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Thesis Abstract

Volumetric segmentationin magnetic resonance imagas mandatory for the diagnosis,
monitoring, and treatment planning. Manual practices require anatomical knowledge, are
expensive, time consuming and cdre inaccurate due to humaractor. Automated
segmentation can save physins time and provide an accurate reprochle solution for
further analysisin this thesis, automatetirain segmentationfrom multi-modal 3D magnetic
resonance images (MRIs) is geal An extensive comparative analysis of stat¢he-art 3D
deep neurahetworks for brain sulsegion segmentatin is performed We start by describing

the fundamentals of MR Imaging because it is crucial to understand your input data to train a
deep artitecture. Then, we provide the reader with an overview of how deep lagmiorks

by extensively analyzing everygroponent (layer) of a deep network. After we study the fields
of magnetic resonance and deep learnseparatelywe attempt give a broadergrspective

of the intersection of this two fields with a different rangé application of deep networks,
from MR image reconstruction to medical image generation.

Our work is focused on multhodal brain segmentation. For oaxperimentswe usal two
comnon benchmark datasets from medicahage challenges.Brain MR segmentation
challengesaim to evaluate state®f-the-art methods for the segmentation of brain by
providing a 3D MRI dataset with ground truth tumor segmentation labels annotated by
physicians.In order to evaluate statef-the-art 3D architectures, we briefly analyzlee

I dzil K2 NRA& | LILINE | @de dhE readér with &ui ibtuitibnabehin theldesign
choices. We perform a comparative analysis of the baseline architedhwmmsgh extengve
evaluations. The implemented networks welbased on the specificationsf the original
papers. Finally, we digss the reported results and provide future directions for implementing
an opensourcemedical segmentation library in PyToralong with daa loaders of the most
common medical MRI datasets. The goal is to produ8d® deep learning library for medical
imaging related tasks/Ve strongly believe in open and reproducible deep learning research.
In order to reproduce our results, theode (alpharelease)and materias of this thesisare
availablein https://github.com/black0017/MedicalZooPytorch
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Introduction

The rise of deep networks in the field of computer vision, provided sthtbe-art solutions

in problems that clasical image processirigchniguesperformed poorly.In the generalized

task of image recognitignthat includes problems such as object detection, image
classification and segmentation, activity recognition, optilkaland pose estimation, we can

easilyclaim that DNN (deep neural networks) have achieved superior performance. Along with

this rise in computer vision, there has been a lot of interest in application in field of medical

imaging. RBG monocular camerasteama lot of information that can beapture in nearly

no cost. As a consequence, there is abundance of RBG imageEdatathough medical
AYF3IAy3a RIEGE INB y2G a2 Slhae G2 2o0GFAy>X 5bbQa
complex and high dimensial data. As it will be discussed laten, a medical image is often

three or four dimensional, containing a lot more thdhree input channels. Another reason

that this field attracts a lot of attention i¢s direct impact on human lives. Medical errase

the third-leading cause of deathftar heart disease andancer in thedJSA Consequentlyit

is obvious thathe frst three causes of human deathdNd8 NBf I G SR (2 YSRAOFf A
why it is estimated that Al and deep learning in medical imaging will create a brand new

market ofmore than a billion dollars by 2023

This work serves as an intersection of these two worlds: Deepal networks and medical
imaging. Although we assume a small background on the general concept of machine learning,
anattempt was made in order to assunas less known as possible. The purpose of this work
is to provide an engineer with a solid background of the fundamentals of magnetic resonance
tomography, as well as the current (2019) state of the art models ifiasteevolving field of

deep learningEven though we are aware that the field of deep teag is considered by most
non-machine learning engineers a black box, we will extensively try to prove them wrong.
Therefore,every operation performed by a DNN Mlle analyzed thoroughly and together
with the explanation, there will be an intuition reé&d to the underlying principle. Less
literally, why we do what we dd=inally, even though the field of medical imaging is close to
computer vision problems, solatis are not always directly extensibleom the lack ofigh-
quality annotated data and mtrained feature extractors, to hardware limitations, the
medical imaging field neeasrefulconsideration that will be analyzed.

We will tackle the sutproblem ofmedical image segmentatiofgcused orMRI,which is one

of the most popular and ointered. It is probably the task with the mostell-structured
datasets that someone can get access &nce, online medical data collection is not as
straightforward adt may sound;a collection of links tatart your journey is provided in the
correspondingsection Finally,yet importantly, in the context of this work no correlation
between deep networks and biological neuron will beided, because it is considered
misleading. Everything regarding deep networks will balgred as layer and information
processing and learning representations.

Thebrain is considered as the mostll-organizedsystem that processes information from
different senses such as sight, hearitaych, taste, and smell in an efficient and intediiq
manner. One of the key mechanisms for information processing in a human brain is that the
complicated higHevel information is processed by means of the collation, i.e.,
connectionsof a large nmber of the structurally simple elementsalled newons. Powerful
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data representations drive the performance of many machine learning algorithms. Designing
features that generate such representations to effectivedptare the information encoded

in the gven data is a particularly difficult taska practice, this requires complex data
preprocessing pipelines that do not generalize well between different image modalities or
learning problems. The reason for thatlst most of these systems are manuatygineered

for specific applications and relyx@usively on human ingenuity to disentangle and
understand prior information hidden in the data in order to design the required features and
discover intrinsic informatin about the given task

In the contex of volumetric image parsing, machine learnisgused for anatomy detection

and organ segmentatiorfhe task of feature engineering becomes increasingly complex since
the feature extraction is typically performed der challenging transformations such as
arbitrary orientations or scales. Moreover,rfcobust parameter estimation, scanning the
parameter space exhaustively is not feasible given the exponential increase in the size of the
space with respect to the spadéanensionality, i.e. the number of ceitered transformation
parameters.

Medical imag parsing subsumes the robust recognition, detection, and segmentation of
objects, whictproves to be a particularly difficult task for arbitrary 3D anatomical structures
considering the variance in locatiothe nonrigid nature of the shape, as well aket
differences in anatomy among different casBl®netheless, in order to achieve an accurate
cautomatic segmentation of arbitrary anatomical structures, a robust arfitieint solution

is required for locatiing the object of interest.

The rest of thisvork is organized as follow&hapter ldescribes the basic principles of MR
imaging. INChapter 2 the undamentals of machine and deep leamiare briefly described,
focused on the basicomponents of deep networks. i@hapter 3 the most commonly used
deep learning architectures are analyzed, starting from conventional mdabimages to 3D
architectures, focusd on dense pixelise predictions that will bereferenced in the
experiments. InChapter 4 a broader overview of Deep Learning in the field in MRI are
described, so as to provide theader with a broader perspective ofdfadvancements in the
field of MR imaging dueotthe rise of deep learnindn Chapter 5a detailed intuition of two
normal brain MRI datasets are provided, that the experiments wenelacted on. IrChapter

6, thorough quantitative and qualitative experimental results are reported and discussed.
Finally, inChapter 7 conclusions are drawn and future directions are proside



CHAPTER 1

The Fundamentals of
magnetic resonance
Imaging



Introduction

In this chapter, a basic overview of the fundamentals of Magnetic resonance imaging is
provided. Arentry-levelphysics and engineering background is assumed. The &nfiosus

on the principles of magnetresonane imaging and keethings intuitive and simple as much

as possible. In theontext of thiswork, the direction of the magnetic fieldh B defined as the
z-axis.

1.1) Medical images

Medical imaging is the tedue and process of creating visual representatiofife interior

of a body for clinical analysis and medical intervention, as well as visual representation of the
function of some organs or tissuelledical imaging seeks toeweal internal structures
hidden by the skin and bones, as well as to diagna@swa treat diseasesMedical imaging

also establishes a database of normal anatomy and psychology to make it possible to identify
abnormalities. Medical image main modalitieslimte computed tomography G, magnetic
resonance image (MRI) and positron esios tomography (PET).

1.2) The physics of MR imaging and excitation pulses

Medical magnetic resonance (MR) imagirsgs the signal from the nuclei of hydrogen atoms
(1H) for mage generation A hydrogeratom consists of a nucleus containing a single gmot
and of a single electron orbiting the nucleus. The prdtasa positive charge and the electron

a negative chargeesulting in zero charg&orthe MRanalysis proton is wdt we care about.
Apart fram its positive charge, the proton possesses spinjnéiinsic property ofangular
momentum ofelementary particles. This means that the proton rotates about its axis like a
spinning top.Spin quantum numbers may takenly half- integer values. Although the
RANBOGAZY 27F | LI Niticénhob e@rcedthBpyi faster of slaw&A OK I Yy ISR
proton has two important propertiesa) & a rotating mass (mihe proton acts like a spinning

top that strives to retain the spatial orientation of its rotabn axis b) & a rotating mass with

an electrical barge, the proton additionally has magnetic momexienoted asB, and
behaves like a small magnefTherefore, it is affeted by external magnetic fields and
electromagnetic waves and, when it moves, inglsi@ voltage in a receiver ¢ails illustrated

in Agure 1.
M B N
Angular momentum Magnetic moment
— C -
i S

Y

a b

Figurel, Proton properties

In this exact waythe orientation of its rotation axiffom the magnetization vector Ban be

identified. Thus, when we describe the rotati of a proton, we are not referring to its

(inviside) angular momentund dzi 2 (GKS Ga@OAaAo0f Sé Y2aGA2y 2F Al:
can be quantitively measured irreceiver coilbecause it generatesraagneticsignal similar

to the generated sigal in an electrical generatorHowever, here is aother important

10
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decelerated precisely because it is a fundamental property of elementary particles. Spin is
simply there all the time!

When an external forggypA OF £ £ @ G KS S| NG &ts onNpin@idgiop and 2 y' I £ T A
tries to alter the orientation of its axis, the top begins to wobble, a process called precession.

At the same time, friction at thpoint of contact withdraws energy from the spinnitagp and

slows down its rotation. As a resuits axis becomes more and more inclined, as shown in

Figure2(left).

\ ABO ‘\

Yo

Figure2, Magnetic field alters spin's orientation

In the casef ahydrogen nuclei: wheiit is exposed to an extmal magnetic field denoted

as By, the magetic moments, or spinglign with the direction of the fieldlike compass
needles. The magnetic moments do not only align with the field but, like spinnirgy top
undergorecession as shown in Figur2 (right) The direction of orientation can be found
using theright-handrule.

Precession of the nuclei occurs at a characteristic spebithis proportional to the strength

of the applied magnetic field and ialted Larmor frequency. Alignment of the spins patal

to the magnetic field is gradual process and, as with spinning tops, is associated with the
dissipation of energy. The Larmorpgmecession frequencis a very important concept that is

at the coreof MR imaging officially defineds is the rate atvhich spins wobble when placed

in a magnetic fieldThe Larmor frequency is directly proportional to the strength (BO) of the
magnetic field and is given by the Larmor equation:

d0=ro¢ o,

where. ¢ isthe Larmor frequency in megahertz [MHgz] the gylomagnetic ratio, a constant
specific to a particular nucleus and e strength of the magnetic field in tesla [T]. Protons
have a gyromagnetic ratio of= 42.58 MHz/T, resulting in a Larmor frequentg®.9 MHz at
1.5 T.Notation:in the present work,the direction of the magneticield B is defined as the
z-axis.

While the spin system relaxes and settles into a stable statgitudinal magnetization
defined asM., is building up in the-direction, because the magnetic vectors representing the
ind@A Rdzt £ YI IySGAO0 Y2YSyda FRR (23SUKSNXW» ¢KAa |
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but the resulting longitudinal magnetization very weak. The magnetic fieldo®f an MR
imager is 60,000 times strgar i K | Y  SahdNiie keSudirky longitudinal maetization is
correspondingly largeiStill,the MR signal iselativelyweak,so magnetization must be large
enough to obtain a signal at all. Actually, things are even a bit more compli¢htedpins
tend to align parallel or antparallel to the magnéc field, with parallel alignment being
slightly preferred because it is equivalent to spins residing in a more favorable energy state.
Hence, under steadsgtate conditions, a slightly larger fractiorigads parallel to the main
magnetic field as shownn Figure 3This small differencactually produces the measurable
net magnetization Mand is represented by the net magnetization vector (NMV). Since the
energy difference between the two orientationgmends on the strength of the external
magnetic fiell, M, increases with the field strength.

BOA M,A

¢
¢

Figure3, Longitudinal magnetization Mz

a b

Energy can be introduced into such a stable spin system by apply&igaromagnetic wave

of the same frequency as the Larmor frequency. Thislledthe resonance condition. The
required electromagnetic wave is generated in a powerful radio transmitter and applied to
the object to be imaged by means of an antenna cdik Pprocess of energy absgation is
known as excitation of the spin system argbults in the longitudinal magnetization being
more and more tipped away from theaxis toward the transverse (xg)ane perpendicular

to the direction of the main magnetic fik

12
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Figure4, RF pulse applied resulting in tramsrse magnetization

All of the longitudinal magnetization is rotated into the transverse plane by a radiofrequency
(RF) pulse that is strong enough and applied long enoutjp the magnetization by exdy

dnc 6 dn g aswOwnliddEigéreSAthe resulting magnetization is now denoted byyM

rather than M, because it now lies in the yplane. Whenever transverse magnetization is
present, it rotates or precesses about thaxs, which has the effeof an electrical generator

and induces an alternaitg voltage of the same frequency as the Larmor frequencs in
receiver coil: the MR signal. This signal is collected and processed with sensitive receivers and
computers to generate the MR image.

1.2) Relaxation

Immediately after excitation, the magnetition rotates in the xyplane and is now called
transverse magnetization or M. The rotating transverse magnetization gives rise to the MR
signal in the receiver coil. However, the MR signal rapidlysfatiee to two independent
processes that reduce tramsrse magnetization and thus cause a return to the statdtest
present before excitationspin-lattice interaction and spirspin interaction These two
processes causEl relaxation and T2 relaxatigmespectivelyand will be furtheranalyzed

T1: Longitudinal Relaxation

Transverse magnetization decays and the n&ig moments gradually realign with theaxis

of the main magnetic field B as discussed previously. The transverse magnetization
remaining within the xyplane strictly speaking the projectioof the magnetization vector
onto the xyplane, as shown irrigure5, decreases slowly and the MR signal fades in
proportion. As transverse magnetization decays, the longitudinal magnetizatior, thiz
projection of the magnetization vector onto theazs ¢ is slowly restored. This process is
known as longitudial relaxation or T1 recoveryrhe nuclei can return to the ground state

only by dissipating their excess energy to their surroundiriggl K SA @§ & Xi 66 KA OK A &

kind of relaxation is alscatted spinlattice relaxation). The time constant for thiscovery is
T1 and is dependent on the strength of the external magnetic fieldaBd the internal

13
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Brownianmotion of the molecules. Biologidisues have T1 values of half a second to several
seconds at 1.5 T.

\ A

b & B

Figure5, Magnetization relaxation(realignment)

T2/T2*: Transverse Relaxation

To understand transverse relaxation, it is first necessary to know what is ded@nt & LIK | & S é @
Phase refers to the position of a magicemoment on its circulaprecessional path and is

expressed as an angle. Consider two spins, A and B, precessing at the same speed in the xy

LX I ySed LT . Aada FKSFR 27T wecahsdythaiBihasla phasdzof k10 Y2 G A 2
relative to A.Conversely, aspinCtha@i 0 SKAYR | o0& @mcIKFa KAKREYAS
Figure6.

> B C

Figure6, Phase difference

Immediately after excitation, part of the spins precess syosbusly. These spins have a
LK aS 2F udobeinpRasd: TS seisicalled phase coherence. Phase coherence

is gradually lost as some spins advance while others fall behind on their precessional paths.
The individual magnetization vectorsdgin to cancel each other out instead of adding
together. The resulting vectosum, the transverse magnetization, becomes smaller and
smaller and finally disappears, and with it the MR signal as shown in Figure

14



G

Figure7, Magretization cancelation

Xy

In other words, transverse r@kation is the decay dfansverse magnetization because spins
lose coherence (dephasing)ansverse relaxation differs from longitudinal relaxation in that
the spins do not dissipate energy to their saundings but instead exchange energy with each
other. To summarize cohereads lost in two ways:

1. Energy transfer between spins as a result of local changes in the magnetic 8ealcth
fluctuations are due to the fact that the spins are associated withlsmagnet fields
that randomly interact with eachtber. Spins precess fastor slower according to
the magnetic field variations they experiendée overall result is a cumulative loss
of phase.lt is a process due to pure sgpin interaction and asuch is unaffected by
I LILX A OF GA2Y 8Agfpulde. Dephasiog obsini2tiiedi@el constant T2
and is more or less independent of the strength of the external magnetic field, BO.

2. Timeindependent inhomogeneities of the external magnetic field BO@hese
intrinsic inhomogeneities are caused by thagnetic field generatoitself and by the
very person being imaged. They contribute to dephasing, resulting in an overall signal
decay that is even faster than described by T2. This second type of dmtag with
the time constant T2* which is typicallghorter than T2. Most of the
inhomogeneities that produce the T2* effect occur at tissue borders, particularly at
air/tissue interfaces or are induced by local magnetic fields (e.g. iron particles). The
loss of the MR signal due to T2* effects is cdited induction decay (Bl). T2* effects
can be avoided by using spin echo sequend@@sdenotes the process of energy
transfer between spins, while T2* refers to the effects of additional field
inhomogeneéties contributing to dephasing.

To summarizeT1 am T2 relaxation areompetely independentof each other but occur

more or less simultaneously! The decrease in the MR signal due to T2 relaxation occurs within
the first 10@;300 msec, which is long betthere has been complete recovery of longitudinal
magnetization Mz due toTTrelaxation (0.65 sec).

1.3) Image Contrast
Three intrinsic features of a biological tissue contribute to its signal intensity or brightness on
an MR image and hence image costra

1. The proton density, i.e. the number of excitalsigins per unit volume, determines
the maximum signal that can be obtained from a given tissue. Proton density can be
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emphasized by minimizing the other two parameters, T1 and T2. Such images are
called poton densityweighted or simply proton density imes.

2. TheTltime of a tissue ighe time it takesthe excited spins to recoveand be
available for the next excitation. T1 affects signal intensity indirectly and can be varied
at random. Images with corast that is mainly determined by T1 are called-T1
weighted images (T1w).

3. TheT2time mostly determinefiow quickly an MR signal fadesfter excitation. The
T2 contrast of an MR image can be controlled by the operator as well. Images with
contrast that ismainly determined by T2 are called-Weighted imags (T2w).

Proton density and T1 and T2 times are intrinsic features of bioloigsakes and may vary
widely from one tissue to the next. Depending on which of these parameters is emphasized
in an MR segence, the resulting images differ in their tisstigsue contrast. This provides the
basis for the exquisite seftssue discriminatin and diagnostic potential of MR imaging: based
on their specific differences in terms of these three parameters, tisthasare virtually
indistinct on computed tomograph(CT) scans can be differentiated by MRI without contrast
medium administration.

1.4) Significant Parameters in MR image generation

In order to generate an MR image, a slice musebkeited,and the resilting signal recorded
many timesRepetition time TR) is the interval between two successive excitations of the
same slice and is #refore crucial for T1 contrastWhen TR is long, more excited spins rotate
back into the zplane and contribute to the growth of longitudinal magnetization. The more
longitudinal magnetization can be excited with the next RF pulse, the larger the iR thigt

can be collected. If a short repetition time is selected, image contrast is strongly affected by
T1.
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Figure8, The effect of TR in T1 weitged images

Under this condition, tissues with a short T1 relax quickly and give a large signal after the next
RF pulse (and hence appear bright on the image). Tissues with a long T1, on the other hand,
undergo only little relaxation between two RF pulsesd hence Iss longitudinal
magnetization is available when the next excitation pulse is applied. These tissues therefore
emit less signal than tissues with a short T1 and appear 8arknage acquired ¥th a short

TR is TAveighted because it contains nsly T1 infamation. Therefore by selecting the
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repetition time, we can control the degree of T1 weighting of the resulting MR image. Tissues
with a short T1 €at, bone marrow)appear bright because theyegain most of their
longitudinal magnetization dimg the TRnterval and thus produce a stronger MR signal.
Tissues with a lon§l (uscle, cortexappear dark because they do not regain much of their
longitudinal magnetization during the TR intervatiahus produce a weaker MR signal.

muscle bone marrow

Figure9, T1 weighted MRI image

Different gradients have to be applied to generate an MR image. Gradients are loops of wire
or thin conductive sheets on a cylindrical shell lying just insidébtre of an MR scanner.
When current is passed thrgh thesecoils, a secondary magnetic field is created. This
gradient field slightly distorts the main magnetic field in a predictable patteansing the
resonance frequency of protons to vary in as anfition of position. The primary function of
gradiens, therefore is to allow spatial encoding of the MR signal, as it will be discussed in the
next sections. In addition, gradients serve to induce controlled magnetic field inhomogeneities
that are neededo encode the spatial origin of the MR signaewever, the gralients also
contribute to spin dephasing. These effects must be reversed by applying a refocusing pulse
before an adequate MR signal is obtain&tie signal induced in the receiver coil afpfrase
coherence has been restored is known as a spho and ca be measuredecho time (TE) is

the interval between application of the excitation pulse and collection of the MR sigiidle

echo timedetermines the influence of T2 on image contrast ashort echo time is used (less

than about 30 msec)he signal dferences between tissues are small, because T2 relaxation
has only just started and there has only been little signal decay at the time of echo collection.
The resulting image has low T2 waigg. Tissues with a short T2 having lost mosthaiirt
signalappear dark on the image while tissues with a long T2 still produce a stronger signal and
thus appear bright. This is why, for instance, cerebrospinal fluid (CSF) with its longer T2 (like
water) is brighter on T2veighted images compared withrdin tissue By selecting an echo

time (TE), the operator can control the degree of T2 weighting of the resulting MR image.

17



Signal 4

\ 4

Time

FigurelO, The effect of TE in T2 weighted images

A typical Tiweighted spin echo (SE) sequence is aeguvith a TR/TE of 340/13 msec. A T2
weighted fast spin echo (FSE) MR image can be acquired with a TR/TE of 3500/120 msec. MR
images that combine T1 and T2 effects are known as proton denmsightedimages (PD
images), which tend to have a higher sigimahoise ratio. PD sequences are especially useful

for evaluating structures with low signal intensities such as the bones or connective tissue
structures such as ligaments and tendons. PD is ofted indgigh-resolutionimaging.

Figurell, Brain Tumor in T1 and T2 weighted image

1.4) Slice Selection and Spatial Encoding

As a tomographic technique, MR imaging generates esessonal images of the human
body. Theexcitation puse is therefore delivered only to the slice we wamimage and not
to the whole bodyLet usconsider a transverse (axial) slice or crssstion through the body.
The magnetic field generated by most MR scanners is not directed from togttom, but
along the body axis of the person being imagéHisis the direction that will be designated
08 al é aAyO0S z stands for theNdiréctido® of thé hdn>magnetic fieldThe
magnetic field gradients that now come into play are reprdgsd by wedge with the thick
side indicating the higher fieldreingth and the tip the lower field strength.
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Figurel2, Slice selection in-axis

Both the excitation of a specific slice and the identification of the site giirolf a signia
within the slice rely on the fact that the precéssal orLarmor frequency is proportional to
the magnetic field strength In addition, recall that protons are excited only by an RF pulse
with a frequency roughly equal to their Larmor frespcy (resonace condition). If a uniform
field of identical stregth were generated throughout the body, all protons would have the
same Larmor frequency and would be excited simultaneously by a single RF pulse.

To enable selective excitation of a desirslice, the magnetic field is therefore made
inhomogeneous in a fliear fashion along the -girection by means of a gradient coil. As a
result, the magnetic field strength has a smooth gradient so that, for example, it is weakest at
0KS LI 4 A Sy iiodgest & elféet. The LRrmér frequencies thus change gradually
along the zaxis and each slice now has its unigue frequency. Hapgdication of an RF pulse

that matches the Larmor frequency of the desired slice will excite only protons within the
chosen slice whe the rest of the body remains unaffectecs shownn Figurel3.

Field 'y
strength or
frequency
Strong gradient
. Weak gradient
Same f\/l
RF pulse P
Thinner slice i
(in same position) ne

Figurel3, Slice selection with gradient coils
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Depending on their position along the gradient, protons are temporarily exptmsathgnetic
fields of different stength and hence differ in their precessional freques. A shallow
gradient generates a thicker slice while a steep gradient generatesnaethslice. Slice
position is defined by changing the center frequency of the RF pulse applied.

Having selected iske position and thickness by application of an appiate sliceselect
gradient, we can now proceed to explain how the spatial positiomdfiR signal is identified.
This is accomplished by spatial encoding, which is the most difficult task in gegexatmMR
image and requires the application of addital gradients that alter the magnetic field
strength along the yand xaxes.Spatial enoding comprises two steps, phase encoding and
frequency encoding.These two steps are discussed beloBoth frequancy-encoding
gradients and phasencoding gradientslo work in exactly the samway butare used for
different purposes. All imaging gradierismporarily change the resonant frequencies of
protons while the gradient is being applied.

Forphase encodinga gradient in the ydirection (from top to bottom) & switched on after
the spins have been excited and precess in th@lape. Such a phasncoding gradient
alters the Larmor frequencies of the spins according to their location along the gradiést.
aresult, the excited spins higher up in the scanngparience a stronger magnetic field and
thus gain phase relative to the somewhat sloweinsgurther down. The result is a phase shift
of the spins relative to each other, as shown in Figute The degee of phase shift is
determined by the duration andmplitude of the phas@ncoding gradient and by the physical
location of the precessing uilei along its lengtiThe phase gain is higher for nuclei closer to
the top of the scannerWhen the gradient iswitched off after some time, all spins return to
their initial rate of precession yet are now ahead or behind in phase relative to their previous
state. Phase nowaries along the yaxis in a linear fashiomnd each line within thelice can
thus be idenified by its unique phase.

Figurel4, Phase encoding

The second spatial dimension of the MR signal that needs to be identified is encoded by
changes in frequency along thedikection. To this end, a frequey-encoding gradientsi
applied ¢ in our example along the-axis. This @dient generates a magnetic field that
increases in strength from right to left. The corresponding changes in Larmor frequencies
make spins on théeft side precess slower than tlmmes on the right sidéVhen we collect

the MR signal while the frequen@&ncoding gradient is switched on, we do not obtain a single
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