Please use this identifier to cite or link to this item:
Title: Αρνητική διωνυμική κατανομή και εκτίμηση των παραμέτρων της
Authors: Δίκαρος, Ανδρέας
Issue Date: 2010-12-29T07:30:47Z
Keywords: Αρνητική διωνυμική κατανομή
Εκτίμηση παραμέτρων
Εκτιμητές μεθόδου ροπών
Keywords (translated): Negative binomial distribution
Estimation of parameters
Method of moment estimators
Abstract: Η παρούσα μεταπτυχιακή διατριβή εντάσσεται ερευνητικά στην περιοχή της Στατιστικής θεωρίας Αποφάσεων και ειδικότερα στη μελέτη της αρνητικής διωνυμικής κατανομής καθώς επίσης και στην εκτίμηση των παραμέτρων της. Στο Κεφάλαιο 1 παρουσιάζονται κάποιοι χρήσιμοι, για την πορεία της μελέτης μας, ορισμοί και θεωρήματα. Στο Κεφάλαιο 2 μελετάται το μοντέλο της αρνητικής διωνυμικής κατανομής, δίνονται τα χαρακτηριστικά μεγέθη αυτής και παρουσιάζονται οι διαφορετικές παραμετρικοποιήσεις της. Στο Κεφάλαιο 3, εξετάζεται το πρόβλημα εκτίμησης των παραμέτρων της αρνητικής διωνυμικής κατανομής και πιο ειδικά η εκτίμηση για τις διάφορες παραμετρικοποιήσης της. Για περισσότερη ανάλυση χρησιμοποιούνται η εκτίμηση μέγιστης πιθανοφάνειας, η εκτίμηση με τη μέθοδο των ροπών και πιο εξειδικευμένες υπολογιστικές μέθοδοι εκτίμησης. Στο Κεφάλαιο 4, και για το ίδιο πρόβλημα εκτίμησης που πραγματεύεται το προηγούμενο κεφάλαιο, επιλέγεται ο βέλτιστος εκτιμητής των παραμέτρων της αρνητικής διωνυμικής κατανομής και παρουσιάζεται ένα παράδειγμα για την κατανόηση των μεθόδων εκτίμησης.
Abstract (translated): The master thesis we are going to introduce takes place in the region of Statistical Decision Theory and particularly in studying the Negative Binomial Distribution and the estimation of its parameters. In Chapter 1 some useful definitions and theorems are presented. In Chapter 2 the model of negative binomial distribution is studied and its different parameterizations are discussed. In Chapter 3 we examine the problem of estimating the parameters of our model and for its parameterizations. In particular we give the method of Maximum Likelihood Estimation, the Method of Moments and more specified Estimation Methods. In Chapter 4 and for the same estimation problem, as in previous chapter, it’s been chosen the best estimator of the parameters in our model and it’s been derived an example for the better understanding of the above methods.
Appears in Collections:Τμήμα Μαθηματικών (ΜΔΕ)

Files in This Item:
File Description SizeFormat 
Andreas_Dikaros.pdf375.55 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.