσματος απόκρισης (UD με μέγιστη τιμή να ισούται με 144.0400 cm/s²-1.440 m/s². Η κόκκινη καμπύλη αντιπροσωπεύει την οριζόντια συνιστώσα της επιτάχυνσης του φάσματος απόκρισης με προσανατολισμό Ανατολή-Δύση. Η μέγιστη τιμή της παρακάτω επιτάχυνσης ισούται με 276.4900 cm/s²-2.765 m/s².

Εικόνα 46: Φάσματα απόκρισης για το σταθμό της Ιθάκης.

ΣΥΝΙΣΤΩΣΕΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ

3.4 ΣΤΑΘΜΟΣ ΠΡΕΒΕΖΑΣ (PRE2)

Η θέση του σταθμού βρίσκεται στην περιοχή της Πρέβεζας. Πιο συγκεκριμένα, είναι εγκατεστημένος στο κεντρικό κτήριο του ΟΤΕ. Στα παρακάτω διαγράμματα απεικονίζονται οι τρεις διαφορετικές συνιστώσεις της επιτάχυνσης. Οι συντεταγμένες είναι οι εξής:

<table>
<thead>
<tr>
<th>Τύπος Συνιστώσας</th>
<th>Χ:</th>
<th>Y:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA_NS</td>
<td>20.754750</td>
<td>38.957733</td>
</tr>
<tr>
<td>PGA_EW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA_UD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Οι μέγιστες τιμές των κύριων συνιστώσων της επιτάχυνσης είναι για τις οριζόντιες συνιστώσες: **PGA_NS: 0.049m/s²** Και **PGA_EW: 0.035m/s²**. Η μέγιστη τιμή της κάθετης συνιστώσας έχει τιμή: **PGA_UD: 0.019m/s²**

Επιπλέον υπολογίστηκε η ένταση Arias η οποία έχει τιμή 0.0671m/s. Δεδομένου ότι η απόσταση μεταξύ του σταθμού και του επικέντρου είναι μεγάλη, η τιμή της έντασης Arias είναι αρκετά μικρότερη σε σχέση με τους υπόλοιπους σταθμούς.

![Diagram of acceleration vs time](image.png)

Εικόνα 47: Διαγράμματα επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της Πρέβεζας.
ΦΑΣΜΑΤΑ ΑΠΟΚΡΙΣΗΣ

ΣΤΑΘΜΟΣ ΠΡΕΒΕΖΑΣ (PRE2_SP)

Στην Εικ.48 απεικονίζονται οι 3 διαφορετικές συνιστώσες του φάσματος απόκρισης της επιτάχυνσης για τον σταθμό στη πόλη της Πρέβεζας. Ο συγκεκριμένος σταθμός απέχει 35 χιλιόμετρα από το επίκεντρο του σεισμικού γεγονότος. Αυτό έχει σαν αποτέλεσμα οι τιμές των παραμέτρων να μην είναι ιδιαίτερα υψηλές λόγω της εξασθένησης της σεισμικής ενέργειας. Η μπλε καμπύλη αντιστοιχεί στην οριζόντια συνιστώσα της επιτάχυνσης του φάσματος απόκρισης με προσανατολισμό Βορρά – Νότο. Η μέγιστη τιμή της παρούσας συνιστώσας είναι 151.8900 cm/s² - 1.519 m/s². Η κόκκινη καμπύλη αντιστοιχεί στην δεύτερη οριζόντια συνιστώσα της επιτάχυνσης με προσανατολισμό Ανατολή – Δύση και η μέγιστη τιμή ισούται με 157.6600 cm/s² - 1.58 m/s². Τέλος η πράσινη καμπύλη αντιστοιχεί στην μοναδική κάθετη συνιστώσα της επιτάχυνσης του φάσματος απόκρισης (UD). Η αντίστοιχη μέγιστη τιμή που αντιστοιχεί με τη παρούσα συνιστώσα ισούται με 74.4120 cm/s² - 0.74 m/s². Είναι η μικρότερη μέγιστη τιμή σε σχέση με τις προηγούμενες τιμές των σταθμών, λόγω της μεγάλης απόστασης μεταξύ του σταθμού και του επικέντρου του σεισμικού γεγονότος.

Εικόνα 48: Φάσματα απόκρισης για το σταθμό της Πρέβεζας.
3.5 ΣΥΓΚΡΙΣΗ ΜΕ ΤΗ ΣΧΕΣΗ ΑΠΟΣΒΕΣΗΣ Danciu and Tselentis, 2007 (DA)

3.5.1 Γενικά

Η εξέλξη των παραμέτρων κίνησης του εδάφους μπορεί να χρησιμοποιηθεί για να περιγράψει τη δυναμική αστοχία που προκαλεί ένας σεισμός. Μερικές από αυτές συσχετίζονται με αρκετές συνήθως χρησιμοποιούμενες μετρήσεις οι οποίες απαιτούνται για την εύρεση της δομικής απόδοσης, ρευστοποίησης και σεισμικής ευστάθειας της πρανούς. Η σημασία αυτών των παραμέτρων προέκειται από την αναγκαιότητα για εναλλακτικές μετρήσεις της σεισμικής έντασης. Οι δομικές αστοχίες ή φθορές στους εξοπλισμούς μετρούνται βάσει τη μη-ελαστική παραμόρφωση. Η δυναμική των αστοχιών ενός σεισμού εξαρτάται από:

- τη χρονική διάρκεια της κίνησης,
- την ικανότητα απορρόφησης ενέργειας του κτιρίου ή του εξοπλισμού,
- τον αριθμό των κύκλων καταπόνησης και
- το ενεργειακό περιεχόμενο του σεισμού.

Ως εκ τούτου, οι παράμετροι που χρησιμοποιούν τον ορισμό τους τα προηγουμένως αναφερόμενα χαρακτηριστικά παρέχουν πιο αξιόπιστη πρόβλεψη όσον αφορά τις αστοχίες που προκαλούνται από σεισμούς.

Αυτές οι παράμετροι είναι:
- μέγιστη ταχύτητα εδάφους (PGV),
- ένταση Arias (I_a),
- a_{rms},
- χαρακτηριστική ένταση (I_c),
- δείκτης Faifar (I_f),
- φασματική ένταση Housner (S_I),
- φάσμα επιτάχυνσης-απόκρισης (S_a),
- ελαστική ενέργεια εισόδου (E_s),
- αθροιστική απόλυτη ταχύτητα (CAV),
- αθροιστική απόλυτη τιμή ενοποιημένη με μια τιμή βάσης 5 cm/sec^2 (CAV_5).
Η χρησιμότητα αυτών των μηχανικών παραμέτρων της κίνησης εξαρτάται κυρίως από το
σκοπό για τον οποίο θα χρησιμοποιηθούν. Μερικές από αυτές συσχετίζονται καλά με αρκετές
κοινόχρησμα μετρήσεις δομικής απόδοσης, ρευστοποιήσεις, σεισμικής ευστάθειας πραγματοποίησης κλπ. Για παράδειγμα, για λόγους σεισμικής αντίστασης, η πιο σημαντική
αναπαράσταση σεισμικής εδαφικής κίνησης είναι το φάσμα επιτάχυνσης-απόκρισης, καθώς η
επιτάχυνση στη φυσική περίοδο της κατασκευής μπορεί να πολλαπλασιαστεί με τη μάζα του
κτίσματος για να υπολογιστεί η πλευρική οριζόντια πίεση που ασκείται στο κτίσμα.

Ένα κύριο μειονέκτημα των σύγχρονων πρακτικών αντισεισμικών σχεδιασμών, που
βασίζονται σε δυναμικές αρχές (χρησιμοποιώντας το φάσμα επιτάχυνσης), είναι ότι δεν
λαμβάνει ύψος την επιρροή της διάρκειας της κίνησης ή την υστερητική συμπεριφορά
tης κατασκευής. Από την άλλη, μια σχεδιαστική προσέγγιση βασισμένη στην αρχική ενέργεια
έχει τη δυνατότητα να αντιμετωπίσει ύψος τις επιπτώσεις της διάρκειας της κίνησης και της
υστερητικής συμπεριφοράς.[πηγή: μεταφραση από Engineering Ground-Motion Parameters
Attenuation Relationships for Greece by Laurentiu Danciu and G-Aakis Tselentis]

Οι μέγιστες τιμές που υπολογίστηκαν στα προηγούμενα κεφάλαια χρησιμοποιήθηκαν για
τον έλεγχο αξιοπιστίας της σχέσης απόδοσης των Danciu and Tselentis,2007 (DA). Ο έλεγχος
έγινε με τη χρήση της γλώσσας προγραμματισμού Matlab. Τα αποτελέσματα που προέκυψαν
από την εφαρμογή της σχέσης απόδοσης στις θέσεις των τεσσάρων σταθμών, χρησιμοποιώντας το μέγεθος του σεισμού, το μηχανισμό γένεσης, την επικεντρική απόσταση
και τις τοπικές εδαφικές συνθήκες, παρουσιάζονται στον Πίνακα 11.

<table>
<thead>
<tr>
<th>ΣΤΑΘΜΟΙ</th>
<th>PGA (g)</th>
<th>PGA_SIGMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEF2</td>
<td>0,1872</td>
<td>0,3659</td>
</tr>
<tr>
<td>VAS2</td>
<td>0,3412</td>
<td>0,6668</td>
</tr>
<tr>
<td>PRE2</td>
<td>0,1030</td>
<td>0,2012</td>
</tr>
<tr>
<td>ICT1</td>
<td>0,0992</td>
<td>0,1940</td>
</tr>
</tbody>
</table>

Πίνακας 11: Πίνακας απεικόνισης της προβλεπόμενης μέγιστης εδαφικής επιτάχυνσης σε κάθε
σταθμό από τη σχέση DA, τιμές σε g

Από τον παραπάνω πίνακα παρατηρείται ότι η τιμή της μέγιστης εδαφικής επιτάχυνσης
dιαφέρει από σταθμό σε σταθμό που είναι απόλυτα φυσιολογικό αφού διαφοροποιείται η
απόσταση μεταξύ των σταθμών και του επικέντρου. Ο σταθμός που είναι τοποθετημένος στη
Βασιλική έχει τη μεγαλύτερη τιμή της εδαφικής επιτάχυνσης (0,3412 g) σε σχέση με τους υπόλοιπους σταθμούς λόγω του ότι είναι ο πιο κοντινός σταθμός (8 χιλιόμετρα) και λόγω των εδαφικών συνθηκών. Ο δεύτερος σταθμός που παρουσιάζει ιδιαίτερα υψηλή τιμή είναι ο σταθμός που βρίσκεται στην πόλη της Λευκάδας (κτήριο ΟΤΕ). Είναι ο δεύτερος πιο κοντινός σταθμός στο επίκεντρο του σεισμού (20 χιλιόμετρα), και η μέγιστη τιμή της εδαφικής επιτάχυνσης προέκυψε από το σταθμό της Πρεβέζας ο οποίος είναι τοποθετημένος στο κτήριο του ΟΤΕ. O συγκεκριμένος σταθμός απέχει 35 χιλιόμετρα από το επίκεντρο και η μέγιστη τιμή της εδαφικής επιτάχυνσης είναι 0.1030 g. Η τέταρτη και μικρότερη τιμή της εδαφικής επιτάχυνσης αφορά τον σταθμό στο νησί της Ιθάκης. Λόγω της μεγάλης απόστασης (31 χιλιόμετρα από το επίκεντρο) και σε συνδυασμό με το υπόβαθρο (βράχος-ασβεστόλιθος) που είναι θεμελιωμένος ο σταθμός, η ενέργεια των σεισμικών κυμάτων είναι ιδιαίτερα εξασθενημένη και αυτό έχει ως αποτέλεσμα να είναι ιδιαίτερα χαμηλή σε σχέση με τους άλλους σταθμούς. Η τιμή της εδαφικής επιτάχυνσης είναι 0.0992 g.

2.5.2 Σύγκριση αποτελεσμάτων με τη σχέση Danciu και Tselentης

Α) Σταθμός LEF2

Ο συγκεκριμένος σταθμός βρίσκεται στο κέντρο της Λευκάδας (κτήριο ΟΤΕ) και απέχει 20 χιλιόμετρα από το επίκεντρο. Οι αντίστοιχες μέγιστες τιμές των οριζόντιων συντομωσών της εδαφικής επιτάχυνσης για το σταθμό αυτό είναι: PGA_NS: 0.102 m/s², PGA_EW: 0.085 m/s². Για την απαιτούμενη σύγκριση των τιμών αυτών υπολογίστηκε ο μέσος όρος των δύο επιμέρους μέγιστων τιμών και στη συνέχεια το αποτέλεσμα μετατράπηκε σε μονάδες g. Το αποτέλεσμα ισούται με 0.096 g το οποίο εάν συγκρίθηκε με το αποτέλεσμα της σχέσης Danciu και Tselentη που ισούται με 0.1872 g, τότε καταλήγουμε στο συμπέρασμα ότι έχει απόκλιση 0.0912 g. Το σφάλμα είναι αποδεκτό αν λάβουμε υπόψιν την τυπική απόκλιση που ισούται με 0.36.
Β) Σταθμός VAS2

Ο δεύτερος σταθμός που είναι τοποθετημένος στο νησί της Λευκάδας. Βρίσκεται στη
περιοχή της Βασιλικής και απέχει μόνο 8 χιλιόμετρα από το επίκεντρο (Αγιος Πέτρος). Είναι
tοποθετημένος στο λιμάνι της Βασιλικής και ο (τύπος εδάφους που είναι θεμελιωμένος είναι
stiff soil).

Οι αντίστοιχες μέγιστες τιμές των οριζόντιων συνιστωσών της εδαφικής επιτάχυνσης
gια το σταθμό αυτό είναι: \(PGA_{NS} \): 0.363 m/s\(^2\) \(PGA_{EW} \): 0.326 m/s\(^2\). Για την απαιτούμενη
σύγκριση των τιμών αυτών υπολογίστηκε ο μέσος όρος των δύο επιμέρους μέγιστων τιμών και
στη συνέχεια το αποτέλεσμα μετατράπηκε σε μονάδες g. Το νέο αποτέλεσμα ισούται με
0.356 g το οποίο συγκρίνεται πολύ καλά, με το αποτέλεσμα της σχέσης DA το οποίο ισούται
με 0.3412g.

Γ) Σταθμός PRE2

Ο συγκεκριμένος σταθμός είναι τοποθετημένος στο κεντρικό κτήριο του ΟΤΕ στην
περιοχή της Πρέβεζας και απέχει 35 χιλιόμετρα από το επίκεντρο του σεισμού. Οπως είναι
λογικό οι τιμές των συνιστωσών της επιτάχυνσης είναι ιδιαίτερα χαμηλές σε σχέση με τις τιμές
tων υπόλοιπων σταθμών λόγω της αυξημένης απόστασης και συνεπώς εξασθένηση της
αντίστοιχης σεισμικής ενέργειας. Οι αντίστοιχες μέγιστες τιμές των οριζόντιων συνιστωσών
tης εδαφικής επιτάχυνσης για το σταθμό αυτό είναι: \(PGA_{NS} \): 0.049 m/s\(^2\) \(PGA_{EW} \): 0.035
m/s\(^2\). Για την απαιτούμενη σύγκριση των τιμών αυτών υπολογίστηκε ο μέσος όρος των δύο
eπιμέρους μέγιστων τιμών και στη συνέχεια το αποτέλεσμα μετατράπηκε σε μονάδες g. Το
νέο αποτέλεσμα ισούται με 0.043 g το οποίο εάν συγκρίθει με το αποτέλεσμα της σχέσης
Danciu και Tsolentη το οποίο ισούται με 0,1030g, καταλήγουμε στο συμπέρασμα ότι οι δύο
tιμές έχουν απόκλιση 0.06 g. Το σφάλμα είναι αποδεκτό αν λάβουμε υπόψη την τυπικά
απόκλιση που ισούται με 0.20.

Δ) Σταθμός ICT1

Ο σταθμός βρίσκεται στο νησί της Ιθάκης και απέχει 31 χιλιόμετρα από το επίκεντρο
tου σεισμού. Οι αντίστοιχες μέγιστες τιμές των οριζόντιων συνιστωσών της εδαφικής
eπιτάχυνσης για το σταθμό αυτό είναι: \(PGA_{NS} \): 0.117 m/s\(^2\) \(PGA_{EW} \): 0.078 m/s\(^2\). Για την
απαιτούμενη σύγκριση των τιμών αυτών υπολογίστηκε ο μέσος όρος των δύο επιμέρους
μέγιστων τιμών και στη συνέχεια το αποτέλεσμα μετατράπηκε σε μονάδες g. Το νέο
αποτέλεσμα ισούται με 0.0999 g το οποίο συγκρίνεται πολύ καλά, με το αποτέλεσμα της
σχέσης DA, το οποίο ισούται με 0.0992g.
3.5.3 Σύγκριση Φασμάτων Απόκρισης με τον Ελληνικό Αντισεισμικό Κανονισμό

➤ Σταθμός ΒΑΣΙΛΙΚΗΣ (VAS2)

Στην Εικ.49 απεικονίζεται το φάσμα απόκρισης επιτάχυνσης των δύο οριζόντιων συνιστώσων της καταγραφής VAS2, που είναι τοποθετημένος στο λιμάνι της Βασιλικής. Η μπλε καμπύλη αντιπροσωπεύει την οριζόντια συνιστώσα με διεύθυνση Βορρά-Νότο και η κόκκινη την οριζόντια συνιστώσα με διεύθυνση Ανατολή-Δύση. Η μαύρη καμπύλη αντιπροσωπεύει την καμπύλη που προτείνεται από τον Νέο Ελληνικό Αντισεισμικό Κανονισμό με τον οποίο θέλουμε να συγκρίνουμε τις δύο καμπύλες. Από το διάγραμμα παρατηρούμε ότι για τον σταθμό της Βασιλικής οι καμπύλες των δύο συνιστώσων ξεπερνάνε την καμπύλη του αντισεισμικού κανονισμού στις χαμηλές περιόδους και στην περίοδο ~2sec για τη συνιστώσα Βορράς-Νότος. Αυτό οφείλεται στο ότι ο σταθμός είναι α) πολύ κοντά στο επίκεντρο και β) το έδαφος που είναι θεμελιωμένος ο σταθμός είναι μαλακό με αποτέλεσμα να ενισχύονται όλες οι τιμές των εδαφικών παραμέτρων και ιδιαίτερα σε μεγαλύτερες περιόδους. Αυτό είχε σαν αποτέλεσμα να δημιουργηθούν φαινόμενα ρευστοποίησης στο κεντρικό λιμάνι της Βασιλικής καθώς επίσης και καταπτώσεις βράχων από μικρού μεγέθους πραγματοποιείται σε κατοικημένη περιοχή.

Εικόνα 49: Διάγραμμα Φάσματος Απόκρισης για τον σταθμό της Βασιλικής (VAS2). Η μαύρη γκραμμή αντιπροσωπεύει τον Ελληνικό Αντισεισμικό Κανονισμό. Ο άξονας X αναφέρεται στην χρονική περίοδο s του σεισμού, ενώ στον άξονα του Ψ είναι την επιτάχυνση του φάσματος απόκρισης.
Σταθμός ΛΕΥΚΑΔΑΣ (LEF2)

Στην Εικ.50 απεικονίζεται το φάσμα απόκρισης επιτάχυνσης των δύο οριζόντων συνιστωσών της καταγραφής για το σταθμό στο κέντρο της πόλης της Λευκάδας (κτήριο ΟΤΕ). Καμία από τις παραπάνω δύο καμπύλες δεν ξεπερνάει την καμπύλη του Ελληνικού Αντισεισμικού Κανονισμού. Το αποτέλεσμα αυτό έρχεται σε συμφωνία με τα αντίστοιχα αποτελέσματα του σεισμικού γεγονότος. Πιο συγκεκριμένα ο σεισμός αυτός δεν επηρέασε σημαντικά το κέντρο της πόλης της Λευκάδας και αυτό επιβεβαιώνεται με το παρακάτω διάγραμμα. Σε αντίθεση με την περιοχή της Βασιλικής όπου προέκυψαν αστοχίες τόσο σε δρόμους και πρανή όσο και φαινόμενα ρευστοποίησης στο λιμάνι.

Εικόνα 50: Διάγραμμα Φάσματος Απόκρισης για τον σταθμό της Λευκάδας (LEF2). Η μαύρη γραμμή αντιπροσωπεύει τον Ελληνικό Αντισεισμικό Κανονισμό. Ο άξονας Χ αφορά την χρονική περίοδο σ του σεισμού, ενώ στον άξονα τον Ψ έχουμε την επιτάχυνση του φάσματος απόκρισης.
Σταθμός ΠΡΕΒΕΖΑΣ (PRE2)

Ο σταθμός βρίσκεται 35 χιλιόμετρα από το επίκεντρο του σεισμού. Βρίσκεται στην πόλη της Πρέβεζας και είναι τοποθετημένος στο κεντρικό κτήριο του ΟΤΕ. Λόγω της μεγάλης απόστασης μεταξύ του σταθμού και του επικέντρου, οι καμπύλες των οριζόντιων φασματικών συνιστωσών απόκρισης θα έχουν τιμές αρκετά χαμηλές σε σχέση με τους δύο προηγούμενους σταθμούς. Παρατηρείται από το διάγραμμα (Εικ. 51) ότι καμία καμπύλη δεν ξεπερνάει την καμπύλη του Ελληνικού Αντισεισμικού Κανονισμού. Αυτό έχει σαν αποτέλεσμα ότι δεν σημειώθηκαν εκτεταμένες ζημιές στην περιοχή της Πρέβεζας ούτε αστοχίες στο οδικό δίκτυο αλλά ούτε και σε πραγματικότητα.

Εικόνα 51: Διάγραμμα Φάσματος Απόκρισης για τον σταθμό της Πρέβεζας (PRE2).Η μαύρη γραμμή αντιπροσωπεύει τον Ελληνικό Αντισεισμικό Κανονισμό. Ο άξονας X αφορά την χρονική περίοδο s του σεισμού, ενώ στον άξονα τον Ψ έχουμε την επιτάχυνση του φάσματος απόκρισης.
Ο συγκεκριμένος σταθμός βρίσκεται στο νησί της Ιθάκης. Απέχει 31 χιλιόμετρα από το επίκεντρο του σεισμικού γεγονότος. Η γεωλογία του υποβάθρου που είναι θεμελιωμένος ο σταθμός είναι ασβεστολιθικής σύστασης. Καμία καμπύλη των οριζόντιων φασματικών συνιστώσων απόκρισης δεν ξεπερνάει την καμπύλη του Ελληνικού Αντισεισμικού Κανονισμού (Εικ.52), πράγμα που σημαίνει ότι δεν σημειώθηκαν σημαντικές ζημιές και αστοχίες σε πρανή και κτίρια.

Εικόνα 52: Διάγραμμα Φάσματος Απόκρισης για τον σταθμό της Ιθάκης (ICT1). Η μαύρη γραμμή αντιπροσωπεύει τον Ελληνικό Αντισεισμικό Κανονισμό. Ο άξονας X αφορά την χρονική περίοδο s του σεισμού, ενώ στον άξονα τον Ψ έχουμε την επιτάχυνση του φάσματος απόκρισης.
5. ΣΥΜΠΕΡΑΣΜΑΤΑ

Το πρώτο μέρος της παρούσας διατριβής αφορούσε τις τεχνικογεωλογικές συνθήκες στη νήσο Λευκάδα. Οπως προέκυψε από την τεχνικογεωλογική χαρτογράφηση αλλά και τις εργαστηριακές δοκιμές που έγιναν, το δυτικό τμήμα του νησιού αποτελείται στο βόρειο τμήμα του κυρίως από ασβεστόλιθους της Ιόνιας Ζώνης (παλιότεροι σχηματισμοί). Το νοτιοδυτικό τμήμα του νησιού αποτελείται από Παλαιοκαινική ασβεστολιθική βραχώμαξα της Ζώνης Παξών (νεότεροι σχηματισμοί). Η ποιότητα της βραχώμαξας στο δυτικό τμήμα του νησιού, είναι μέτρια και από πλευράς αντοχής και από πλευράς σκληρότητας.

Οι ασβεστόλιθοι της Ιόνιας Ζώνης αν και έχουν μεγάλο πλήθος ασυνεχών και μικροπομονών, παρουσιάζουν μεγαλύτερη σκληρότητα και αντοχή από τους ασβεστόλιθους της Ζώνης Παξών. Βρίσκονται πιο κάτω στροματογραφικά και δεν είναι τόσο εκτεθειμένα στις εξωγενείς διεργασίες. Αντίθετα οι Παλαιοκαινικοί ασβεστόλιθοι της Ζώνης Παξών βρίσκονται πιο πάνω στροματογραφικά και είναι πιο άμεσα εκτεθειμένοι. Αυτό έχει σαν αποτέλεσμα η βραχώμαξα να είναι μηχανικά πιο φτωχή και πιο επιρρεπής σε θραύση.

Επιπλέον, εκτός από τις αστοχίες των πραγμάτων, αστόχησαν και τα περισσότερα μέτρα προστασίας. Πιο συγκεκριμένα, καταστράφηκαν τα μεταλλικά δίχτυα τύπου Geobrugg και κάποιοι τοίχοι αντιστήριξης. Αντιθέτως, οι τοίχοι από συρματοκυβιώτα δεν αστόχησαν.

Στη συνέχεια της μελέτης συλλέχθηκαν ηφαιστικά δεδομένα από τους 4 σταθμούς που έχει τοποθετήσει το Ινστιτούτο Τεχνικής Σεισμολογίας και Αντισεισμικών Κατασκευών στην περιοχή, πιο συγκεκριμένα:

- Στην πόλη της Λευκάδας, στο κεντρικό κτήριο του ΟΤΕ
- Στο λιμάνι της Βασιλικής
- Στην πόλη της Πρέβεζας
- Στο νησί της Ιθάκης

Με τη χρήση της γλώσσας προγραμματισμού Matlab υπολογίστηκαν οι μέγιστες τιμές της εδαφικής επιτάχυνσης (PGA) και κατασκευάστηκαν τα διαγράμματα των φαινόμενων επιτάχυνσεων. Μεταξύ των 4 σταθμών μεγαλύτερες τιμές μέγιστης εδαφικής επιτάχυνσης, έντασης Arias και μέγιστης φαινόμενης επιτάχυνσης του εδάφους, είχε ο σταθμός στο λιμάνι της Βασιλικής. Αυτό προκύπτει από το ότι ο σταθμός απέχει μόνο 8 χιλιόμετρα από το επίκεντρο του σεισμικού γεγονότος. Είναι επομένως απόλυτα λογικό να είναι αυξημένες οι τιμές των παραμέτρων λόγω της μικρής επικεντρικής απόστασης, σημαντικό ρόλο όμως ίσως έπαιξαν και οι τοπικές εδαφικές συνθήκες στη Βασιλική.
Στη συνέχεια με τη γλώσσα προγραμματισμού Matlab συγκρίθηκαν τα φάσματα απόκρισης με τα προτεινόμενα από τον Ελληνικό Αντισεισμικό Κανονισμό και προέκυψε ότι κανένας από τους 3 σταθμούς δεν ξεπερνάει την καμπύλη του Ελληνικού κανονισμού άρα εκτεταμένες ζημιές σε Πρέβεζα και Ιθάκη και στην πόλη της Λευκάδας δεν προκύπτουν. Στο σταθμό της Βασιλικής ο δύο συνιστώσες της επιτάχυνσης ξεπερνάνε την καμπύλη του Ελληνικού Αντισεισμικού Κανονισμού, με αποτέλεσμα να έχουμε εκτεταμένες ζημιές όπως, ρευστοποίηση στο λιμάνι και καθίζηση, και κάποιες καταπτώσεις σε απότομα πραγμή στο νότιο τμήμα του νησιού.

Τέλος, οι περισσότερες αστοχίες έλαβαν χώρα στο δυτικό τμήμα του νησιού, πολύ κοντά στο επίκεντρο. Το κομμάτι του ρήγματος που έδρασε, δεν είχε δράσει για αρκετό καιρό. Η σεισμική ολίσθηση διαδόθηκε προς τα νοτιοανατολικά στη διάρκεια του σεισμικού γεγονότος. Ο σεισμός του 2015 έπληξε τη νησίδα τρόπο. Ο σεισμός του 2003 παράκαμψε το μεσαίο τμήμα του ρήγματος, αφήνοντάς το αδιάρρηκτο. Χρειάστηκαν 12 χρόνια για να φτάσει αυτό το τμήμα σε διάρρηξη, με το σεισμό του 2015, και έτσι να αντισταθμιστεί το έλλειμα ολίσθησης στη περιοχή του ρήγματος.

Τα αποτελέσματα του σεισμού ήταν εκτεταμένες καταλυθήσεις και καταπτώσεις στην επαρχιακή οδό Τσουκαλάδες-Αγιος Νικήτας, στην παραλία του χωριού Καλαμίτσι, στην παραλία των Εγγρεμίων όπου κόπηκε τελείως η πρόσβαση, Ρωγμές σε επαρχιακό δίκτυο (καταστροφή δρόμου για την παραλία Γυαλός, ρωγμές σε όλο το μήκος του δρόμου για την παραλία Κάθισμα, ζημιές σε οικισμούς στο χωριό Αθάν, Δράγανο, Κομηλιό, Αγίος Πέτρος, Βασιλική.
ΠΑΡΑΡΤΗΜΑ

5.1 ΕΝΤΥΠΑ ΔΟΚΙΜΩΝ
Δοκιμή Βραχώδους Δοκιμίου (POINT LOAD INDEX)(ακανόνιστα δείγματα).
Αποτελέσματα Δοκιμής

Προσδιορισμού του Δείκτη Σημειακής Φορτισής

Βραχώδους Δοκιμίου (POINT LOAD INDEX)

ΒΡΑΧ. E 103 - 84 (5), I.S.R.M. 1985

<table>
<thead>
<tr>
<th>ΟΝΟΜΑ:</th>
<th>Σάντα Νικολέτα</th>
<th>ΑΜ</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δείγματος

Γεώτρηση Δείγμα: N1

<table>
<thead>
<tr>
<th>Τύπος Δοκιμής</th>
<th>(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αποστάση Ακμών (D)</td>
<td>60,00 mm</td>
</tr>
<tr>
<td>Χαρακτηριστική Διάσταση (W)</td>
<td>102,50 mm</td>
</tr>
<tr>
<td>Συστονύμη Διάσταση (D_e)</td>
<td>88,51 mm</td>
</tr>
<tr>
<td>Φορτιό Θραυσής (P)</td>
<td>14,50 kN</td>
</tr>
<tr>
<td>Δείκτης (I_s = P/D_e^2)</td>
<td>1,85 MPa</td>
</tr>
<tr>
<td>Συντελεστής Διορθώσης (F = (D_e/50)^{0.45})</td>
<td>1,2930</td>
</tr>
<tr>
<td>Ανηγμένος Δείκτης (I_{s(50)} = I_s \times F)</td>
<td>2,39 MPa</td>
</tr>
</tbody>
</table>

Τύποι Δοκιμών:

(a) Άξονική δοκιμή σε πυρήνα
(b) Δοκιμή σε κυβικό δείγμα
(d) Διαμετρική δοκιμή σε πυρήνα
(l) Δοκιμή σε δείγμα ακανονιστού σχήματος

Χαρακτηρισμός Αντοχής:

Bieniawski (1974)

Μέσης αντοχής

Περιγραφή δείγματος:
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ

Βραχώδους Δοκιμίου (POINT LOAD INDEX)

BPAX. E 103 - 84 (5), I.S.R.M. 1985

<table>
<thead>
<tr>
<th>ΟΝΟΜΑ:</th>
<th>Σάντα Νικολέτα</th>
<th>ΑΜ</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δείγματος

<table>
<thead>
<tr>
<th>Γεώτρηση Δείγμα:</th>
<th>Π1</th>
</tr>
</thead>
</table>

ΤΥΠΟΣ ΔΟΚΙΜΗΣ

<table>
<thead>
<tr>
<th>ΑΠΟΣΤΑΣΗ ΑΚΜΩΝ</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΔΙΑΣΤΑΣΗ</td>
<td>W</td>
</tr>
<tr>
<td>ΣΟΔΥΝΑΜΗ ΔΙΑΣΤΑΣΗ</td>
<td>De</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΘΡΑΥΣΗΣ</td>
<td>P</td>
</tr>
<tr>
<td>ΔΕΙΚΤΗΣ</td>
<td>(i_s = P/De^2)</td>
</tr>
<tr>
<td>ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΟΡΘΩΣΗΣ</td>
<td>(F = (De/50)^{0.45})</td>
</tr>
<tr>
<td>ΑΝΗΓΜΕΝΟΣ ΔΕΙΚΤΗΣ</td>
<td>(I_s(50) = I_s \times F)</td>
</tr>
</tbody>
</table>

| \(i \) | 98,00 mm |
| 91,00 mm |
| 106,59 mm |
| 22,00 kN |
| 1,94 MPa |
| 1,4058 |
| 2,72 MPa |

Τύποι Δοκιμών:

(a) Αξονική δοκιμή σε πυρήνα
(b) Δοκιμή σε κυβικό δείγμα
(c) Διαμετρική δοκιμή σε πυρήνα
(l) Δοκιμή σε δείγμα ακανόνιστου σχήματος

Χαρακτηρισμός Αντοχής

BIENIAWSKI (1974)

Μέσης αντοχής

Περιγραφή δείγματος:
Αποτελέσματα Δοκιμής

Προσδιορισμού Του Δείκτη Σημειακής Φορτίσης

Βραχώδους Δοκιμά στο (Point Load Index)

BRAH. E 103 - 84 (5), I.S.R.M. 1985

<table>
<thead>
<tr>
<th>ΟΝΟΜΑ:</th>
<th>Σάντα Νικολέτα</th>
<th>AM</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δείγματος

<table>
<thead>
<tr>
<th>Γεώτρηση Δείγμα :</th>
<th>Π2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Τύπος Δοκιμής</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Απόσταση Ακμών</td>
<td>D = 56,00 mm</td>
</tr>
<tr>
<td>Χαρακτηριστική Διαστάση</td>
<td>W = 100,00 mm</td>
</tr>
<tr>
<td>Ισοδύναμη Διαστάση</td>
<td>De = 84,46 mm</td>
</tr>
<tr>
<td>Φορτίο Θραύσης</td>
<td>P = 16,00 kN</td>
</tr>
</tbody>
</table>

Δείκτης

\[
I_s = \frac{P}{De^2}
\]

Συντελεστής Διορθώσεως

\[
F = (De/50)^{0.45}
\]

Ανήγμενος Δείκτης

\[
I_{s(50)} = I_s \times F
\]

Τύποι Δοκιμών:

(a) Αξονική δοκιμή σε πυρήνα
(b) Δοκιμή σε κυβικό δείγμα
(d) Διαμετρική δοκιμή σε πυρήνα
(i) Δοκιμή σε δείγμα ακανονιστού σχήματος

Χαρακτηρισμός Αντοχής

Biemiański (1974)

Μέσης Αντοχής

Περιγραφή δείγματος:

...
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ
ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ
ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ
Βραχώδους Δοκιμίου (POINT LOAD INDEX)
ΒΠΑΧ. E 103 - 84 (5), I.S.R.M. 1985

<table>
<thead>
<tr>
<th>ΟΝΟΜΑ:</th>
<th>Σάντα Νικολέτα</th>
<th>ΑΜ</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δείγματος

<table>
<thead>
<tr>
<th>Γεώτρηση Δείγμα</th>
<th>Π3</th>
</tr>
</thead>
</table>

ΤΥΠΟΣ ΔΟΚΙΜΗΣ

<table>
<thead>
<tr>
<th>ΑΠΟΣΤΑΣΗ ΑΚΜΩΝ D</th>
<th>44,00 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΔΙΑΣΤΑΣΗ W</td>
<td>120,00 mm</td>
</tr>
<tr>
<td>ΣΩΜΑΤΙΚΗ ΔΙΑΣΤΑΣΗ De</td>
<td>82,01 mm</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΘΡΑΥΣΗΣ P</td>
<td>15,00 kN</td>
</tr>
<tr>
<td>ΔΕΙΚΤΗΣ I_s = P/De²</td>
<td>2,23 MPa</td>
</tr>
<tr>
<td>ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΟΡΘΩΣΗΣ F = (De/50)⁰⁴⁵</td>
<td>1,2494</td>
</tr>
<tr>
<td>ΑΝΗΓΜΕΝΟΣ ΔΕΙΚΤΗΣ I_s(50) = I_s X F</td>
<td>2,79 MPa</td>
</tr>
</tbody>
</table>

Τύποι Δοκιμών:
(a) Αξονική δοκιμή σε πυρήνα
(b) Δοκιμή σε κυβικό δείγμα
(d) Διαμετρική δοκιμή σε πυρήνα
(i) Δοκιμή σε δείγμα ακανόνιστου σχήματος

Χαρακτηρισμός Αντοχής
BIENIAWSKI (1974)

Μέσης αντοχής

Περιγραφή δείγματος:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ
ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ
ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ.

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ
Βραχώδους Δοκιμίου (POINT LOAD INDEX)
ΒΡΑΧ. E 103 - 84 (5), I.S.R.M. 1985

<table>
<thead>
<tr>
<th>ΟΝΟΜΑ:</th>
<th>Σάντα Νικολέτα</th>
<th>ΑΜ</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δείγματος

Γεώτρηση Δείγμα: Π4

<table>
<thead>
<tr>
<th>ΤΥΠΟΣ ΔΟΚΙΜΗΣ</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΑΠΟΣΤΑΣΗ ΑΚΜΩΝ</td>
<td>D</td>
</tr>
<tr>
<td>ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΔΙΑΣΤΑΣΗ</td>
<td>W</td>
</tr>
<tr>
<td>ΙΣΟΔΥΝΑΜΗ ΔΙΑΣΤΑΣΗ</td>
<td>De</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΘΡΑΥΣΗΣ</td>
<td>P</td>
</tr>
<tr>
<td>ΔΕΙΚΤΗΣ</td>
<td>$I_p = P/De^2$</td>
</tr>
<tr>
<td>ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΟΡΘΩΣΗΣ</td>
<td>$F = (De/50)^{0.45}$</td>
</tr>
<tr>
<td>ΑΝΗΓΜΕΝΟΣ ΔΕΙΚΤΗΣ</td>
<td>$I_{p(50)} = I_p \times F$</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60,00</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>111,00</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>92,11</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>14,00</td>
<td>kN</td>
</tr>
<tr>
<td></td>
<td>1,65</td>
<td>MPa</td>
</tr>
<tr>
<td></td>
<td>1,3164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,17</td>
<td>MPa</td>
</tr>
</tbody>
</table>

Τύποι Δοκιμών:
(a) Αξονική δοκιμή σε πυρήνα
(b) Δοκιμή σε κυβικό δείγμα
(d) Διαμετρική δοκιμή σε πυρήνα
(i) Δοκιμή σε δείγμα ακανόνιστου σχήματος

Χαρακτηρισμός Αντοχής
BIENIAWSKI (1974)

Μέσης αντοχής

Μεταγραφή δείγματος:
Αποτελέσματα Δοκήμησης
Προσδιορισμού του Δείκτη Σχμειακής Φορτίσης

Βραχώδους Δοκιμίου (POINT LOAD INDEX)

ΒΡΑΧ. Ε 103 - 84 (5), I.S.R.M. 1985

Στοιχεία Δείγματος

<table>
<thead>
<tr>
<th>ΟΝΟΜΑ:</th>
<th>Σάντα Νικολέτα</th>
<th>ΑΜ</th>
<th>1030807</th>
</tr>
</thead>
</table>

Γεωτρηση Δείγμα: Ν5

<table>
<thead>
<tr>
<th>Τύπος Δοκήμησης</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Απόσταση Ακμών D</td>
<td>74,50 mm</td>
</tr>
<tr>
<td>Χαρακτηριστική Διαστάση W</td>
<td>111,00 mm</td>
</tr>
<tr>
<td>Συστοκύμα Διαστάση De</td>
<td>102,64 mm</td>
</tr>
<tr>
<td>Φορτιο Θορυβής P</td>
<td>17,00 kN</td>
</tr>
<tr>
<td>Δείκτης (I_s = \frac{P}{De^2})</td>
<td>1,61 MPa</td>
</tr>
<tr>
<td>Συντελεστής Διορθώσης (F = (De/50)^{0.45})</td>
<td>1,3821</td>
</tr>
<tr>
<td>Ανηγμένος Δείκτης (I_{s(50)} = I_s \times F)</td>
<td>2,23 MPa</td>
</tr>
</tbody>
</table>

Τύποι Δοκιμών:
1. Αξονική δοκίμη σε πυρήνα
2. Δοκίμη σε κυβικό δείγμα
3. Διαμετρική δοκίμη σε πυρήνα
4. Δοκίμη σε δείγμα ακανονιστού σχήματος

Χαρακτηρισμός Αντοχής

BIENIAWSKI (1974)

Μέσης αντοχής κατά τη δοκίμη

Περιγραφή δείγματος:
Αποτελέσματα Δοκίμης

Προσδιορισμού του Δείκτη Σημειακής Φορτίσης

Βραχώδους Δοκιμίου (Point Load Index)

BPAKH. E 103 - 84 (5), I.S.R.M. 1985

Στοιχεία Δείγματος

<table>
<thead>
<tr>
<th>ΟΝΟΜΑ:</th>
<th>Σάντα Νικολέτα</th>
<th>ΑΜ</th>
<th>1030807</th>
</tr>
</thead>
</table>

Γεωτρηση Δείγμα : Π6

<table>
<thead>
<tr>
<th>Τύπος Δοκίμης</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διστάση Ακμών (D)</td>
<td>65,40 mm</td>
</tr>
<tr>
<td>Χαρακτηριστική Διστάση (W)</td>
<td>109,60 mm</td>
</tr>
<tr>
<td>Ισοδύναμη Διστάση (De)</td>
<td>95,56 mm</td>
</tr>
<tr>
<td>Φορτιο Θραύσης (P)</td>
<td>11,00 kN</td>
</tr>
<tr>
<td>Δείκτης (Iₘ = P/De²)</td>
<td>1,20 MPa</td>
</tr>
<tr>
<td>Συντελεστής Διορθώσης (F = (De/50)⁰.⁴₅)</td>
<td>1,3384</td>
</tr>
<tr>
<td>Ανήγγελος Δείκτης (Iₘ(50) = Iₘ X F)</td>
<td>1,61 MPa</td>
</tr>
</tbody>
</table>

Τύποι Δοκιμών:

(a) Αξονική δοκιμή σε πυρήνα
(b) Δοκιμή σε κυβικό δείγμα
(c) Διαμετρική δοκιμή σε πυρήνα
(i) Δοκιμή σε δείγμα ακανόνιστου σχήματος

Χαρακτηριστικός Αντοχής

Bieniawski (1974)

Χαμηλής αντοχής

Περιγραφή δείγματος:

103
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ
Βραχώδους Δοκιμίου (POINT LOAD INDEX)

BRAX. E 103 - 84 (5), I.S.R.M. 1985

<table>
<thead>
<tr>
<th>ΟΝΟΜΑ:</th>
<th>Σάντα Νικολέτα</th>
<th>ΑΜ</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δείγματος

Γεώτρηση Δείγμα: P1

<table>
<thead>
<tr>
<th>ΤΥΠΟΣ ΔΟΚΙΜΗΣ</th>
<th>i</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΑΠΟΣΤΑΣΗ ΑΚΜΩΝ</td>
<td>D</td>
<td>77,70 mm</td>
</tr>
<tr>
<td>ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΔΙΑΣΤΑΣΗ</td>
<td>W</td>
<td>104,50 mm</td>
</tr>
<tr>
<td>ΙΣΟΔΥΝΑΜΗ ΔΙΑΣΤΑΣΗ De</td>
<td></td>
<td>101,70 mm</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΘΡΑΥΣΗΣ</td>
<td>P</td>
<td>25,00 kN</td>
</tr>
<tr>
<td>ΔΕΙΚΤΗΣ</td>
<td>Iₙ = P/De²</td>
<td>2,42 MPa</td>
</tr>
<tr>
<td>ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΟΡΘΩΣΗΣ</td>
<td>F = (De/50)²⁰.⁴⁵</td>
<td>1,3765</td>
</tr>
<tr>
<td>ΑΝΗΓΜΕΝΟΣ ΔΕΙΚΤΗΣ</td>
<td>Iₙ(50) = Iₙ X F</td>
<td>3,33 MPa</td>
</tr>
</tbody>
</table>

Τύποι Δοκιμίων:
(a) Αξονική δοκιμή σε πυρήνα
(b) Δοκιμή σε κυβικό δείγμα
(c) Διαμετρική δοκιμή σε πυρήνα
(d) Δοκιμή σε δείγμα ακανόνιστου σχήματος

Χαρακτηρισμός Αντοχής
BIENIAWSKI (1974)

Μέσης αντοχής

Περιγραφή δείγματος:
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΔΕΙΚΤΗ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ

Βραχώδους Δοκιμίου (POINT LOAD INDEX)

BRAH. E 103 - 84 (5), I.S.R.M. 1985

<table>
<thead>
<tr>
<th>ΟΝΟΜΑ:</th>
<th>Σάντα Νικολέτα</th>
<th>AM</th>
<th>1030807</th>
</tr>
</thead>
</table>

ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ

Γεώτρηση Δείγμα :

| P2 |

<table>
<thead>
<tr>
<th>ΤΥΠΟΣ ΔΟΚΙΜΗΣ</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΑΠΟΣΤΑΣΗ ΑΚΜΩΝ D</td>
<td>79,60 mm</td>
</tr>
<tr>
<td>ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΔΙΑΣΤΑΣΗ W</td>
<td>105,30 mm</td>
</tr>
<tr>
<td>ΙΣΟΔΥΝΑΜΗ ΔΙΑΣΤΑΣΗ De</td>
<td>103,33 mm</td>
</tr>
<tr>
<td>ΦΟΡΤΙΟ ΘΡΑΥΣΗΣ P</td>
<td>21,00 kN</td>
</tr>
<tr>
<td>ΔΕΙΚΤΗΣ I_s = P/De^2</td>
<td>1,97 MPa</td>
</tr>
<tr>
<td>ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΟΡΘΩΣΗΣ F = (De/50)^0.45</td>
<td>1,3863</td>
</tr>
<tr>
<td>ΑΝΗΓΜΕΝΟΣ ΔΕΙΚΤΗΣ I_s(50) = I_s X F</td>
<td>2,73 MPa</td>
</tr>
</tbody>
</table>

Τύποι Δοκιμών:

(a) Αξονική δοκιμή σε πυρήνα
(b) Δοκιμή σε κυβικό δείγμα
(c) Διαμετρική δοκιμή σε πυρήνα
(d) Δοκιμή σε δείγμα ακανόνιστου σχήματος

Χαρακτηρισμός Αντοχής BIENIAWSKI (1974)

Μέσης αντοχής

Περιγραφή δείγματος:
5.2 Έντυπα δοκιμών Προσδιορισμού του Πορώδους, της Πυκνότητας και του Λόγου Κενών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ
ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ
ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ
(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103 - 84(2) , I.S.R.M. 1981

Ονοματεπώνυμο Σάντα Νικολέτα Α.Μ. 1030807

Στοιχεία Δοκιμίου

Δείγμα : A1

<table>
<thead>
<tr>
<th>Υγιός Δοκιμίου, H</th>
<th>9,70 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>5,54 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Όγκος Δείγματος, Vt</td>
<td>0,000234 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, Msat</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, Ms</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Όγκος κενών, Vu = Msat - Ms / ρw</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Όγκος στερεών, Vg = Vt - Vu</td>
<td>0,0001242 m³</td>
</tr>
<tr>
<td>Πορώδες, n = Vu / Vt x 100</td>
<td>46,86 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, e = Vu / Vg</td>
<td>0,882</td>
</tr>
<tr>
<td>Σημείωση πυκνότητας, ρd = Ms / Vt</td>
<td>98,51 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, ρsat = (Ms + Vu + ρw) / Vt</td>
<td>103,20 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή :
Περαιτερότερες :

Τα kg μετατρέπονται σε kN με τη σχέση kN = kg x 9,807 / 1000
ρw = Πυκνότητα νερού = 1gr / cm³ = 10³ kg / m³
Αποτελέσματα Δοκιμής

Προσδιορισμού Του Πορώδους - Πυκνότητας Και Λογού Κενών Πετρωμάτως

(Με τη χρήση μικρομέτρου και συσκευής κενών)

ΒΡΑΧ. Ε 103 - 84(2) , I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμής

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>A2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ύψος Δοκιμίου, H</th>
<th>11,30 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>5,60 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Ογκος Δείγματος, V_t</td>
<td>0,000278 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, M_sat</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, M_w</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Ογκος κενών, V_u = M_sat / ρ_w</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Ογκος πετρών, V_s = V_t - V_u</td>
<td>0,0001687 m³</td>
</tr>
<tr>
<td>Πορώδες, n = V_u / V_t x 100</td>
<td>39,37 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, ε = V_u / V_s</td>
<td>0,649</td>
</tr>
<tr>
<td>Ξηρή πυκνότητα, ρ_o = M_w / V_t</td>
<td>82,76 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, ρ_sat = (M_sat - ρ_w) / V_t</td>
<td>86,70 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:

Παραπτηρήσεις:

Τα kg μετατρέπονται σε kN με τη σχέση kN = kg x 9,807 / 1000

ρ_w = Πυκνότητα νερού = 1 gr/cm³ = 10³ kg/m³
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ
ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ
ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ
(Με τη χρήση μικρομέτρου και συσκευής κενού)
ΒΡΑΧ. Ε 103 - 84(2) , I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>A3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υψος Δοκιμίου, H</th>
<th>10,61 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>7,90 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Ογκος Δείγματος, (V_t)</td>
<td>0,000520 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, (M_{sat})</td>
<td>gr = 0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, (M_s)</td>
<td>gr = 0,023034 kN</td>
</tr>
<tr>
<td>Ογκος κενών, (V_t = M_{sat} - M_s / \rho_w)</td>
<td>0,0001098 m³</td>
</tr>
<tr>
<td>Ογκος ατερεύων, (V_s = V_t - V_u)</td>
<td>0,0004105 m³</td>
</tr>
<tr>
<td>Ποριώδες, (n = V_u / V_t \times 100)</td>
<td>21,07 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, (\phi = V_u / V_s)</td>
<td>0,267</td>
</tr>
<tr>
<td>Επιβρ. τιμκότητα, (\rho_d = M_s / V_t)</td>
<td>44,29 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, (\rho_{sat} = (M_s + V_u \cdot \rho_w) / V_t)</td>
<td>46,40 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:
Παρατηρήσεις:

Τα kg μετατρέπονται σε kN με τη σχέση kN = kg x 9,807 / 1000
\(\rho_w \) = Πυκνότητα νερού = 1gr/cm³ = 10³ kg/m³
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ

(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103 - 84(2) , I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>A4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υψός Δοκιμίου, H</th>
<th>9,04 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>5,77 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Όγκος Δείγματος, V_t</td>
<td>0,000238 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, M_sat gr =</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, M_s gr =</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Όγκος κενών, V_u = M_sat - M_s / p_w</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Όγκος στερεών, V_s = V_t - V_u</td>
<td>0,0001288 m³</td>
</tr>
<tr>
<td>Πορώδες, n = V_u / V_t x 100</td>
<td>46,35 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, θ = V_u / V_s</td>
<td>0,864</td>
</tr>
<tr>
<td>Σημείωση πυκνότητα, p_d = M_s / V_t</td>
<td>97,44 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, p_sat = (M_s - V_u x p_w) / V_t</td>
<td>102,08 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:
Παρατηρήσεις:

Τα kg μετατρέπονται σε kN με τη σχέση kN = kg x 9,807 / 1000

ρ_w = Πυκνότητα νερού = 1gr / cm³ = 10³ kg / m³
Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα :</th>
<th>A5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υψος Δοκιμίου, (H)</th>
<th>10,07 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, (D)</td>
<td>6,38 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, (B)</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, (L)</td>
<td>cm</td>
</tr>
<tr>
<td>Όγκος Δείγματος, (V_t)</td>
<td>0,000322 m³</td>
</tr>
<tr>
<td>Μάζα κορισμένου δείγματος, (M_{sat}), gr</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, (M_s), gr</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Όγκος κενών, (V_u = M_{sat} - M_s / p_w)</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Όγκος στερεών, (V_s = V_t - V_u)</td>
<td>0,0002124 m³</td>
</tr>
<tr>
<td>Πορώδες, (n = V_u / V_t \times 100)</td>
<td>34,04 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, (e = V_u / V_s)</td>
<td>0,516</td>
</tr>
<tr>
<td>Ξηρή πυκνότητα, (\rho_d = M_s / V_t)</td>
<td>71,56 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, (\rho_{sat} = (M_s - V_u \cdot p_w) / V_t)</td>
<td>74,95 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:

| Τα kg μετατρέπονται σε kN με τη σχέση kN = kg x 9,807 / 1000 |
| \(p_w \) = Πυκνότητα νερού = 1 gr/cm³ = 10³ kg/m³ |
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ

(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103 - 84(2), I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικόλετα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίων

| Δείγμα : | A6 |

<table>
<thead>
<tr>
<th>Υψός Δοκιμίου, H</th>
<th>10,00 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>5,17 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Όγκος Δείγματος, (V_t)</td>
<td>0,000210 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, (M_{sat})</td>
<td>0.024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, (M_s)</td>
<td>0.023034 kN</td>
</tr>
<tr>
<td>Όγκος κενών, (V_u = M_{sat} - M_s / \rho_w)</td>
<td>0.0001096 m³</td>
</tr>
<tr>
<td>Όγκος στερεών, (V_s = V_t - V_u)</td>
<td>0.0001004 m³</td>
</tr>
<tr>
<td>Πορώδες, (n = V_u / V_t \times 100)</td>
<td>52.19 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, (e = V_u / V_s)</td>
<td>1.092</td>
</tr>
<tr>
<td>Ξηρή πυκνότητα, (\rho_d = M_s / V_t)</td>
<td>109,72 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, (\rho_{sat} = (M_s + V_u \times \rho_w) / V_t)</td>
<td>114,94 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή :

Παρατηρήσεις :

\[\text{Ta kg} \] μετατρέπονται σε \[kN \] με τη σχέση \[kN = kg \times 9.807 / 1000 \]

\[\rho_w = \text{Πυκνότητα νερού} = 1gr / cm^3 = 10^3 kg / m^3 \]
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ
ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ
ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ
(Με τη χρήση μικρομέτρου και συσκευής κενού)
ΒΡΑΧ. Ε 103 - 84(2), I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκίμου

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>K1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υψός Δοκίμου, (H)</th>
<th>14,10 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκίμου, (D)</td>
<td>7,68 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκίμου, (B)</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκίμου, (L)</td>
<td>cm</td>
</tr>
<tr>
<td>Ογκος Δείγματος, (V_t)</td>
<td>0,000653 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, (M_{sat})</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, (M_s)</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Ογκος κενών, (V_u = M_{sat} - M_s / \rho_w)</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Ογκος στερεών, (V_s = V_t - V_u)</td>
<td>0,0005436 m³</td>
</tr>
<tr>
<td>Πορώδεις, (n = V_u / V_t \times 100)</td>
<td>16,78 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, (e = V_u / V_s)</td>
<td>0,202</td>
</tr>
<tr>
<td>Επιρρόη πυκνότητα, (\rho_d = M_s / V_t)</td>
<td>35,26 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, (\rho_{sat} = (M_s + V_u \times \rho_w) / V_t)</td>
<td>36,94 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:
Παρατηρήσεις:

* Τα kg μετατρέπονται σε kN με τη σχέση kN = kg x 9,807 / 1000
* \(\rho_w \) = Πυκνότητα νερού = 1 gr/cm³ = 10³ kg/m³
ΔΕΙΓΜΑ :

<table>
<thead>
<tr>
<th>Υγρός Δοκιμίου, H</th>
<th>1,98 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>6,30 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Ογκος Δείγματος, V_t</td>
<td>0,000062 m3</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, M_{sat}</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, M_s</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Ογκος κενών, $V_u = M_{sat} : M_s / \rho_w$</td>
<td>0,0001096 m3</td>
</tr>
<tr>
<td>Ογκος στερεών, $V_s = V_t - V_u$</td>
<td>-0,0000478 m3</td>
</tr>
<tr>
<td>Πορώδες, $n = V_u / V_t \times 100$</td>
<td>177,53 %</td>
</tr>
<tr>
<td>Δόγος κενών, $e = V_u / V_s$</td>
<td>-2,290</td>
</tr>
<tr>
<td>Σημεία πυκνότητα, $\rho_d = M_s / V_t$</td>
<td>373,19 kN/m3</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, $\rho_{sat} = (M_s \times V_u \times \rho_w) / V_t$</td>
<td>390,94 kN/m3</td>
</tr>
</tbody>
</table>

ΠΕΡΙΓΡΑΦΗ:
Παρατηρήσεις:

Τα kg μετατρέπονται σε kN με τη σχέση $kN = kg \times 9,807 / 1000$

$\rho_w = \text{Πυκνότητα νερού} = 1gr / cm^3 = 10^3 kg / m^3$
Αποτελέσματα Δοκίμης

Προσδιορισμού Του Πορώδους - Πυκνοτήτας Και Λογού Κενών Πετρώματος

(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103 - 84(2), I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκίμιο

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>K3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Όψους Δοκίμιο, H</th>
<th>8,98 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκίμιο, D</td>
<td>5,69 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκίμιο, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκίμιο, L</td>
<td>cm</td>
</tr>
<tr>
<td>Ογκος Δείγματος, Vt</td>
<td>0,000228 m³</td>
</tr>
<tr>
<td>Μάζα κατεσμένου δείγματος, Msat</td>
<td>gr = 0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, Ms</td>
<td>gr = 0,023034 kN</td>
</tr>
<tr>
<td>Ογκος κενών, Vu = Msat - Ms / pw</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Ογκος στερεών, Vs = Vt - Vu</td>
<td>0,0001188 m³</td>
</tr>
<tr>
<td>Πορώδες, n = Vu / Vt x 100</td>
<td>47,98 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, e = Vu / Vs</td>
<td>0,923</td>
</tr>
<tr>
<td>Έρημη πυκνότητα, ρd = Ms / Vt</td>
<td>100,87 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, ρsat = (Ms - Msat - pw) / Vt</td>
<td>105,67 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:

Παρατηρήσεις:

Τα kg μετατρέπονται σε kN με τη σχέση kN = kg x 9,807 / 1000

ρw = Πυκνότητα νερού = 1gr / cm³ = 10³ kg / m³
Τα \text{kN} μετατρέπονται σε \text{kN} με τη σχέση \text{kN} = \text{kg} \times 9,807 / 1000

\rho_w = \text{Πυκνότητα νερού} = 1\text{gr/cm}^3 = 10^3 \text{kg/m}^3
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ

(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103 - 84(2), I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>A.M.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκίμιου

<table>
<thead>
<tr>
<th>Δείγμα :</th>
<th>K5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υψος Δοκιμίου, H</th>
<th>7,90 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>3,60 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Όγκος Δείγματος, (V_t)</td>
<td>0,000080 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, (M_{sat})</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, (M_s)</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Όγκος κενών, (V_u = M_{sat} - M_s / \rho_w)</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Όγκος στερεών, (V_s = V_t - V_u)</td>
<td>-0,0000292 m³</td>
</tr>
<tr>
<td>Πορώδεση, (n = V_u / V_t \times 100)</td>
<td>136,26 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, (\theta = V_u / V_s)</td>
<td>-3,758</td>
</tr>
<tr>
<td>Ξηρή πυκνότητα, (\rho_d = M_s / V_t)</td>
<td>286,45 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, (\rho_{sat} = (M_s - V_u \cdot \rho_w) / V_t)</td>
<td>300,07 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:

Παρατηρήσεις:

Τα \(\text{kg} \) μετατρέπονται σε \(\text{kN} \) με τη σχέση \(\text{kN} = \text{kg} \times 9,807 / 1000 \)

\(\rho_w = \text{Πυκνότητα νερού} = 1 \text{gr/cm}^3 = 10^3 \text{kg/m}^3 \)
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ
ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ
(Με τη χρήση μικρομέτρου και σωστευτής κενού)
ΒΡΑΧ. Ε 103-84(2), Ι.Σ.Ρ.Μ. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>K6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υψος Δοκιμίου, H</td>
<td>9,10 cm</td>
</tr>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>4,20 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Όγκος δείγματος, Vt</td>
<td>0,000126 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, Msat gr =</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, Ms gr =</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Όγκος κενών, Vu = Msat - Ms / pw</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Όγκος στερεών, Vs = Vt - Vu</td>
<td>0,0000165 m³</td>
</tr>
<tr>
<td>Παράδειξη, n = Vu / Vt x 100</td>
<td>86,91 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, e = Vu / Vs</td>
<td>6,639</td>
</tr>
<tr>
<td>Έρημη πυκνότητα, ρq = Ms / Vt</td>
<td>182,70 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, ρsat = (Ms + Vu x pw) / Vt</td>
<td>191,39 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:
Παρατηρήσεις:
Ta kg μετατρέπονται σε kN με τη σχέση kN = kg x 9,807 / 1000
ρw = Πυκνότητα νερού = 1 gr / cm³ = 10³ kg / m³
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ
(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103-84(2), I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>N1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υψός Δοκίμιο, (H)</th>
<th>12,50 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκίμιο, (D)</td>
<td>6,00 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκίμιο, (B)</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκίμιο, (L)</td>
<td>cm</td>
</tr>
<tr>
<td>Όγκος Δείγματος, (V_t)</td>
<td>0,000353 (m^3)</td>
</tr>
<tr>
<td>Μάζα καρεαμένου δείγματος, (M_{sat})</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, (M_s)</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Όγκος κενών, (V_u = M_{sat} - M_s / \rho_w)</td>
<td>0,0001096 (m^3)</td>
</tr>
<tr>
<td>Όγκος στερεών, (V_s = V_t - V_u)</td>
<td>0,0002439 (m^3)</td>
</tr>
<tr>
<td>Πορώδεις, (n = V_u / V_t \times 100)</td>
<td>31,00 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, (e = V_u / V_s)</td>
<td>0,449</td>
</tr>
<tr>
<td>Ξηρή πυκνότητα, (\rho_d = M_s / V_t)</td>
<td>65,17 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, (\rho_{sat} = (M_s + V_u \times \rho_w) / V_t)</td>
<td>68,27 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:

Παρατηρήσεις:

\(\text{Τα} \ kg \ \text{μετατρέπονται \ σε} \ kN \ \text{με \ τη \ σχέση} \ kN = \text{kg} \times 9,807 / 1000 \)

\(\rho_w = \text{Πυκνότητα νερού} = 1\text{gr} / \text{cm}^3 = 10^3 \text{kg} / \text{m}^3\)
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ
(Me τη χρήση μικρομέτρου και συσκευής κενού)
Vραχ. Ε 103 - 84(2), Ι.Σ.Ρ.Μ. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>Π1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υψος Δοκιμίου, H</th>
<th>10,90 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>9,80 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Ογκος Δείγματος, VT</td>
<td>0,000822 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, MSat</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, MS</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Ογκος κενών, VU = MSat - MS / ρW</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Ογκος στερεών, VS = VT - VU</td>
<td>0,0007126 m³</td>
</tr>
<tr>
<td>Πορώδες, n = VU / VS * 100</td>
<td>13,33 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, e = VU / VS</td>
<td>0,164</td>
</tr>
<tr>
<td>Σημείωση του μουντεία, pD = MS / VT</td>
<td>28,02 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, pSat = (MS - VU - pW) / VT</td>
<td>29,35 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:

<table>
<thead>
<tr>
<th>Παρατηρήσεις:</th>
</tr>
</thead>
</table>

Ta kg metarelptai se kN me ti schexi $kn = kg \times 9,807 / 1000$

$\rho_w = \text{Πυκνότητα νερού} = 1 gr / cm^3 = 10^3 kg / m^3$
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ

(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103 - 84(2) , I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα :</th>
<th>Π2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Όγκος Δοκιμίου, (H)</th>
<th>10,95 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, (D)</td>
<td>5,60 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, (B)</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, (L)</td>
<td>cm</td>
</tr>
<tr>
<td>Όγκος Δείγματος, (V_t)</td>
<td>0,000270 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, (M_{sat})</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, (M_s)</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Όγκος κενών, (V_u = M_{sat} - M_s / p_w)</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Όγκος στερεών, (V_s = V_t - V_u)</td>
<td>0,0001601 m³</td>
</tr>
<tr>
<td>Πορώδες, (n = V_u / V_t \times 100)</td>
<td>40,63 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, (e = V_u / V_s)</td>
<td>0,684</td>
</tr>
<tr>
<td>Έπιπλη πυκνότητα, (\rho_d = M_s / V_t)</td>
<td>85,41 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, (\rho_{sat} = (M_s + V_u \times p_w) / V_t)</td>
<td>89,47 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:

Παρατηρήσεις :

Τα \(kg \) μετατρέπονται σε \(kN \) με τη σχέση \(kN = kg \times 9,807 / 1000 \)

\(p_w = \) Πυκνότητα νερού = \(1gr / cm^3 = 10^3 \text{ kg/m}^3 \)
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ

(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103 - 84(2), I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα :</th>
<th>ΠΣ</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υψός Δοκιμίου, H</th>
<th>12,95 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>4,40 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Όγκος Δείγματος, V_t</td>
<td>0,000197 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, M_sat</td>
<td># gr = 0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, M_a</td>
<td># gr = 0,023034 kN</td>
</tr>
<tr>
<td>Όγκος κενών, V_u = M_sat · M_a / ρ_w</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Όγκος υπεργεύσεων, V_s = V_t - V_u</td>
<td>0,0000873 m³</td>
</tr>
<tr>
<td>Πορώδεις, n = V_u / V_t · 100</td>
<td>55,65 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, e = V_u / V_s</td>
<td>1,255</td>
</tr>
<tr>
<td>Σημείωμα τυχόντη, q = M_a / V_t</td>
<td>118,98 kN/m³</td>
</tr>
<tr>
<td>Υγράφο σφαιρικό βάρος, ρ_sat = (M_a · V_u · ρ_w) / V_t</td>
<td>122,54 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή:

Παρατηρήσεις:

Τα kg μετατρέπονται σε kN με τη σχέση kN = kg × 9,807 / 1000

ρ_w = Πυκνότητα νερού = 1gr / cm³ = 10³ kg / m³
Αποτελέσματα Δοκιμής

Προσδιορισμού του Πορώδους - Πυκνοτήτας και Λογού Κενών Πετρώματος

(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103 - 84(2), I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα :</th>
<th>Π4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υγος Δοκιμίου, H</th>
<th>11,85 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>6,00 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Όγκος Δείγματος, V_t</td>
<td>0,000335 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, M_{sat}</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, M_s</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Όγκος κενών, $V_u = M_{sat} : M_s / \rho_w$</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Όγκος στερεών, $V_s = V_t - V_u$</td>
<td>0,0002255 m³</td>
</tr>
<tr>
<td>Πορώδες, $n = V_u / V_t \times 100$</td>
<td>32,70 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, $\varepsilon = V_u / V_s$</td>
<td>0,486</td>
</tr>
<tr>
<td>Επή τυκνότητα, $p_d = M_s / V_t$</td>
<td>68,75 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, $\rho_{sat} = (M_s : V_u : \rho_w) / V_t$</td>
<td>72,02 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή :

Παρατηρήσεις:

$T_a \, kg$ μετατρέπεται σε kN με τη σχέση $kN = kg \times 9,807 / 1000$

$\rho_w = Πυκνότητα νερού = 1gr / cm^3 = 10^3 kg / m^3$
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ
(Με τη χρήση μικρομέτρου και συσκευής κενού)
ΒΡΑΧ. Ε 103 - 84(2), I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1030807</td>
</tr>
</tbody>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>Π5</th>
</tr>
</thead>
</table>

Υψος Δοκιμίου, H	12,05 cm	
Διάμετρος Δοκιμίου, D	7,45 cm	
Πλάτος Δοκιμίου, B	cm	
Μήκος Δοκιμίου, L	cm	
Ογκος Δείγματος, Vt	0,000525 m³	
Μάζα κορεσμένου δείγματος, M_sat	0,024108 kN	
Μάζα ξηρού δείγματος, M_s	0,023034 kN	
Ογκος κενών, V_u = M_sat - M_s / ρ_w	0,0001096 m³	
Ογκος στερεών, V_s = V_t - V_u	0,0004157 m³	
Ποσοστός	n = V_u / V_t x 100	20,86 (%)
Λόγος κενών, e = V_u / V_s	0,264	
Ξηρή πυκνότητα, ρ_d = M_s / V_t	43,85 kN/m³	
Υγρό φαινόμενο βάρος, ρ_sat = (M_s + V_u x ρ_w) / V_t	45,94 kN/m³	

Περιγραφή:
Παρατηρήσεις:

Τα kg μετατρέπονται σε kN με τη σχέση kN = kg x 9,807 / 1000
ρ_w = Πυκνότητα νερού = 1gr / cm³ = 10³ kg / m³
Αποτελέσματα Δοκιμής

Προσδιορισμού του Πορώδους - Πυκνότητας και Λογού Κενών Πετρώματος

(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103 - 84(2) , I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Όνοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>Π6</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υψός Δοκιμίου, H</th>
<th>11.74 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>6.54 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Ογκος Δείγματος, V_t</td>
<td>0.000394 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, M_{sat}</td>
<td>0.024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, M_s</td>
<td>0.023034 kN</td>
</tr>
<tr>
<td>Ογκος κενών, $V_u = M_{sat} - M_s / \rho_w$</td>
<td>0.0001096 m³</td>
</tr>
<tr>
<td>Ογκος σπερμάτων, $V_s = V_t - V_u$</td>
<td>0.0002848 m³</td>
</tr>
<tr>
<td>Πορώδεις, $n = V_u / V_t \times 100$</td>
<td>27.78 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, $e = V_u / V_s$</td>
<td>0.385</td>
</tr>
<tr>
<td>Έρημη πυκνότητα, $\rho_d = M_s / V_t$</td>
<td>56.41 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, $\rho_{sat} = (M_s \cdot V_u \cdot \rho_w) / V_t$</td>
<td>61.16 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή

Παρατηρήσεις:

Τα kg μετατρέπονται σε kN με τη σχέση $kN = kg \times 9.807 / 1000$

$\rho_w = \Piυκνότητα \ νερού = 1gr / cm³ = 10³ kg / m³$
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΟΜΑΤΟΣ

(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΒΡΑΧ. Ε 103 - 84(2), I.S.R.M. 1981

<table>
<thead>
<tr>
<th>Ονοματεπώνυμο</th>
<th>Σάντα Νικολέτα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Στοιχεία Δοκιμίου

<table>
<thead>
<tr>
<th>Δείγμα :</th>
<th>P1</th>
</tr>
</thead>
</table>

Όψος Δοκιμίου, \(H \)	11,24 cm
Διάμετρος Δοκιμίου, \(D \)	7,77 cm
Πλάτος Δοκιμίου, \(B \)	cm
Μήκος Δοκιμίου, \(L \)	cm
Όγκος Δείγματος, \(V_t \)	0,000533 m³
Μάζα κορεσμένου δείγματος, \(M_{sat} \)	gr = 0,024108 kN
Μάζα ξηρού δείγματος, \(M_s \)	gr = 0,023034 kN
Όγκος κενών, \(V_u = M_{sat} - M_s / \rho_w \)	0,0001096 m³
Όγκος στερεών, \(V_s = V_t - V_u \)	0,0004232 m³
Πορώδεσ, \(n = V_u / V_t \times 100 \)	20,57 (%)
Λόγος κενών, \(e = V_u / V_s \)	0,259
Έπη τυχνάτητα, \(\rho_d = M_s / V_t \)	43,24 kN/m³
Υγρό φαινόμενο βάρος, \(\rho_{sat} = (M_s \cdot V_u \cdot \rho_w) / V_t \)	45,29 kN/m³

Περιγραφή:

Παρατηρήσεις:

* Τα kg μετατρέπονται σε kN με τη σχέση \(kN = kg \times 9,807 / 1000 \)
* \(\rho_w = \) Πυκνότητα νερού = \(1\text{gr/cm}^3 = 10^3 \text{kg/m}^3 \)
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ
(Με τη χρήση μικρομέτρου και συσκευής κενού)
ΒΡΑΧ. Ε 103 - 84(2), I.S.R.M. 1981

Ονοματεπώνυμο	Σάντα Νικολέτα	Α.Μ.	1030807

Στοιχεία Δοκιμίου

Δείγμα :	P2

Όγκος Δοκιμίου, H	11,45 cm
Διάμετρος Δοκιμίου, D	7,96 cm
Πλάτος Δοκιμίου, B	cm
Μήκος Δοκιμίου, L	cm
Όγκος Δείγματος, V_t	0,000570 m³
Μάζα κορεσμένου δείγματος, M_{sat}	gr = 0,024108 kN
Μάζα ξηρού δείγματος, M_s	gr = 0,023034 kN
Όγκος κενών, $V_u = M_{sat} - M_s / \rho_w$	0,0001096 m³
Όγκος στερεών, $V_s = V_t - V_u$	0,0004602 m³
Ποσότητες, $n = V_u / V_t \times 100$	19,23 (%)
Λόγος κενών, $e = V_u / V_s$	0,238
ξηρή πυκνότητα, $\rho_d = M_s / V_t$	40,42 kN/m³
Υγρό φαινόμενο βάρος, $p_{sat} = (M_s - V_u \cdot \rho_w) / V_t$	42,35 kN/m³

Περιγραφή :
Παρατηρήσεις :

Τα kg μετατρέπονται σε kN με τη σχέση $kN = kg \times 9,807 / 1000$

$\rho_w = $ Πυκνότητα νερού = 1 gr/cm³ = 10³ kg/m³
ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ
ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΟΥ ΠΟΡΩΔΟΥΣ - ΠΥΚΝΟΤΗΤΑΣ ΚΑΙ ΛΟΓΟΥ ΚΕΝΩΝ ΠΕΤΡΩΜΑΤΟΣ

(Με τη χρήση μικρομέτρου και συσκευής κενού)

ΗΒΑΧ. Ε 103 - 84(2) , I.S.R.M. 1981

Στοιχεία Δοκιμίων

<table>
<thead>
<tr>
<th>Όνοματεπώνυμο</th>
<th>Σάντα Νικόλετα</th>
<th>Α.Μ.</th>
<th>1030807</th>
</tr>
</thead>
</table>

Δείγμα :

<table>
<thead>
<tr>
<th>Υψός Δοκιμίου, H</th>
<th>11,04 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος Δοκιμίου, D</td>
<td>7,00 cm</td>
</tr>
<tr>
<td>Πλάτος Δοκιμίου, B</td>
<td>cm</td>
</tr>
<tr>
<td>Μήκος Δοκιμίου, L</td>
<td>cm</td>
</tr>
<tr>
<td>Ογκος Δείγματος, V₁</td>
<td>0,000425 m³</td>
</tr>
<tr>
<td>Μάζα κορεσμένου δείγματος, M₂</td>
<td>0,024108 kN</td>
</tr>
<tr>
<td>Μάζα ξηρού δείγματος, M₃</td>
<td>0,023034 kN</td>
</tr>
<tr>
<td>Ογκος κενών, V_u = M₂ / M₃</td>
<td>0,0001096 m³</td>
</tr>
<tr>
<td>Ογκος ατερεων, V₅ = V₁ - V_u</td>
<td>0,0003151 m³</td>
</tr>
<tr>
<td>Πορώδες, n = V_u / V₁ * 100</td>
<td>25,80 (%)</td>
</tr>
<tr>
<td>Λόγος κενών, θ = V_u / V₅</td>
<td>0,348</td>
</tr>
<tr>
<td>Ξηρή πυκνότητα, ρ_d = M₃ / V₁</td>
<td>54,24 kN/m³</td>
</tr>
<tr>
<td>Υγρό φαινόμενο βάρος, ρ₉ = (M₃ - V_u * ρ_w) / V₁</td>
<td>56,82 kN/m³</td>
</tr>
</tbody>
</table>

Περιγραφή :

Παρατηρήσεις :

- Τα kg μετατρέπονται σε kN με τη σχέση kN = kg x 9,807 / 1000
- ρ_w = Πυκνότητα νερού = 1gr / cm³ = 10³ kg / m³
5.3 ΦΩΤΟΓΡΑΦΙΕΣ ΚΥΛΙΝΔΡΙΚΩΝ ΔΟΚΙΜΙΩΝ

Εικόνα 53: Ασβεστόλιθος του Παντοκράτορα με εκτεταμένες ασυνέχειες, επαρχιακή οδός Τσουκαλάδες-Αγίος Νικήτας, θέση 2
Εικόνα 54: Ασβεστόλιθος του Παντοκράτορα (ιδίος με την Εικόνα 43 αλλά από άλλη οπτική γωνία. Η εκτεταμένη ασυνέχεια έχει μεγάλο πάχος και αργίλικο συνδετικό υλικό καλύπτει την περιοχή της ασυνέχειας)

Εικόνα 55: Ασβεστόλιθος του Παντοκράτορα. Το εκτεταμένο ύψος που δοκιμήν και της αδύνατης διαμόρφωσής τους στο να έχουν ένα αποδεκτό ύψος λόγω βλάβη του τροχού και έλλειψης χρόνου, το παρόν δείγμα, δεν έχει χρησιμοποιηθεί ακόμα σε καμία δοκιμή παρά μόνο στον προσδιορισμό του δείκτη σκληρότητας SHV
Εικόνα 56: Ασβεστόλιθος του Παντοκράτορα σε κατακόρυφο άξονα. Η εκτεταμένη ασυνέχεια έχει μεγάλο πάχος και αργιλικό συνδετικό υλικό καλύπτει την περιοχή της ασυνέχειας, θέση A3.
Εικόνα 57: Ασβεστόλιθος του Παντοκάτορα θέση Α3(είναι ακριβώς το ίδιο δοκιμίο με το δοκίμιο της εικόνας 45(από άλλο οπτικό πεδίο για να είναι πιο εμφανές η ασυνέχεια η οποία εσωτερικά πληρείται με ασβεστιτικό συνδετικό υλικό),θέση Α3

Εικόνα 58: Ασβεστόλιθος του Παντοκάτορα θέση Α3.Είναι ακριβώς το ίδιο πέτρωμα με το πέτρωμα των εικόνων 46,47 αλλά από άλλο σημείο του αρχικού δείγματος

Εικόνα 59: Ασβεστόλιθος του Παντοκάτορα θέση Α3.Είναι ακριβώς το ίδιο πέτρωμα με το πέτρωμα των εικόνων 46,47,48 αλλά από άλλο σημείο του αρχικού δείγματος για να φαίνεται καλύτερα η εσωτερική ασυνέχεια και η καταπώνηση της βραχώματος.
Εικόνα 60: Ασβεστόλιθοι του Παντοκάτορα, θέση Α3. Η βραχομάζα είναι έντονα διερρημένη με εσωτερικές ασυνέχειες που κρίνουν την ευστάθεια του πρανούς μικρή.

Εικόνα 61: Ασβεστόλιθοι της Βίγλας (Ιόνιος Ζώνη), νεότεροι ηλικιακά από τους ασβεστόλιθους του Παντοκράτορα. Το παρόν αρχικό δείγμα πάρθηκε από την θέση Α1, από το οποίο αρχικό δείγμα καταφέραμε και βγάλαμε 3 διαμορφωμένα κυλινδρικά δοκίμια (Α1α, Α1β, Α1γ)
Εικόνα 62: Ασβεστόλιθοι της Βίγλας (Ιόνιος Ζώνη), νεότεροι ηλικιακά από τους ασβεστόλιθους του Παντοκράτορα. Δοκίμιο Α1α. σε κάθετο άξονα, θέση A1.

Εικόνα 63: Ασβεστόλιθοι της Βίγλας (Ιόνιος Ζώνη), νεότεροι ηλικιακά από τους ασβεστόλιθους του Παντοκράτορα. Δοκίμιο Α1α. σε οριζόντιο άξονα, θέση A1.
Εικόνα 64: Ασβεστόλιθοι της Βίγλας (Ιόνιος Ζώνη), νεότεροι ηλικιακά από τους ασβεστόλιθους του Παντοκράτορα. Δοκίμιο AIβ. σε κάθετο άξονα, θέση A1.

Εικόνα 65: Ασβεστόλιθοι της Βίγλας (Ιόνιος Ζώνη), νεότεροι ηλικιακά από τους ασβεστόλιθους του Παντοκράτορα. Δοκίμιο AIγ. σε κάθετο και οριζόντιο άξονα, θέση A1.
Εικόνα 66: Ασβεστόλιθοι της Καρυάς. Το παρόν αρχικό δείγμα ήταν καλύτερης ποιότητας από ότι ήταν τα δείγματα από την επαρχιακή οδό Τσουκαλάδες-Άγιος Νικήτας. Το πλήθος των εσωτερικών ασυνέχειών που διατρέχουν τη βραχώμα, είναι μηδαμινό εώς ελάχιστο.

Εικόνα 67: Δοκίμιο Δ1 α και της θέσης Α4 στη περιοχή της Καρυάς, σε κατακόρυφο και οριζόντιο άξονα.
Εικόνα 68: Δοκίμιο Δ1β και της θέσης Α4 στη περιοχή της Καρυάς, σε κατακόρυφο και οριζόντιο
άξονα.

Εικόνα 69: Δοκίμιο Δ1γ και της θέσης Α4 στη περιοχή της Καρυάς, σε κατακόρυφο και οριζόντιο
άξονα.
5.4 ΦΩΤΟΓΡΑΦΙΕΣ ΑΚΑΝΟΝΙΣΤΩΝ ΔΟΚΙΜΙΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗ ΔΟΚΙΜΗ ΤΟΥ ΔΕΙΚΤΗ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΣΗΜΕΙΑΚΗΣ ΦΟΡΤΙΣΗΣ (POINT LOAD INDEX)

Εικόνα 70: Ασβεστόλιθοι του Παντοκράτορα, Ιόνια Ζώνη, θραύση του δοκιμίου περίπου στη μέση κατά μήκος της έντονης εσωτερικής ασυνέχειας που διατέρνει το πέτρωμα

Εικόνα 71: Ασβεστόλιθος Παντοκράτορα, της Ιόνιας Ζώνης είναι τόσο διερρημένος που έφτασε στη θραύση με τη χρήση της σφύρας Schmith
Εικόνα 72: Ασβετόλιθος του Παντοκράτορα, Ιόνιας Ζώνης από τη θέση Α3, πριν τη θραύση

Εικόνα 73: Ασβετόλιθος του Παντοκράτορα, Ιόνιας Ζώνης από τη θέση Α3, μετά τη θραύση
Εικόνα 74: Ασβεστόλιθοι της Βίγλας, πριν από τη θραύση

Εικόνα 75: Ασβεστόλιθοι της Βίγλας, πριν από τη θραύση
Εικόνα 76: Δοκιμή Point Load Index, Θραύση του δείγματος Α3 (ασβεστόλιθος της Βίγλας)

Εικόνα 77: Ακανόνιστο δοκίμιο ασβεστόλιθου Παντοκράτορα της Ιόνιας Ζώνης μετά την ολοκλήρωση της δοκιμής
Εικόνα 78: Ακανόνιστου τύπου δοκίμιο, ασβεστόλιθος του Παντοκράτορα, πριν από τη θραύση

Εικόνα 79: Παλαιοκατανάλωσης ασβεστόλιθους (αλπικό υπόβαθρο ζώνης Παξων, θέση Α4), μετά τη θραύση
Εικόνα 80: Δείγματα ακανόνιστου σχήματος, ασβεστόλιθοι του Παντοκράτορα (Ιόνια Ζώνη), θέση A3, πριν τη θραύση (δοκιμή σημειακής φόρτισης, Point Load Index). Το κόκκινο βέλος δείχνει το ακανόνιστο σχήμα το οποίο κατέστησε τη δοκιμή που αφορά το δείγμα αυτό άκυρη
Εικόνα 81: Δείγματα ακανόνιστου σχήματος, ασβεστολίθιοι του Παντοκράτορα (Ιόνια Ζώνη), θέση Α3, μετά τη θραύση (δοκιμή σημειακής φόρτισης, Point Load Index). Το κόκκινο βέλος δείχνει το ακανόνιστο σχήματος δοκίμιο το οποίο κατέστησε τη δοκιμή που αφορά το δείγμα αυτό άκυρη.
5.4 ΦΩΤΟΓΡΑΦΙΕΣ ΑΠΟ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΣΕΙΣΜΟΥ

Εικόνα 82: Κατάπτωση βράχου στη παράκτια ζώνη της παραλίας Κάθισμα

Εικόνα 83: Κατολίσθηση πρανούς στην επαρχιακή οδό Τσουκαλάδες-Αγιος Νικήτας και καταστροφή μέτρων προστασίας
Εικόνα 84: Καταστροφή δρόμου προς την παραλία Γιαλός (ανάμεσα απο Eγγερμούς-Πόρτο Κατσίκι) [πηγή Ganas et al, 2015].

Εικόνα 85: Μακροσκοπική φωτογραφία που απεικονίζει ρωγμή του δρόμου στο χωριό Αράγανος [πηγή: Ganas et al, 2015]

Εικόνα 75: Ολική καταστροφή των μέτρων προστασίας κατά μήκος της επαρχιακής οδού Τσουκαλάδες- Άγιος Νικήτας, λόγω της μέγαλης κατολίσθησης και συνεπώς του μεγάλου άγκο υλικού που κατακράτησαν μέχρι να καταρρεύσου

Εικόνα 87: Σχεδόν ολική καταστροφή των μεταλλικών δύχτιων προστασίας τύπου Geobrugg, κατά μήκος της επαρχιακής οδού Τσουκαλάδες- Άγιος Νικήτας, λόγω εκτεταμένης συσσώρευσης υλικών σε αυτό το σημείο.
Εικόνα 88: Καταστροφή μέτρων προστασίας. Ο τοίχος αντιστήριξης όπου πάνω του ήταν τοποθετημένα κατά μήκος της επαρχιακής οδού, Τσουκλάδες- Άγιος Νικήτας

Εικόνα 89: Ολική καταστροφή των μεταλλικών δύχτιων τύπου Geobrugg. Επιπλέον, εκτεταμένη συσσώρευση υλικών (κατακεραματισμένη/κονιορτοποιημένη ασβεστολιθική βραχόμαζα) στο ύψος του δρόμου
Εικόνα 90: Εκταμένη συσσώρευση υλικού στα μεταλλικά δίχτια τύπου Geobrugg αλλά όχι ορκετή για να προκαλέσει αστοχία στα μέτρα προστασίας.

Εικόνα 91: Πραγματικά που δεν έχει επηρρεαστεί η ευστάθεια του, τα μέτρα προστασίας δεν έχουν αστοχήσει ούτε έχουν επηρεαστεί. Βρίσκεται κατά μήκος της επαρχιακής οδού Βασιλική-Άγιος Πέτρος.
Εικόνα 92: Καταστροφή των μέτρων προστασίας και κατάπτωση μεγάλου όγκου βράχου
Εικόνα 93: Διάρρηξη του δρόμου στην επαρχιακή οδό που οδηγεί στην παραλία Κάθισμα
5.5 ΕΠΙΤΑΧΥΝΣΙΟΓΡΑΦΟΙ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΑ

Εικόνα 94: Διαγράμματα χρονοιστορικών καμπυλών των τριών συνιστωσών της επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της πόλης στην Λευκάδα.

Εικόνα 95 Διάγραμμα κόριον συνιστώσας της επιτάχυνσης του φάσματος απόκρισης σε σχέση με τη χρονική περίοδο του σεισμού για το σταθμό της Λευκάδας.
Εικόνα 96: Χρονοιστορικών καμπυλών τριών συνιστώσων της επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της Βασιλικής.

Εικόνα 97: Διάγραμμα κύριων συνιστώσων της επιτάχυνσης του φάσματος απόκρισης σε σχέση με τη χρονική περίοδο του σεισμού για το σταθμό της Βασιλικής.
Εικόνα 98: Διαγράμματα χρονοιστορικών καμπυλών τριών συνιστωσών της επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της Ιθάκης.

Εικόνα 99: Διάγραμμα κύριων συνιστωσών της επιτάχυνσης του φάσματος απόκρισης σε σχέση με τη χρονική περίοδο του σεισμού για το σταθμό της Ιθάκης.

Εικόνα 100: Διαγράμματα χρονοιστορικών καμπυλών των τριών συνιστωσών της επιτάχυνσης σε σχέση με το χρόνο για το σταθμό της Πρέβεζας.
Εικόνα 101: Διάγραμμα κύριων συνιστωσών της επιτάχυνσης του φάσματος απόκρισης σε σχέση με τη χρονική περίοδο του σεισμού για το σταθμό της Πρέβεζας.
5. ΒΙΒΛΙΟΓΡΑΦΙΑ

Коўкіч Г. і Н Ст. Сампатараккіс, 2002. Тэхнічная геалогія, Papasotiriou publication,

Σέρβου, Α. (2013) Καταπτώσεις βράχων στην οδό Τσουκαλάδες- Άγιος Νικήτας της νήσου Λευκάδας. Διπλωματική Εργασία, Τμήμα Γεωλογίας, Παν. Πατρών.