Please use this identifier to cite or link to this item:
Title: Αυτόματος τεμαχισμός ψηφιακών σημάτων ομιλίας και εφαρμογή στη σύνθεση ομιλίας, αναγνώριση ομιλίας και αναγνώριση γλώσσας
Other Titles: Automatic segmentation of digital speech signals and application to speech synthesis, speech recognition and language recognition
Authors: Μπόρας, Ιωσήφ
Issue Date: 2009-10-19T12:25:00Z
Keywords: Τεμαχισμός ομιλίας
Κρυμμένα μοντέλα Μαρκώφ
Αναγνώριση ομιλίας
Σύνθεση ομιλίας
Αναγνώριση γλώσσας
Αλγόριθμος Βιτέρμπι
Μαθηματική παλινδρόμηση
Δυναμική παραμόρφωση χρόνου
Keywords (translated): Speech segmentation
Hidden Markov models
Speech recognition
Speech synthesis
Language recognition
Viterbi algorithm
Dynamic time warping
Abstract: Η παρούσα διατριβή εισάγει μεθόδους για τον αυτόματο τεμαχισμό σημάτων ομιλίας. Συγκεκριμένα παρουσιάζονται τέσσερις νέες μέθοδοι για τον αυτόματο τεμαχισμό σημάτων ομιλίας, τόσο για γλωσσολογικά περιορισμένα όσο και μη προβλήματα. Η πρώτη μέθοδος κάνει χρήση των σημείων του σήματος που αντιστοιχούν στα ανοίγματα των φωνητικών χορδών κατά την διάρκεια της ομιλίας για να εξάγει όρια ψευδό-φωνημάτων με χρήση του αλγορίθμου δυναμικής παραμόρφωσης χρόνου. Η δεύτερη τεχνική εισάγει μια καινοτόμα υβριδική μέθοδο εκπαίδευσης κρυμμένων μοντέλων Μαρκώφ, η οποία τα καθιστά πιο αποτελεσματικά στον τεμαχισμό της ομιλίας. Η τρίτη μέθοδος χρησιμοποιεί αλγορίθμους μαθηματικής παλινδρόμησης για τον συνδυασμό ανεξαρτήτων μηχανών τεμαχισμού ομιλίας. Η τέταρτη μέθοδος εισάγει μια επέκταση του αλγορίθμου Βιτέρμπι με χρήση πολλαπλών παραμετρικών τεχνικών για τον τεμαχισμό της ομιλίας. Τέλος, οι προτεινόμενες μέθοδοι τεμαχισμού χρησιμοποιούνται για την βελτίωση συστημάτων στο πρόβλημα της σύνθεσης ομιλίας, αναγνώρισης ομιλίας και αναγνώρισης γλώσσας.
Abstract (translated): The present dissertation introduces methods for the automatic segmentation of speech signals. In detail, four new segmentation methods are presented both in for the cases of linguistically constrained or not segmentation. The first method uses pitchmark points to extract pseudo-phonetic boundaries using dynamic time warping algorithm. The second technique introduces a new hybrid method for the training of hidden Markov models, which makes them more effective in the speech segmentation task. The third method uses regression algorithms for the fusion of independent segmentation engines. The fourth method is an extension of the Viterbi algorithm using multiple speech parameterization techniques for segmentation. Finally, the proposed methods are used to improve systems in the task of speech synthesis, speech recognition and language recognition.
Appears in Collections:Τμήμα Ηλεκτρολ. Μηχαν. και Τεχνολ. Υπολογ. (ΔΔ)

Files in This Item:
File Description SizeFormat 
Μπόρας - Διδακτορική Διατριβή.pdf2.63 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons