Please use this identifier to cite or link to this item: http://hdl.handle.net/10889/2384
Title: Μεθοδολογία ανίχνευσης απάτης μέσω διαχείρισης πληροφοριών βασισμένη σε μοντέλο οντολογίας
Authors: Μπενέτου, Ξανθή
Issue Date: 2009-12-14T08:48:39Z
Keywords: Οντολογίες
Ανίχνευση απάτης
Keywords (translated): Ontologies
Fraud detection
Abstract: Τα φαινόμενα απάτης τείνουν να κυριαρχήσουν τις τελευταίες δεκαετίες σε κάθε τομέα. Ένας τομέας που πλήττεται ιδιαίτερα στις μέρες μας είναι αυτός της υγειονομικής περίθαλψης γενικά και ειδικά της συνταγογράφησης των φαρμάκων. Οι υγειονομικές υπηρεσίες είναι ιδιαίτερα τρωτές στην απάτη και την κατάχρηση. Τόσο οι φορείς κοινωνικής ασφάλισης, όσο και οι ιδιωτικές ασφαλιστικές εταιρείες χάνουν όλο και περισσότερα χρήματα κάθε χρόνο, λόγω ψευδών αιτιών αποζημιώσεων. Το αντικείμενο της παρούσας διατριβής είναι ο σχεδιασμός και η ανάπτυξη μιας μεθοδολογίας ανίχνευσης και πρόληψης της απάτης, που θα μπορεί να εφαρμοστεί στις επιχειρησιακές διεργασίες των υπηρεσιών υγειονομικής περίθαλψης και θα εξασφαλίζει την ελαχιστοποίηση της απώλειας των σχετικών κεφαλαίων. Η ίδια θα είναι σε θέση να ανιχνεύει τα ύποπτα προς απάτη περιστατικά, εξασφαλίζοντας έτσι την ποιότητα και την συνέπεια των παρεχόμενων υπηρεσιών.
Abstract (translated): Fraud phenomena tend to dominate the last decades. A sector that is particularly affected in our days is that of healthcare domain in general and specifically prescriptions reimbursement. Healthcare services are particularly vulnerable in fraud and abuse. Not only institutions of social insurance, but also private companies lose more money each year, because of false causes of compensations. This thesis intends to illustrate the planning and development of a fraud detection methodology, which is accompanied and supported by a generic fraud ontological framework. This methodology will be able to detect erroneous or suspicious records, ensuring thus the quality and the consequence of provided services.
Appears in Collections:Τμήμα Ιατρικής (ΔΔ)

Files in This Item:
File Description SizeFormat 
Benetou Xanthi_PhD.pdf3.21 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.