Please use this identifier to cite or link to this item: http://hdl.handle.net/10889/5092
Title: Εισαγωγή στη συμμετρικοποίηση και εφαρμογές
Authors: Καβαλιεράτου, Νικολίνα
Issue Date: 2012-02-14
Keywords: Συναρτήσεις
Συμμετρικοποίηση
Keywords (translated): Functions
Symmetrization
Abstract: Η μετάλλαξη των συναρτήσεων είναι το κυρίως θέμα της παρούσας εργασίας που συνδυάζει τη γεωμετρία με τη θεωρία μέτρου και την ανάλυση με έναν ουσιώδη τρόπο. Δεδομένης μιας πραγματικής συνάρτησης f που ορίζεται σε ένα υποσύνολο του, κατασκευάζεται μία καινούρια συνάρτηση Ω n \ f ∗, η οποία έχει σημαντικές ιδιότητες. Οι εφαρμογές των θεωρημάτων που προκύπτουν είναι πολλές και ιδιαίτερα σημαντικές. Ένα από τα βασικότερα θεωρήματα είναι η ανισότητα HardyLittlewood-Sobolev που αποδεικνύεται με τη βοήθεια της συμμετρικο- ποίησης. Στο θεώρημα αυτό έχουμε ότι οι συναρτήσεις που ελαχιστοποιούν αυτήν την ανισότητα και την καθιστούν ισότητα (ονομάζονται ακραίες συναρτήσεις) είναι σφαιρικά συμμετρικές συναρτήσεις. Επίσης, μία πολύ ενδιαφέρουσα και σημαντική εφαρμογή της συμμετρικοποίησης είναι η γνωστή ισοπεριμετρική ανισότητα (δηλαδή η μπάλα έχει την ελάχιστη επιφάνεια μεταξύ όλων των σωμάτων δοσμένου όγκου). Στο κεφάλαιο 1 παρουσιάζονται κάποιες απαραίτητες έννοιες, ορισμοί και θεωρήματα από τη θεωρία μέτρου και ολοκλήρωσης, καθώς χρησιμοποιούνται συχνά στους ορισμούς και τις αποδείξεις των θεωρημάτων που αναπτύσσονται. Στο κεφάλαιο 2 παρουσιάζεται η φθίνουσα μετάλλαξη συναρτήσεων που ορίζονται σε υποσύνολα Ω του . Θεωρώντας μια πραγματική συνάρτηση σε ένα τέτοιο σύνολο, κατασκευάζουμε μια νέα συνάρτηση, η οποία έχει πεδίο ορισμού τη μπάλα με κέντρο την αρχή των αξόνων, η οποία έχει το ίδιο μέτρο (όγκο) με το και η νέα συνάρτηση έχει σημαντικές ιδιότητες. Γενικά, επιθυμούμε η νέα συνάρτηση να είναι ακτινική και ακτινικά φθίνουσα. Για να δοθεί ο ορισμός αυτός, πρώτα κατασκευάζουμε τη μονοδιάστατη φθίνουσα μετάλλαξη της δοσμένης συνάρτησης. n \ Ω iΣτο κεφάλαιο 3 παρουσιάζονται ανισότητες για μεταλλαγμένες συναρτήσεις μεταξύ των οποίων η γνωστή ανισότητα του Riesz και η αναφερθείσα σημαντική ανισότητα Hardy- Littlewood-Sobolev. Στο κεφάλαιο 4 δίνεται η συμμετρικοποίηση Steiner με μία πιο γεωμετρική σκοπιά καθώς ένα από τα πιο σημαντικά αποτελέσματά της είναι η γνωστή ισοπεριμετρική ανισότητα και άλλες πολύ ενδιαφέρουσες εφαρμογές.
Abstract (translated): -
Appears in Collections:Τμήμα Μαθηματικών (ΜΔΕ)

Files in This Item:
File Description SizeFormat 
Διπλωματική.pdf843.01 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.