Please use this identifier to cite or link to this item: http://hdl.handle.net/10889/3876
Title: Διαφορική θεωρία Galois και μη-ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Stormer και του ισοσκελούς προβλήματος τριών σωμάτων
Authors: Νομικός, Δημήτριος
Issue Date: 2010-10-20T09:40:24Z
Keywords: Ολοκληρωσιμότητα συστημάτων Hamilton
Διαφορική θεωρία Galois
Ανισοτροπικό πρόβλημα Stormer
Ισοσκελές πρόβλημα τριών σωμάτων
Εξισώσεις μεταβολών
Λύσεις Liouville
Γραμμικές αλγεβρικές ομάδες
Κανονικές ιδιομορφίες
Keywords (translated): Integrability of Hamiltonian systems
Differential Galois theory
Anisotropic Stormer problem
Isosceles three-body problem
Variational equations
Liouvillian solutions
Linear algebraic groups
Regular singularities
Abstract: Στην παρούσα διατριβή μελετήσαμε την ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Størmer (ASP) και του ισοσκελούς προβλημάτος τριών σωμάτων (IP), με εφαρμογή της θεωρίας Morales-Ramis-Simó. Τα αποτελέσματα της μελέτης δημοσιεύθηκαν στο περιοδικό Physica D: Nonlinear Phenomena. Ένα σύστημα Hamilton SH, Ν βαθμών ελευθερίας, είναι ολοκληρώσιμο (κατά Liouville) όταν επιδέχεται Ν συναρτησιακώς ανεξάρτητα και σε ενέλιξη πρώτα ολοκληρώματα. Οι J.J. Morales-Ruiz, J.P. Ramis και C. Simó απέδειξαν ότι αν ένα SH είναι ολοκληρώσιμο, τότε η ταυτοτική συνιστώσα G0k της διαφορικής ομάδας Galois των εξισώσεων μεταβολών VE¬k τάξης k , που αντιστοιχούν σε μια ολοκληρωτική καμπύλη του SH, είναι αβελιανή. Το ASP μπορεί να θεωρηθεί ότι είναι ένα σύστημα Hamilton δυο βαθμών ελευθερίας που περιέχει τις παραμέτρους pφ και ν2>0, το οποίο περιγράφει την κίνηση ενός φορτισμένου σωματιδίου υπό την επίδραση του μαγνητικού πεδίου ενός διπόλου. Οι Α. Almeida, T. Stuchi είχαν αποδείξει ότι το ASP είναι μη-ολοκληρώσιμο για pφ≠0 και ν2>0, ενω για pφ=0 είχαν αποδείξει τη μη-ολοκληρωσιμότητα των περιπτώσεων που αντιστοιχούν στις τιμές ν2≠5/12, 2/3. Η δική μας διερεύνηση απέδειξε ότι το ASP με pφ=0 (ASP0) είναι, επίσης, μη-ολοκληρώσιμο για ν2=5/12, 2/3. Αρχικά, με χρήση της μεθόδου Yoshida, αναλύσαμε τις G01 των VE¬1, που αντιστοιχούν σε δύο ολοκληρωτικές καμπύλες του ASP0, καταλήγοντας ότι οι G01 είναι μη-αβελιανές για ν2≠2/3. Στη συνέχεια, ορίσαμε τις VE3 κατά μήκος μιας τρίτης ολοκληρωτικής καμπύλης του ASP0 και δείξαμε ότι η αντίστοιχη G03 είναι μη-αβελιανή για ν2=2/3. Σύμφωνα με τη θεωρία Morales-Ramis-Simó, τα προαναφερόμενα αποδεικνύουν τη μη-ολοκληρωσιμότητα του ASΡ για pφ=0 και ν2>0. Το ΙΡ είναι μια υποπερίπτωση του προβλήματος τριών σωμάτων και μπορεί να μελετηθεί ως ένα σύστημα Hamilton δύο βαθμών ελευθερίας με παραμέτρους pφ και m, m3>0. Η προγενέστερη ανάλυση του ΙΡ υπεδείκνυε τη μη-ολοκληρωσιμότητα του συστήματος, όμως είχε πραγματοποιηθεί με χρήση αριθμητικών μεθόδων. Βρίσκοντας από μια ολοκληρωτική καμπύλη για κάθε μια απο τις περιπτώσεις pφ=0, pφ≠0, ορίσαμε τις αντίστοιχες VE1 και αποδείξαμε τη μη-ολοκληρωσιμότητα του ΙΡ. Για pφ=0 χρησιμοποιήσαμε τη μέθοδο Yoshida για να μελετήσουμε την G01, ενώ για pφ≠0 εφαρμόσαμε τον αλγόριθμο Kovacic και ερευνητικά αποτελέσματα των D. Boucher, J.A. Weil για να διερευνήσουμε την αντίστοιχη G01. Οι G01 και στις δυο προαναφερόμενες περιπτώσεις είναι μη-αβελιανές, οπότε το ΙΡ είναι μη-ολοκληρώσιμο, σύμφωνα με τη θεωρία Morales-Ramis-Simó.
Abstract (translated): In the present dissertation we studied the integrability of the anisotropic Stormer problem (ASP) and the isosceles three-body problem (IP), applying the Morales-Ramis-Simo theory. The results of our study were published by the journal Physica D: Nonlinear Phenomena. A Hamiltonian system SH, of N degrees of freedom, is integrable (in the Liouville sense) if it admits an involutive set of N functionally independent first integrals. J.J. Morales-Ruiz, J.P. Ramis and C. Simó proved that if an SH is integrable, then the identity component G0k of the differential Galois group of the variational equations VE¬k of order k that correspond to an integral curve of the SH, is abelian. The ASP can be considered as a Hamiltonian system of two degrees of freedom that contains the parameters pφ and ν2>0, which describes the motion of a charged particle under the influence of the magnetic field of a dipole. Α. Almeida, T. Stuchi had proved that the ASP is non-integrable for pφ≠0 and ν2>0, while for pφ=0 they had proved the non-integrability of the cases that correspond to ν2≠5/12, 2/3. Our study proved that the ASP with pφ=0 (ASP0) is, also, non-integrable for ν2=5/12, 2/3. Initially, using the Yoshida method, we analysed the G01 of the VE¬1, that correspond to two integrals curves of the ASP0, concluding that they are non-abelian for ν2≠2/3. Then, we defined the VE3 along a third integral curve of the ASP0 and indicated that the corresponding G03 is non-abelian for ν2=2/3. According to the Morales-Ramis-Simó theory, the aforementioned considerations prove the non-integrability of the ASP for pφ=0 and ν2>0. The IP is a special case of the three-body problem and it can be treated as a Hamiltonian system of two degrees of freedom that embodies the parameters pφ and m, m3>0. Previous analysis of the IP suggested the non-integrability of the system, but it was performed with the use of numerical methods. Finding an integral curve for each of the cases pφ=0, pφ≠0, we defined the corresponding VE1 and proved the non-integrability of the IP. For pφ=0 we used the Yoshida method to examine G01 , while for pφ≠0 we applied the Kovacic algorithm and some results of D. Boucher, J.A. Weil to investigate the corresponding G01 . In both of the aforementioned cases the G01 were non-abelian, yielding IP non-integrable, according to the Morales-Ramis-Simó theory.
Appears in Collections:Τμήμα Μαθηματικών (ΔΔ)

Files in This Item:
File Description SizeFormat 
PhD_Nomikos.pdf3.16 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.