Please use this identifier to cite or link to this item:
Title: Στοχαστικός (γραμμικός) προγραμματισμός
Authors: Μαγουλά, Ναταλία
Issue Date: 2011-04-07T14:40:20Z
Keywords: Στοχαστικός (γραμμικός) προγραμματισμός
Δυναμικός προγαμματισμός
Αρχή βελτιστοποίησης του Βellman
Δυναμικά συστήματα
Μέθοδος δυικής χαλαρότητας
Στοχαστικά δέντρα απόφασης
Keywords (translated): Stochastic (linear) programming
Dynamic programming
Bellman principle of optimality
Dynamic systems
Dual decomposition method
Stochastic decision trees
Abstract: Πολλά είναι τα προβλήματα απόφασης τα οποία μπορούν να μοντελοποιηθούν ως προβλήματα γραμμικού προγραμματισμού. Πολλές όμως είναι και οι καταστάσεις όπου δεν είναι λογικό να υποτεθεί ότι οι παράμετροι του μοντέλου καθορίζονται προσδιοριστικά. Για παράδειγμα, μελλοντικές παραγωγικότητες σε ένα πρόβλημα παραγωγής, εισροές σε μία δεξαμενή που συνδέεται με έναν υδροσταθμό παραγωγής ηλεκτρικού ρεύματος, απαιτήσεις στους διάφορους κόμβους σε ένα δίκτυο μεταφορών κλπ, είναι καταλληλότερα μοντελοποιημένες ως αβέβαιες παράμετροι, οι οποίες χαρακτηρίζονται στην καλύτερη περίπτωση από τις κατανομές πιθανότητας. Η αβεβαιότητα γύρω από τις πραγματοποιημένες τιμές εκείνων των παραμέτρων δεν μπορεί να εξαλειφθεί πάντα εξαιτίας της εισαγωγής των μέσων τιμών τους ή μερικών άλλων (σταθερών) εκτιμήσεων κατά τη διάρκεια της διαδικασίας μοντελοποίησης. Δηλαδή ανάλογα με την υπό μελέτη κατάσταση, το γραμμικό προσδιοριστικό μοντέλο μπορεί να μην είναι το κατάλληλο μοντέλο για την περιγραφή του προβλήματος που θέλουμε να λύσουμε. Σε αυτή τη διπλωματική υπογραμμίζουμε την ανάγκη να διευρυνθεί το πεδίο της μοντελοποίησης των προβλημάτων απόφασης που παρουσιάζονται στην πραγματική ζωή με την εισαγωγή του στοχαστικού προγραμματισμού.
Abstract (translated): There are many practical decision problems than can be modeled as linear programs. However, there are also many situations that it is unreasonable to assume that the coefficients of model are deterministically fixed. For instance, future productivities in a production problem, inflows into a reservoir connected to a hydro power station, demands at various nodes in a transportation network, and so on, are often appropriately modeled as uncertain parameters, which are at best characterized by probability distributions. The uncertainty about the realized values of those parameters cannot always be wiped out just by inserting their mean values or some other (fixed) estimates during the modelling process. That is, depending on the practical situation under consideration, the linear deterministic model may not be the appropriate model for describing the problem we want to solve. In this project we emphasize the need to broaden the scope of modelling real life decision problems by inserting stochastic programming.
Appears in Collections:Τμήμα Μαθηματικών (ΜΔΕ)

Files in This Item:
File Description SizeFormat 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.