Please use this identifier to cite or link to this item: http://hdl.handle.net/10889/2838
Title: Τεχνητά νευρωνικά δίκτυα και εφαρμογές στη σύνθεση μουσικής και την αναγνώριση μουσικού συνθέτη
Authors: Καλιακάτσος-Παπακώστας, Μάξιμος
Issue Date: 2010-04-12T06:28:52Z
Keywords: Τεχνητά νευρωνικά δίκτυα
Μουσική
Keywords (translated): Artificial neural networks
Music
Abstract: Στην παρούσα διπλωματική εργασία μελετάμε την ικανότητα των τεχνητών νευρωνικών δικτύων στη σύνθεση μουσικής και την αναγνώριση μουσικού συνθέτη. Συγκεκριμένα, στο πρώτο κεφάλαιο κάνουμε μία εισαγωγή στα τεχνητά νευρωνικά δίκτυα και ειδικά σε αυτά που χρησιμοποιούνται στα επόμενα κεφάλαια. Γίνεται αναφορά στα βασικά είδη των ΤΝΔ που υπάρχουν, εμπρόσθιας τροφοδότησης και αναδραστικά και περιγράφονται οι αλγόριθμοι εκπαίδευσής τους. Εξηγούμε την ικανότητα των αναδραστικών νευρωνικών δικτύων να έχουν δυναμική μνήμη, σε αντίθεση με αυτά που είναι εμπρόσθιας τροφοδότησης, πράγμα που τα καθιστά ικανά στην πρόβλεψη χρονοσειρών. Αυτή η ικανότητα των αναδραστικών δικτύων σε συνδυασμό με το γεγονός ότι ένα μουσικό κομμάτι μπορεί να χαρακτηριστεί σαν μία αλληλουχία γεγονότων χρονικής συνοχής (χρονοσειρά) δημιούργησε ένα ερευνητικό ρεύμα προς την κατεύθυνση της σύνθεσης μουσικής με τη χρήση ανδραστικών τεχνητών νευρωνικών δικτύων. Στο δεύτερο κεφάλαιο κάνουμε μία αναφορά στην αλγοριθμική σύνθεση μουσικής, ιδιαίτερα με χρήση πινάκων μετάβασης. Έπειτα ακολουθεί η περιγραφή του CONCERT, ενός αναδραστικού νευρωνικού δικτύου που κατασκευάστηκε για να συνθέτει μουσική με πρόβλεψη νότας προς νότα. Αναλύουμε επίσης την μοντελοποίηση των μουσικών αντικειμένων για την επεξεργασία και αναπαράστασή τους από το CONCERT η οποία βασίζεται σε ψυχοακουστικούς περιορισμούς αντίληψης των μουσικών αντικειμένων από τους ανθρώπους. Εξηγούμε τον τρόπο που εκπαιδεύεται το CONCERT έτσι ώστε να έχει όσο το δυνατόν μεγαλύτερη μνήμη και περιγράφουμε τις επιδόσεις του σε διάφορες δοκιμές που έγιναν, από την εκμάθηση μίας διατονικής κλίμακας μέχρι ενός κομματιού του J. S. Bach. Παρατηρώντας την ικανότητα του CONCERT να αντιλαμβάνεται τοπικές δομές (μοτίβα φράσεις) μα όχι καθολικές (μέρη του μουσικού κομματιού) αναφερόμαστε στην τεχνική της περιορισμένης περιγραφής που αποτελεί μια προσπάθεια για εκπαίδευση του δικτύου έτσι ώστε να αντιλαμβάνεται το μουσικό κομμάτι σε μία μεγαλύτερη κλίμακα. Στο τέλος του δευτέρου κεφαλαίου εξετάζουμε τη συνολική επίδοση του CONCERT και αναλύουμε τις κατευθύνσεις προς τις οποίες θα μπορούσαμε να κινηθούμε για τη βελτίωση των αποτελεσμάτων. Στο τρίτο κεφάλαιο αναφερόμαστε στην αναγνώριση του συνθέτη ενός μουσικού κομματιού με τη χρήση τεχνητών νευρωνικών δικτύων πάνω στην παρτιτούρα του κομματιού αυτού. Αρχικά γίνεται μία συζήτηση γύρω από το ποια στοιχεία της παρτιτούρας θεωρούμε σημαντικά, ποια από αυτά μπορούμε και ποια έχει νόημα να μοντελοποιήσουμε έτσι ώστε ένα ΤΝΔ να μπορεί να κάνει πρόβλεψη. Αναλύονται οι τεχνικές λεπτομέρειες των στοιχείων που χρειαζόμαστε για τη μοντελοποίηση μιας παρτιτούρας στον υπολογιστή και στη συνέχεια αναφερόμαστε στα δύο πειράματα που ελέγχουν την ορθότητα και αποτελεσματικότητα της παραπάνω προσέγγισης. Το ποια κομμάτια χρησιμοποιήθηκαν και από ποιους συνθέτες δε θα μπορούσε να είναι τυχαίο καθώς πρέπει να ικανοποιούνται διάφορες συνθήκες στατιστικής ομοιομορφίας έτσι ώστε η απάντηση του ΤΝΔ να είναι όσο το δυνατόν πιο αμερόληπτη. Αυτές οι συνθήκες, καθώς και οι κίνδυνοι που υπάρχουν σε πιθανή παράληψή τους εξηγούνται πριν τα πειράματα. Το πρώτο πείραμα πραγματεύεται την αναγνώριση συνθέτη ενός κομματιού που συντέθηκε από τον Chopin ή όχι (δηλαδή από τους Beethoven ή Mozart) ενώ στο δεύτερο οι εμπλεκόμενοι συνθέτες είναι οι Bach και Handel. Δοκιμάζονται διάφορες αρχιτεκτονικές ΤΝΔ και μετρούμε τη μέση και τη βέλτιστη επίδοσή τους. Τέλος συζητάμε τα αποτελέσματα των δύο πειραμάτων καθώς και τροποποιήσεις είτε του ΤΝΔ είτε της μοντελοποίησης που διαλέξαμε για την αναπαράσταση της παρτιτούρας στον υπολογιστή έτσι ώστε να έχουμε καλύτερα αποτελέσματα.
Abstract (translated): In this work we study the capability of artificial neural networks for composing music and musical composer recognition. To this end, in the first chapter the neural networks are introduced, especially the forms of those that are used later on. A reference is being made to the basic forms of neural networks, feedforward (FNN) and recursive (RNN), and their training algorithms. We explain the ability of the RNNs to have dynamic memory, in contrast to FNNs, which makes them suitable for predicting time series. This ability combined to the fact that a musical piece can be considered as a time series has urged researchers to explore music composition through RNNs. In the second chapter algorithmic music composition is being described, especially with the use of Markov chains. Then we describe CONCERT, a RNN constructed for composing music with note by note prediction. We also analyze the representation of musical objects which is based in how humans perceive them. CONCERT is trained with different musical patterns (from diatonic scales to Bach pieces) and its composing ability is being discussed. The fact that CONCERT lacks in capturing the global structure of a piece is not changed with the use of reduced description, which is thoroughly described. The second chapter concludes with thoughts on how a RNN could capture the global structure of a piece. The third chapter is devoted to composer recognition with the use of FNNs. Firstly we discuss which elements of a score are useful and which of them we can represent such that a FNN can identify a composer. The techniques that we use for the computer modeling of the problem and the manipulation of the pieces are thoroughly described. Two experiments are presented, in the first one the FNN is called to recognize Chopin from Mozart and Beethoven and in the second Bach from Handel. Finally a discussion is made on the results of the above experiments and how we could optimize them.
Appears in Collections:Τμήμα Μαθηματικών (ΜΔΕ)

Files in This Item:
File Description SizeFormat 
dip.pdf648.07 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.