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Thesis Abstract  
Volumetric segmentation in magnetic resonance images is mandatory for the diagnosis, 

monitoring, and treatment planning. Manual practices require anatomical knowledge, are 

expensive, time consuming and can be inaccurate due to human factor. Automated 

segmentation can save physicians time and provide an accurate reproducible solution for 

further analysis. In this thesis, automated brain segmentation from multi-modal 3D magnetic 

resonance images (MRIs) is studied. An extensive comparative analysis of state-of-the-art 3D 

deep neural networks for brain sub-region segmentation is performed. We start by describing 

the fundamentals of MR Imaging because it is crucial to understand your input data to train a 

deep architecture. Then, we provide the reader with an overview of how deep learning works 

by extensively analyzing every component (layer) of a deep network. After we study the fields 

of magnetic resonance and deep learning separately, we attempt give a broader perspective 

of the intersection of this two fields with a different range of application of deep networks, 

from MR image reconstruction to medical image generation. 

Our work is focused on multi-modal brain segmentation. For our experiments, we used two 

common benchmark datasets from medical image challenges. Brain MR segmentation 

challenges aim to evaluate state-of-the-art methods for the segmentation of brain by 

providing a 3D MRI dataset with ground truth tumor segmentation labels annotated by 

physicians. In order to evaluate state-of-the-art 3D architectures, we briefly analyze the 

ŀǳǘƘƻǊΩǎ ŀǇǇǊƻŀŎƘŜǎΣ ŀǎ ǿŜƭƭ ŀǎ ǘƻ Ǉrovide the reader with an intuition behind the design 

choices. We perform a comparative analysis of the baseline architectures through extensive 

evaluations. The implemented networks were based on the specifications of the original 

papers. Finally, we discuss the reported results and provide future directions for implementing 

an open-source medical segmentation library in PyTorch along with data loaders of the most 

common medical MRI datasets. The goal is to produce a 3D deep learning library for medical 

imaging related tasks. We strongly believe in open and reproducible deep learning research. 

In order to reproduce our results, the code (alpha release) and materials of this thesis are 

available in https://github.com/black0017/MedicalZooPytorch 

  

https://github.com/black0017/MedicalZooPytorch
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Thesis Abstract  (Greek version ) 
ɶ ˍ˃ʹ˃ʰˍˇˉˇʾʹˋʹκˁʰˍʱˍ˃ʹˋʹ ˋ ʁʶʽˁˈ˄ʶˌ ˃ʰʴ˄ʹˍʽˁʺ ̩ˍˇ˃̌ɹ ˊʰ˒ʾʰ̩ ʶʾ˄ʰʽ ʰˉʰˊʰʾˍʹˍʹ ʴʽʰ ˍʹ 

ʵʽʱʴ˄˖ˋʹΣ ˍʹ˄ ˉʰˊʰˁˇ˂ˇˏʻʹˋʹ ˁʰʽ ˍˇ˄ ˉˊˇʴˊʰ˃˃ʰˍʽˋ˃ˈ ʻʶˊʰˉʶʾʰˌ ˍˇˎ ʰˋʻʶ˄ˇˏˌ. ʁʽ 

ˉˊʰˁˍʽˁʷˌ ˔ʶʽˊ˖˄ʰˁˍʽˁʺˌ ʶˉʽˋʹ˃ʶʾ˖ˋʹˌ ˍ˖˄ ˇʴˁˇ˃ʶˍˊʽˁ˗˄ ˋˍˇʽ˔ʶʾ˖˄ (voxels) ʰˉʰʽˍˇˏ˄ 

ʰ˄ʰˍˇ˃ʽˁʷˌ ʴ˄˗ˋʶʽˌΣ ʶʾ˄ʰ ̔ʽʵʽʰʾˍʶˊʰ ʵʰˉʰ˄ʹˊʷˌ ˁʰʽ ˔ˊˇ˄ˇʲˈˊʶˌ. ɳˉʽˉ˂ʷˇ˄, ˃ˉˇˊʶʾ ʰˊˁʶˍʷˌ 

˒ˇˊʷˌ ˄ʰ ʶʾ˄ʰʽ ʰ˄ʰˁˊʽʲʶʾˌ ˂ˈʴ˖ ˍˇˎ ʰ˄ʻˊ˗ˉʽ˄ˇˎ ˋˎ˄ˍʶ˂ʶˋˍʺ. ɶ ʰˎˍˇ˃ʰˍˇˉˇʽʹ˃ʷ˄ʹ 

ˁʰˍʱˍ˃ʹˋʹ ˃ˉˇˊʶʾ ˄ʰ ʶ˅ˇʽˁˇ˄ˇ˃ʺˋʶʽ ˔ˊˈ˄ˇ ˋʶ ɹ̔ʰˍˊˇˏˌ ˁ ʰʽ ʰˁˍʽ˄ˇ˂ˈʴˇˎˌ ˁ ʰʽ ˄ʰ ˉʰˊʱʴʶʽ ˃ ʽʰ 

ʽˁʰ˄ˇˉˇʽʹˍʽˁʱ ʰˁˊʽʲʺ ˂ˏˋʹ ʴʽʰ ˉʶˊʰʽˍʷˊ˖ ʰ˄ʱ˂ˎˋʹΦ ʅʶ ʰˎˍʺ ˍʹ ˃ʶˍʰˉˍˎ˔ʽʰˁʺ ʵʽˉ˂˖˃ʰˍʽˁʺ 

ʶˊʴʰˋʾʰΣ ˃ʶ˂ʶˍʱˍʰʽ ʹ ʰˎˍˇ˃ʰˍˇˉˇʽʹ˃ʷ˄ʹ ˍ˃ʹ˃ʰˍˇˉˇʾʹˋʹ ˍˇˎ ʶʴˁʶ˒ʱ˂ˇˎ ʰˉˈ ˍʽˌ 

ˉˇ˂ˎˍˊˇˉʽˁ ̋ˉ˂ʹˊˇ˒ˇˊʾʰ ʶʽˁˈ˄˖  ˄о5 ˃ʰʴ˄ʹˍʽˁˇˏ ˋˎ˄ˍˇ˄ʽˋ˃ˇˏ( ʆмw, ʆ2w, T1-IR, T2-FLAIR). 

ɲʽʶ˅ʱʴʶˍʰʽ ˃ʽʰ ʶˁˍʶˍʰ˃ʷ˄ʹ ˋˎʴˁˊʽˍʽˁʺ ʰ˄ʱ˂ˎˋʹ ˍ˖˄ ˋˏʴ˔ˊˇ˄˖˄ о5 ʰˊ˔ʽˍʶˁˍˇ˄ʽˁ˗˄ ˍ˖˄ 

˄ʶˎˊ˖˄ʽˁ˗˄ ʵʽˁˍˏ˖˄ ̡ ʰʻʽʱˌ ˃ʱʻʹˋʹˌΣ ɹ ʽʰ ˍʹ˄ ˍ˃ʹ˃ʰˍˇˉˇʾʹˋʹ ˍ˖˄ ˉʶˊ̔̌ ˔˗˄ ̱ ˇˎ ʶʴˁʶ˒ʱ˂ˇˎΦ 

ɮˊ˔ʾʸˇˎ˃ʶ ˉʶˊʽʴˊʱ˒ˇ˄ˍʰˌ ˍʹˌ ʻʶ˃ʶ˂ʽ˗ʵʹˌ ʰˊ˔ʷˌ ˍʹˌ ˉʰˊʰʴ˖ʴʺˌ ˍʹˌ ˃ʰʴ˄ʹˍʽˁʺˌ 

ˍˇ˃ˇʴˊʰ˒ʾʰˌΦ ʅʶ ʶ˒ʰˊ˃ˇʴʷˌ ʲʰʻʽʱˌ ˃ʱʻʹˋʹˌΣ ʶʾ˄ʰʽ ˋʹ˃ʰ˄ˍʽˁˈ ˄ʰ ʴ˄˖ˊʾʸˇˎ˃ʶ ˍʰ ʵʶʵˇ˃ʷ˄ʰ 

ˉˊˇˌ ʶˉʶ˅ʶˊʴʰˋʾʰ ʴʽʰ ˄ʰ ʶˁˉh̔ ʵʶˎˍʶʾ ʷ˄ʰ ˋˏˋˍʹ˃ʰ ˃ʶ ˉʰˊʰ˃ʷˍˊˇˎˌ ˍʹˌ ˍʱ˅ʹˌ ˍ˖˄ 

ʶˁʰˍˇ˃˃ˎˊʾ˖˄. ʅˍʹ ˋˎ˄ʷ˔ʶʽʰΣ ˉʰˊʷ˔ʶˍʰʽ ̀ ˍˇ˄ ʰ˄ʰʴ˄˗ˋˍʹ ˃ʽʰ ʶˉʽˋˁˈˉʹˋʹ ˍˇˎ ˍˊˈˉˇˎ ˃ʶ ˍˇ˄ 

ˇˉˇʾˇ ˂ʶʽˍˇˎˊʴˇˏ˄ ˍʰ ʵʾˁˍˎʰ ʲʰʻʽʱ ˃ʱʻʹˋʹΣ̩ ʰ˄ʰ˂ˏˇ˄ˍʰˌ ʶˁˍʶ˄˗ˌ ˁʱʻʶ ˋˍˇʽ˔ʶʾˇ όˋˍˊ˗˃ʰύ 

ʶ˄ˈˌ ˍʷˍˇʽˇˎ ʵʽˁˍˏˇˎΦ ɳ˒ˈˋˇ˄ ˍʰ ʵˎˇ ˉʶʵʾ hʷ˔ˇˎ˄ ʰ˄ʰˉˍˎ˔ʻʶʾ ˅ʶ˔˖ˊʽˋˍʱ - ˃ʰʴ˄ʹˍʽˁ ̋

ˍˇ˃ˇʴˊʰ˒ʽˁʺ ʶʽˁˈ˄ʰ ˁʰʽ ʵʾˁˍˎʰ ʲʰʻʽʱˌ ˃ʱʻʹˋʹˌ- ˉˊˇˋˉʰʻˇˏ˃ʶ ˄ʰ ʵ˗ˋˇˎ˃ʶ ˃ʽʰ ʶˎˊˏˍʶˊʹ 

ˉˊˇˇˉˍʽˁʺ ˍʹˌ ʵʽʰˋˍʰˏˊ˖ˋʹˌ ʰˎˍ˗˄ ˍ˖˄ ʵˏˇ ˉʶʵʾ˖˄ ˃ʶ ˃ʽʰ ˋʶʽˊʱ ʶ˒ʰˊ˃ˇʴ˗˄Σ ʰˉˈ ˍʹ˄ 

ʰ˄ʰˁʰˍʰˋˁʶˎʺ ˍʹˌ ˃ʰʴ˄ʹˍʽˁʺˌ ˍˇ˃ˇʴˊʰ˒ʾʰˌ ʷ˖ˌ ˍʹ˄ ˍʶ˔˄ʹˍʺ ˉʰˊʰʴ˖ʴʺ ʰˉˈ ˋˎˋˍʺ˃ʰˍʰ 

˄ʶˎˊ˖˄ʽˁ˗˄ ʵʽˁˍˏ˖˄ ˄ ʷ˖˄ ʽʰˍˊʽˁ˗˄ ʁ ʽˁˈ˄˖˄. 

ɶ ʁˊʴʰˋʾʰ ʰˎˍʺ ʶˋˍʽʱʸʶʽ ˋˍʹ˄ ˉˇ˂ˎˍˊˇˉʽˁʺ ˍ˃ʹ˃ʰˍˇˉˇʾʹˋʹ ˍˇˎ ʶʴˁʶ˒ʱ˂ˇˎΦ ɱʽʰ ˍʰ 

ˉʶʽˊʱ˃ʰˍʱ ˃ʰˌΣ ˔ˊʹˋʽ˃ˇˉˇʽʺˋʰ˃ʶ ʵˏˇ ʶˎˊʷ˖ˌ ʴ˄˖ˋˍʱ ˋˏ˄ˇ˂ʰ ʵʶʵˇ˃ʷ˄˖˄ ʰˉˈ ˃ʰʴ˄ʹˍʽˁʷˌ 

ˍˇ˃ˇʴˊʰ˒ʾʰˌ. ʆ  hˋˏ˄ˇ˂ʰ ʵʶʵˇ˃ʷ˄˖˄ ˉˇˎ ˔ˊʹˋʽ˃ˇˉˇʽʺʻʹˁʰ˄ ˋˍʰ ˉ˂ʰʾˋʽʰ ʵʽʰʴ˖˄ʽˋ˃˗˄ ˋʶ 

ˁˇˊˎ˒ʰʾh ˋˎ˄ ʷʵˊʽʰ ʽʰˍˊʽˁʺˌ ʶˉʶ˅ʶˊʴʰˋʾʰˌ ʶʽˁˈ˄ʰˌΣ ʰˉˇˋˁˇˉˇˏ˄ ˋˍʹ˄ ʰ˅ʽˇ˂ˈʴʹˋʹ ˍ˖˄ 

ˋˏʴ˔ˊˇ˄˖˄ ʰˊ˔ʽˍʶˁˍˇ˄ʽˁ˗˄  ʴʽʰ ˍˇ˄ ˍ˃ʹ˃ʰˍˇˉˇʾʹˋʹ ˍˇˎ ʶʴˁʶ˒ʱ˂ˇˎΣ ˉʰˊʷ˔ˇ˄ˍʰˌ 

ʶˉʽˋʹ˃ʶʽ˖˃ʷ˄ʰ ˍˊʽˋʵʽʱˋˍʰˍʰ ʵʶʵˇ˃ʷ˄ʰ ˃ʰʴ˄ʹˍʽˁ˗˄Φ ɱʽʰ ˄ʰ ʰ˅ʽˇ˂ˇʴʺˋˇˎ˃ʶ ˍʽˌ ˋˏʴ˔ˊˇ˄ʶˌ 

ʰˊ˔ʽˍʶˁˍˇ˄ʽˁʷˌ о5 ˄ʶˎˊ˖˄ʽˁ˗˄ ʵʽˁˍˏ˖Σ˄ ʰ˄ʰ˂ˏˇˎ˃ʶ ˋˏ˄ˍˇ˃ʰ ˍʽˌ ˉˊˇˋʶʴʴʾˋʶʽˌ ˉˇˎ 

ʰˁˇ˂ˇˏʻʹˋʰ˄ ˇ ̔ ʰˊ˔ʽˁʷˌ ʵʹ˃ˇˋʽʶˏˋʶʽˌ ˍ˖˄ ˋˎʴʴˊʰ˒ʷ˖˄. ɳ̄ ʾˋʹˌ, ˉʰˊʷ˔ˇˎ˃ʶ ˋˍˇ˄ 

ʰ˄ʰʴ˄˗ˋˍʹ ˃ʽʰ ʵʽʰʾˋʻʹˋʹ ˉʾˋ˖ ʰˉˈ ˍʽˌ ʶˉʽ˂ˇʴʷˌ ˋ˔ʶʵʽʰˋ˃ˇˏ ̱ ˖˄ ʰˊ˔ʽˍʶˁˍˇ˄ʽˁ˗˄ ʰˎˍ˗˄ ˁʰʽ 

ɲʽʶ˅ʱʴˇˎ˃ʶ ˃ʽʰ ˋˎʴˁˊʽˍʽˁʺ ʰ˄ʱ˂ˎˋʹ ˃ʷˋ˖ ʶˁˍʶˍʰ˃ʷ˄˖˄ ˉʶʽˊʰ˃ʱˍ˖˄. ʆʷ˂ˇˌΣ ˋ˔ˇ˂ʽʱʸˇˎ˃ʶ ̱ ʰ 

ʰ˄ʰ˒ʶˊˈ˃ʶ˄ʰ ʰˉˇˍʶ˂ʷˋ˃ʰˍʰ ˁʰʽ ˉʰˊʷ˔ˇˎ˃ʶ ˃ʶ˂˂ˇ˄ˍʽˁʷˌ ˁʰ̱ʶˎʻˏ˄ˋʶʽˌ ʴʽʰ ˍʹ˄ ˎ˂ˇˉˇʾʹˋʹ 

˃ʽʰ̩ h˄ˇʽ˔ˍˇˏ ˁ˗ʵʽˁʰ ʲʽʲ˂ʽˇʻʺˁʹˌ ʽʰˍˊʽˁʺˌ ʶˉʶ˅ʶˊʴʰˋʾʰˌ ˃ʰʴ˄ʹˍʽˁ˗˄ ˍˇ˃ˇʴˊʰ˒ʽ˗˄ ˃ʶ 

ʲʰʻʽʱ 3D ʵʾˁˍˎʰ. ɳˉʶʽʵʺ ˉʽˋˍʶˏˇˎ˃ʶ ˋˍʹ˄ ʰ˄ˇʽ˔ˍʺ ʷ́ ʶˎ˄h ˁʰʽ ˉˊˇˁʶʽ˃ʷ˄ˇˎ ˄ʰ 

ʰ˄ʰˉʰˊʰ˔ʻˇˏ˄ ˍʰ ʰˉˇˍʶ˂ʷˋ˃ʰˍʱ ˃ʰˌΣ ʹ ˉˊ˗ˍʹ ʷˁʵˇˋʹ ˍˇˎ ˁ˗ʵʽˁʰ ˃ʰˌ  ʁ ʾ˄ʰʽ ʵʽʰʻʷˋʽ˃ʹ ˋˍʹ 

ʵʽʶˏʻˎ˄ˋʹ: https://github.com/black0017/MedicalZooPytorch 
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Introduction  
The rise of deep networks in the field of computer vision, provided state-of-the-art solutions 

in problems that classical image processing techniques performed poorly. In the generalized 

task of image recognition, that includes problems such as object detection, image 

classification and segmentation, activity recognition, optical flow and pose estimation, we can 

easily claim that DNN (deep neural networks) have achieved superior performance. Along with 

this rise in computer vision, there has been a lot of interest in application in field of medical 

imaging. RBG monocular cameras contain a lot of information that can be capture in nearly 

no cost. As a consequence, there is abundance of RBG image data. Even though medical 

ƛƳŀƎƛƴƎ Řŀǘŀ ŀǊŜ ƴƻǘ ǎƻ Ŝŀǎȅ ǘƻ ƻōǘŀƛƴΣ 5bbΩǎ ǎŜŜƳ ǘƻ ōŜ ŀƴ ƛŘŜŀƭ ŎŀƴŘƛŘŀǘŜ ǘƻ ƳƻŘŜƭ ǎǳŎƘ 

complex and high dimensional data. As it will be discussed later on, a medical image is often 

three or four dimensional, containing a lot more than three input channels. Another reason 

that this field attracts a lot of attention is its direct impact on human lives. Medical errors are 

the third-leading cause of death, after heart disease and cancer in the USA. Consequently, it 

is obvious that the first three causes of human deaths aǊŜ ǊŜƭŀǘŜŘ ǘƻ ƳŜŘƛŎŀƭ ƛƳŀƎƛƴƎΦ ¢ƘŀǘΩǎ 

why it is estimated that AI and deep learning in medical imaging will create a brand new 

market of more than a billion dollars by 2023. 

This work serves as an intersection of these two worlds: Deep neural networks and medical 

imaging. Although we assume a small background on the general concept of machine learning, 

an attempt was made in order to assume as less known as possible. The purpose of this work 

is to provide an engineer with a solid background of the fundamentals of magnetic resonance 

tomography, as well as the current (2019) state of the art models in the fast-evolving field of 

deep learning. Even though we are aware that the field of deep learning is considered by most 

non-machine learning engineers a black box, we will extensively try to prove them wrong. 

Therefore, every operation performed by a DNN will be analyzed thoroughly and together 

with the explanation, there will be an intuition related to the underlying principle. Less 

literally, why we do what we do. Finally, even though the field of medical imaging is close to 

computer vision problems, solutions are not always directly extensible. From the lack of high-

quality annotated data and pretrained feature extractors, to hardware limitations, the 

medical imaging field needs careful consideration that will be analyzed. 

We will tackle the sub-problem of medical image segmentation, focused on MRI, which is one 

of the most popular and of interest. It is probably the task with the most well-structured 

datasets that someone can get access to. Since, online medical data collection is not as 

straightforward as it may sound; a collection of links to start your journey is provided in the 

corresponding section. Finally, yet importantly, in the context of this work no correlation 

between deep networks and biological neuron will be provided, because it is considered 

misleading. Everything regarding deep networks will be analyzed as layer and information 

processing and learning representations. 

The brain is considered as the most well-organized system that processes information from 

different senses such as sight, hearing, touch, taste, and smell in an efficient and intelligent 

manner. One of the key mechanisms for information processing in a human brain is that the 

complicated high-level information is processed by means of the collaboration, i.e., 

connections of a large number of the structurally simple elements, called neurons. Powerful 

https://www.hopkinsmedicine.org/news/media/releases/study_suggests_medical_errors_now_third_leading_cause_of_death_in_the_us
https://www.prnewswire.com/news-releases/ai-in-medical-imaging-to-top-2-billion-by-2023-300691229.html
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data representations drive the performance of many machine learning algorithms. Designing 

features that generate such representations to effectively capture the information encoded 

in the given data is a particularly difficult task. In practice, this requires complex data 

preprocessing pipelines that do not generalize well between different image modalities or 

learning problems. The reason for that is that most of these systems are manually engineered 

for specific applications and rely exclusively on human ingenuity to disentangle and 

understand prior information hidden in the data in order to design the required features and 

discover intrinsic information about the given task.  

In the context of volumetric image parsing, machine learning is used for anatomy detection 

and organ segmentation. The task of feature engineering becomes increasingly complex since 

the feature extraction is typically performed under challenging transformations such as 

arbitrary orientations or scales. Moreover, for robust parameter estimation, scanning the 

parameter space exhaustively is not feasible given the exponential increase in the size of the 

space with respect to the space dimensionality, i.e. the number of considered transformation 

parameters. 

Medical image parsing subsumes the robust recognition, detection, and segmentation of 
objects, which proves to be a particularly difficult task for arbitrary 3D anatomical structures 
considering the variance in location, the non-rigid nature of the shape, as well as the 
differences in anatomy among different cases. Nonetheless, in order to achieve an accurate 
άautomaticέ segmentation of arbitrary anatomical structures, a robust and efficient solution 
is required for localizing the object of interest.  
 
The rest of this work is organized as follows: Chapter 1 describes the basic principles of MR 
imaging. In Chapter 2, the fundamentals of machine and deep learning are briefly described, 
focused on the basic components of deep networks. In Chapter 3, the most commonly used 
deep learning architectures are analyzed, starting from conventional monocular images to 3D 
architectures, focused on dense pixel-wise predictions that will be referenced in the 
experiments. In Chapter 4, a broader overview of Deep Learning in the field in MRI are 
described, so as to provide the reader with a broader perspective of the advancements in the 
field of MR imaging due to the rise of deep learning. In Chapter 5, a detailed intuition of two 
normal brain MRI datasets are provided, that the experiments were conducted on. In Chapter 
6, thorough quantitative and qualitative experimental results are reported and discussed. 
Finally, in Chapter 7, conclusions are drawn and future directions are provided.     
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Introduction  
In this chapter, a basic overview of the fundamentals of Magnetic resonance imaging is 

provided. An entry-level physics and engineering background is assumed. The aim is to focus 

on the principles of magnetic resonance imaging and keep things intuitive and simple as much 

as possible. In the context of this work, the direction of the magnetic field B0 is defined as the 

z-axis. 

1.1) Medical images 
Medical imaging is the technique and process of creating visual representations of the interior 
of a body for clinical analysis and medical intervention, as well as visual representation of the 
function of some organs or tissues. Medical imaging seeks to reveal internal structures 
hidden by the skin and bones, as well as to diagnose and treat diseases. Medical imaging 
also establishes a database of normal anatomy and psychology to make it possible to identify 
abnormalities. Medical image main modalities include computed tomography (CT), magnetic 
resonance image (MRI) and positron emission tomography (PET). 
 

1.2) The physics of MR imaging and excitation pulses 

Medical magnetic resonance (MR) imaging uses the signal from the nuclei of hydrogen atoms 

(1H) for image generation. A hydrogen atom consists of a nucleus containing a single proton 

and of a single electron orbiting the nucleus. The proton has a positive charge and the electron 

a negative charge, resulting in zero charge. For the MR analysis proton is what we care about. 

Apart from its positive charge, the proton possesses spin, an intrinsic property of angular 

momentum of elementary particles. This means that the proton rotates about its axis like a 

spinning top. Spin quantum numbers may take only half- integer values. Although the 

ŘƛǊŜŎǘƛƻƴ ƻŦ ŀ ǇŀǊǘƛŎƭŜΩǎ ǎǇƛƴ Ŏŀƴ ōŜ ŎƘŀƴƎŜŘΣ it cannot be forced to spin faster or slower. A 

proton has two important properties: a) as a rotating mass (m), the proton acts like a spinning 

top that strives to retain the spatial orientation of its rotation axis, b) as a rotating mass with 

an electrical charge, the proton additionally has magnetic moment, denoted as B, and 

behaves like a small magnet. Therefore, it is affected by external magnetic fields and 

electromagnetic waves and, when it moves, induces a voltage in a receiver coil, as illustrated 

in Figure 1. 

 

Figure 1, Proton properties 

In this exact way, the orientation of its rotation axis from the magnetization vector B can be 

identified. Thus, when we describe the rotation of a proton, we are not referring to its 

(invisible) angular momentum, ōǳǘ ǘƻ ǘƘŜ άǾƛǎƛōƭŜέ Ƴƻǘƛƻƴ ƻŦ ƛǘǎ ƳŀƎƴŜǘƛŎ ŀȄƛǎΣ .Φ ¢Ƙƛǎ Ƴƻǘƛƻƴ 

can be quantitively measured in a receiver coil, because it generates a magnetic signal, similar 

to the generated signal in an electrical generator. However, there is another important 
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ŘƛŦŦŜǊŜƴŎŜΥ ŀ ǇǊƻǘƻƴΩǎ ǎǇƛƴ ŀƭǿŀȅǎ Ƙŀǎ ǘƘŜ ǎŀƳŜ ƳŀƎƴƛǘǳŘŜ ŀƴŘ Ŏŀƴ ƴŜƛǘƘŜǊ ōŜ ŀŎŎŜƭŜǊŀǘŜŘ ƴƻǊ 

decelerated, precisely because it is a fundamental property of elementary particles. Spin is 

simply there all the time! 

When an external force, typƛŎŀƭƭȅ ǘƘŜ ŜŀǊǘƘΩǎ ƎǊŀǾƛǘŀǘƛƻƴŀƭ ŦƛŜƭŘ (G), acts on a spinning top and 

tries to alter the orientation of its axis, the top begins to wobble, a process called precession. 

At the same time, friction at the point of contact withdraws energy from the spinning top and 

slows down its rotation. As a result, its axis becomes more and more inclined, as shown in 

Figure 2(left). 

 

Figure 2, Magnetic field alters spin's orientation 

In the case of a hydrogen nuclei: when it is exposed to an external magnetic field, denoted 

as B0, the magnetic moments, or spins, align with the direction of the field like compass 

needles. The magnetic moments do not only align with the field but, like spinning tops, 

undergo recession, as shown in Figure 2 (right). The direction of orientation can be found 

using the right-hand rule. 

Precession of the nuclei occurs at a characteristic speed, which is proportional to the strength 

of the applied magnetic field and is called Larmor frequency. Alignment of the spins parallel 

to the magnetic field is a gradual process and, as with spinning tops, is associated with the 

dissipation of energy. The Larmor or precession frequency is a very important concept that is 

at the core of MR imaging officially defined, as is the rate at which spins wobble when placed 

in a magnetic field. The Larmor frequency is directly proportional to the strength (B0) of the 

magnetic field and is given by the Larmor equation: 

ʖ0 = ɾ0 ɇ "0 , 

where ̟ 0 is the Larmor frequency in megahertz [MHz], 0ɹ the gyromagnetic ratio, a constant 

specific to a particular nucleus and B0 the strength of the magnetic field in tesla [T]. Protons 

have a gyromagnetic ratio of ɹ = 42.58 MHz/T, resulting in a Larmor frequency of 63.9 MHz at 

1.5 T. Notation: in the present work, the direction of the magnetic field B0 is defined as the 

z-axis. 

While the spin system relaxes and settles into a stable state, longitudinal magnetization, 

defined as Mz, is building up in the z-direction, because the magnetic vectors representing the 

indiǾƛŘǳŀƭ ƳŀƎƴŜǘƛŎ ƳƻƳŜƴǘǎ ŀŘŘ ǘƻƎŜǘƘŜǊΦ ¢Ƙƛǎ ŀƭǎƻ ƘŀǇǇŜƴǎ ƛƴ ǘƘŜ ŜŀǊǘƘΩǎ ƳŀƎƴŜǘƛŎ ŦƛŜƭŘ 
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but the resulting longitudinal magnetization is very weak. The magnetic field B0 of an MR 

imager is 60,000 times stronger ǘƘŀƴ ŜŀǊǘƘΩǎΣ and the resulting longitudinal magnetization is 

correspondingly larger. Still, the MR signal is relatively weak, so magnetization must be large 

enough to obtain a signal at all. Actually, things are even a bit more complicated: the spins 

tend to align parallel or anti-parallel to the magnetic field, with parallel alignment being 

slightly preferred because it is equivalent to spins residing in a more favorable energy state. 

Hence, under steady-state conditions, a slightly larger fraction aligns parallel to the main 

magnetic field, as shown in Figure 3. This small difference actually produces the measurable 

net magnetization Mz and is represented by the net magnetization vector (NMV). Since the 

energy difference between the two orientations depends on the strength of the external 

magnetic field, Mz increases with the field strength. 

 

Figure 3, Longitudinal magnetization Mz 

Energy can be introduced into such a stable spin system by applying an electromagnetic wave 

of the same frequency as the Larmor frequency. This is called the resonance condition. The 

required electromagnetic wave is generated in a powerful radio transmitter and applied to 

the object to be imaged by means of an antenna coil. The process of energy absorption is 

known as excitation of the spin system and results in the longitudinal magnetization being 

more and more tipped away from the z-axis toward the transverse (xy) plane perpendicular 

to the direction of the main magnetic field.  
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Figure 4, RF pulse applied resulting in transverse magnetization 

All of the longitudinal magnetization is rotated into the transverse plane by a radiofrequency 

(RF) pulse that is strong enough and applied long enough to tip the magnetization by exactly 

флϲ όфлϲ wC ǇǳƭǎŜύ, as shown in Figure 4. The resulting magnetization is now denoted by Mxy 

rather than Mz, because it now lies in the xy-plane. Whenever transverse magnetization is 

present, it rotates or precesses about the z-axis, which has the effect of an electrical generator 

and induces an alternating voltage of the same frequency as the Larmor frequency in a 

receiver coil: the MR signal. This signal is collected and processed with sensitive receivers and 

computers to generate the MR image.  

1.2) Relaxation 

Immediately after excitation, the magnetization rotates in the xy plane and is now called 

transverse magnetization or Mxy. The rotating transverse magnetization gives rise to the MR 

signal in the receiver coil. However, the MR signal rapidly fades due to two independent 

processes that reduce transverse magnetization and thus cause a return to the stable state 

present before excitation: spin-lattice interaction and spin-spin interaction. These two 

processes cause T1 relaxation and T2 relaxation, respectively and will be further analyzed. 

T1: Longitudinal Relaxation 

Transverse magnetization decays and the magnetic moments gradually realign with the z-axis 

of the main magnetic field B0, as discussed previously. The transverse magnetization 

remaining within the xy-plane ς strictly speaking the projection of the magnetization vector 

onto the xy-plane, as shown in Figure 5, decreases slowly and the MR signal fades in 

proportion. As transverse magnetization decays, the longitudinal magnetization, Mz ς the 

projection of the magnetization vector onto the z-axis ς is slowly restored. This process is 

known as longitudinal relaxation or T1 recovery. The nuclei can return to the ground state 

only by dissipating their excess energy to their surroundings όǘƘŜ άƭŀǘǘƛŎŜέΣ ǿƘƛŎƘ ƛǎ ǿƘȅ ǘƘƛǎ 

kind of relaxation is also called spin-lattice relaxation). The time constant for this recovery is 

T1 and is dependent on the strength of the external magnetic field, B0, and the internal 
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Brownian motion of the molecules. Biological tissues have T1 values of half a second to several 

seconds at 1.5 T. 

 

Figure 5, Magnetization relaxation (realignment) 

T2/T2*: Transverse Relaxation 

To understand transverse relaxation, it is first necessary to know what is meant ōȅ άǇƘŀǎŜέΦ 

Phase refers to the position of a magnetic moment on its circular precessional path and is 

expressed as an angle. Consider two spins, A and B, precessing at the same speed in the xy-

ǇƭŀƴŜΦ LŦ . ƛǎ ŀƘŜŀŘ ƻŦ ! ƛƴ ƛǘǎ ŀƴƎǳƭŀǊ Ƴƻǘƛƻƴ ōȅ млϲΣ ǘƘŜƴ we can say that B has a phase of +10 

relative to A. Conversely, a spin C that iǎ ōŜƘƛƴŘ ! ōȅ олϲ Ƙŀǎ ŀ ǇƘŀǎŜ ƻŦ ςолϲΣ ŀǎ ǎƘƻǿƴ ƛƴ 

Figure 6.  

 

Figure 6, Phase difference 

Immediately after excitation, part of the spins precess synchronously. These spins have a 

ǇƘŀǎŜ ƻŦ лϲ ŀƴŘ ŀǊŜ ǎŀƛd to be in phase. This state is called phase coherence. Phase coherence 

is gradually lost as some spins advance while others fall behind on their precessional paths. 

The individual magnetization vectors begin to cancel each other out instead of adding 

together. The resulting vector sum, the transverse magnetization, becomes smaller and 

smaller and finally disappears, and with it the MR signal as shown in Figure 7.  
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Figure 7, Magnetization cancelation 

In other words, transverse relaxation is the decay of transverse magnetization because spins 

lose coherence (dephasing). Transverse relaxation differs from longitudinal relaxation in that 

the spins do not dissipate energy to their surroundings but instead exchange energy with each 

other. To summarize coherence is lost in two ways: 

1. Energy transfer between spins as a result of local changes in the magnetic field. Such 

fluctuations are due to the fact that the spins are associated with small magnet fields 

that randomly interact with each other. Spins precess faster or slower according to 

the magnetic field variations they experience. The overall result is a cumulative loss 

of phase. It is a process due to pure spin-spin interaction and as such is unaffected by 

ŀǇǇƭƛŎŀǘƛƻƴ ƻŦ ŀ мулϲ ǊŜŦƻŎǳǎƛng pulse. Dephasing occurs with the time constant T2 

and is more or less independent of the strength of the external magnetic field, B0. 

2. Time-independent inhomogeneities of the external magnetic field B0. These 

intrinsic inhomogeneities are caused by the magnetic field generator itself and by the 

very person being imaged. They contribute to dephasing, resulting in an overall signal 

decay that is even faster than described by T2. This second type of decay occurs with 

the time constant T2*, which is typically shorter than T2. Most of the 

inhomogeneities that produce the T2* effect occur at tissue borders, particularly at 

air/tissue interfaces, or are induced by local magnetic fields (e.g. iron particles). The 

loss of the MR signal due to T2* effects is called free induction decay (FID). T2* effects 

can be avoided by using spin echo sequences. T2 denotes the process of energy 

transfer between spins, while T2* refers to the effects of additional field 

inhomogeneities contributing to dephasing. 

To summarize, T1 and T2 relaxation are completely independent of each other but occur 

more or less simultaneously! The decrease in the MR signal due to T2 relaxation occurs within 

the first 100ς300 msec, which is long before there has been complete recovery of longitudinal 

magnetization Mz due to T1 relaxation (0.5ς5 sec). 

1.3) Image Contrast 
Three intrinsic features of a biological tissue contribute to its signal intensity or brightness on 

an MR image and hence image contrast: 

1. The proton density, i.e. the number of excitable spins per unit volume, determines 

the maximum signal that can be obtained from a given tissue. Proton density can be 
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emphasized by minimizing the other two parameters, T1 and T2. Such images are 

called proton density-weighted or simply proton density images. 

2. The T1 time of a tissue is the time it takes the excited spins to recover and be 

available for the next excitation. T1 affects signal intensity indirectly and can be varied 

at random. Images with contrast that is mainly determined by T1 are called T1-

weighted images (T1w). 

3. The T2 time mostly determines how quickly an MR signal fades after excitation. The 

T2 contrast of an MR image can be controlled by the operator as well. Images with 

contrast that is mainly determined by T2 are called T2-weighted images (T2w). 

 

Proton density and T1 and T2 times are intrinsic features of biological tissues and may vary 

widely from one tissue to the next. Depending on which of these parameters is emphasized 

in an MR sequence, the resulting images differ in their tissue-tissue contrast. This provides the 

basis for the exquisite soft-tissue discrimination and diagnostic potential of MR imaging: based 

on their specific differences in terms of these three parameters, tissues that are virtually 

indistinct on computed tomography (CT) scans can be differentiated by MRI without contrast 

medium administration. 

1.4) Significant Parameters in MR image generation  
In order to generate an MR image, a slice must be excited, and the resulting signal recorded 

many times. Repetition time (TR) is the interval between two successive excitations of the 

same slice and is therefore crucial for T1 contrast. When TR is long, more excited spins rotate 

back into the z-plane and contribute to the regrowth of longitudinal magnetization. The more 

longitudinal magnetization can be excited with the next RF pulse, the larger the MR signal that 

can be collected. If a short repetition time is selected, image contrast is strongly affected by 

T1. 

 

Figure 8, The effect of TR in T1 weighted images 

Under this condition, tissues with a short T1 relax quickly and give a large signal after the next 

RF pulse (and hence appear bright on the image). Tissues with a long T1, on the other hand, 

undergo only little relaxation between two RF pulses and hence less longitudinal 

magnetization is available when the next excitation pulse is applied. These tissues therefore 

emit less signal than tissues with a short T1 and appear dark. An image acquired with a short 

TR is T1-weighted because it contains mostly T1 information. Therefore, by selecting the 
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repetition time, we can control the degree of T1 weighting of the resulting MR image. Tissues 

with a short T1 (fat, bone marrow) appear bright because they regain most of their 

longitudinal magnetization during the TR interval and thus produce a stronger MR signal. 

Tissues with a long T1 (muscle, cortex) appear dark because they do not regain much of their 

longitudinal magnetization during the TR interval and thus produce a weaker MR signal. 

 

Figure 9, T1 weighted MRI image 

Different gradients have to be applied to generate an MR image. Gradients are loops of wire 

or thin conductive sheets on a cylindrical shell lying just inside the bore of an MR scanner. 

When current is passed through these coils, a secondary magnetic field is created. This 

gradient field slightly distorts the main magnetic field in a predictable pattern, causing the 

resonance frequency of protons to vary in as a function of position. The primary function of 

gradients, therefore, is to allow spatial encoding of the MR signal, as it will be discussed in the 

next sections. In addition, gradients serve to induce controlled magnetic field inhomogeneities 

that are needed to encode the spatial origin of the MR signals. However, the gradients also 

contribute to spin dephasing. These effects must be reversed by applying a refocusing pulse 

before an adequate MR signal is obtained. The signal induced in the receiver coil after phase 

coherence has been restored is known as a spin echo and can be measured. Echo time (TE) is 

the interval between application of the excitation pulse and collection of the MR signal. The 

echo time determines the influence of T2 on image contrast. If a short echo time is used (less 

than about 30 msec), the signal differences between tissues are small, because T2 relaxation 

has only just started and there has only been little signal decay at the time of echo collection. 

The resulting image has low T2 weighting. Tissues with a short T2 having lost most of their 

signal appear dark on the image while tissues with a long T2 still produce a stronger signal and 

thus appear bright. This is why, for instance, cerebrospinal fluid (CSF) with its longer T2 (like 

water) is brighter on T2-weighted images compared with brain tissue. By selecting an echo 

time (TE), the operator can control the degree of T2 weighting of the resulting MR image. 
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Figure 10, The effect of TE in T2 weighted images 

A typical T1-weighted spin echo (SE) sequence is acquired with a TR/TE of 340/13 msec. A T2-

weighted fast spin echo (FSE) MR image can be acquired with a TR/TE of 3500/120 msec. MR 

images that combine T1 and T2 effects are known as proton density-weighted images (PD 

images), which tend to have a higher signal to noise ratio. PD sequences are especially useful 

for evaluating structures with low signal intensities such as the bones or connective tissue 

structures such as ligaments and tendons. PD is often used in high-resolution imaging. 

 

Figure 11, Brain Tumor in T1 and T2 weighted image 

1.4) Slice Selection and Spatial Encoding 
As a tomographic technique, MR imaging generates cross-sectional images of the human 

body. The excitation pulse is therefore delivered only to the slice we want to image and not 

to the whole body. Let us consider a transverse (axial) slice or cross-section through the body. 

The magnetic field generated by most MR scanners is not directed from top to bottom, but 

along the body axis of the person being imaged. This is the direction that will be designated 

ōȅ άȊέ ǎƛƴŎŜΣ ŀǎ ŀƭǊŜŀŘȅ ǎŀƛŘΣ z stands for the direction of the main magnetic field. The 

magnetic field gradients that now come into play are represented by wedges with the thick 

side indicating the higher field strength and the tip the lower field strength. 
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Figure 12, Slice selection in z-axis 

Both the excitation of a specific slice and the identification of the site of origin of a signal 

within the slice rely on the fact that the precessional or Larmor frequency is proportional to 

the magnetic field strength. In addition, recall that protons are excited only by an RF pulse 

with a frequency roughly equal to their Larmor frequency (resonance condition). If a uniform 

field of identical strength were generated throughout the body, all protons would have the 

same Larmor frequency and would be excited simultaneously by a single RF pulse. 

To enable selective excitation of a desired slice, the magnetic field is therefore made 

inhomogeneous in a linear fashion along the z-direction by means of a gradient coil. As a 

result, the magnetic field strength has a smooth gradient so that, for example, it is weakest at 

ǘƘŜ ǇŀǘƛŜƴǘΩǎ ƘŜŀŘ ŀƴŘ ǎtrongest at the feet. The Larmor frequencies thus change gradually 

along the z-axis and each slice now has its unique frequency. Hence, application of an RF pulse 

that matches the Larmor frequency of the desired slice will excite only protons within the 

chosen slice while the rest of the body remains unaffected, as shown in Figure 13. 

 

 

Figure 13, Slice selection with gradient coils 
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Depending on their position along the gradient, protons are temporarily exposed to magnetic 

fields of different strength and hence differ in their precessional frequencies. A shallow 

gradient generates a thicker slice while a steep gradient generates a thinner slice. Slice 

position is defined by changing the center frequency of the RF pulse applied. 

Having selected slice position and thickness by application of an appropriate slice-select 

gradient, we can now proceed to explain how the spatial position of an MR signal is identified. 

This is accomplished by spatial encoding, which is the most difficult task in generating an MR 

image and requires the application of additional gradients that alter the magnetic field 

strength along the y- and x-axes. Spatial encoding comprises two steps, phase encoding and 

frequency encoding. These two steps are discussed below. Both frequency-encoding 

gradients and phase-encoding gradients do work in exactly the same way but are used for 

different purposes. All imaging gradients temporarily change the resonant frequencies of 

protons while the gradient is being applied.  

For phase encoding, a gradient in the y-direction (from top to bottom) is switched on after 

the spins have been excited and precess in the xy-plane. Such a phase-encoding gradient 

alters the Larmor frequencies of the spins according to their location along the gradient. As 

a result, the excited spins higher up in the scanner experience a stronger magnetic field and 

thus gain phase relative to the somewhat slower spins further down. The result is a phase shift 

of the spins relative to each other, as shown in Figure 14. The degree of phase shift is 

determined by the duration and amplitude of the phase-encoding gradient and by the physical 

location of the precessing nuclei along its length. The phase gain is higher for nuclei closer to 

the top of the scanner. When the gradient is switched off after some time, all spins return to 

their initial rate of precession yet are now ahead or behind in phase relative to their previous 

state. Phase now varies along the y-axis in a linear fashion and each line within the slice can 

thus be identified by its unique phase. 

 

Figure 14, Phase encoding 

The second spatial dimension of the MR signal that needs to be identified is encoded by 

changes in frequency along the x-direction. To this end, a frequency-encoding gradient is 

applied ς in our example along the x-axis. This gradient generates a magnetic field that 

increases in strength from right to left. The corresponding changes in Larmor frequencies 

make spins on the left side precess slower than the ones on the right side. When we collect 

the MR signal while the frequency-encoding gradient is switched on, we do not obtain a single 


























































































































































