Please use this identifier to cite or link to this item: http://hdl.handle.net/10889/5524
Title: Ιδιότητες των τροποποιημένων συναρτήσεων Bessel 1ου και 2ου είδους
Authors: Μαυρίδης, Ανδρέας
Issue Date: 2012-10-01
Keywords: Φράγματα
Μονοτονία
Τροποποιημένες συναρτήσεις Bessel
Keywords (translated): Bounds
Monotonicity
Modified Bessel functions
Abstract: Στη παρούσα εργασία ασχοληθήκαμε με ιδιότητες μονοτονίας των Τροποποιημένων συναρτήσεων Bessel 1ου και 2ου είδους. Συγκεκριμένα ομαδοποιήσαμε ήδη υπάρχοντα φράγματα για τα κλάσματα των συναρτήσεων αυτών. Η εύρεση φραγμάτων για τα κλάσματα των Τροποποιημένων Συναρτήσεων Bessel είναι σημαντική, λόγω της χρησιμότητάς τους σε διάφορους κλάδους των Μαθηματικών και όχι μόνο, όπως ενδεικτικά, στην Πεπερασμένη Ελαστικότητα, στην Στατιστική και στις Πιθανότητες, στην Ειδική Θεωρία Σχετικότητας, στην Μηχανική των Ρευστών, στην Ηλεκτρομηχανική, στη Βιοφυσική, στη Μαθηματική Φυσική και αλλού. Αρχικά, στο Κεφάλαιο 1, παρατέθηκαν κάποια βασικά στοιχεία, όπως ορισμοί των συναρτήσεων Bessel 1ου και 2ου είδους (Τροποποιημένων και μη) και αναδρομικές σχέσεις που ικανοποιούν. Στο Κεφάλαιο 2, γίνεται η καταγραφή και σύγκριση άνω και κάτω φραγμάτων για τα διάφορα κλάσματα των Τροποποιημένων συναρτήσεων Bessel 1ου είδους, καθώς και αναφορά σε ανισότητες τύπου Turán για τις συναρτήσεις αυτές. Επίσης, αναφέρεται η μεθοδολογία στην οποία στηρίχθηκε ο κάθε ερευνητής για να πάρει τα αντίστοιχα αποτελέσματα. Στο Κεφάλαιο 3, γίνεται η αντίστοιχη διαδικασία για τα κλάσματα και εκ νέου αναφορά σε ανισότητες τύπου Turán για αυτές τις συναρτήσεις.
Abstract (translated): In this project we described properties of Modified Bessel functions of the 1st and 2nd kind. Specifically we have grouped existing bounds for the quotients of these functions. These bounds of the Modified Bessel functions is very importand and could be found in different branches of Mathematics and other sciences, such as in Finite Elasticity, in Statistics and Probability Theory, in Relativity Theory, in Fluid Mechanics, in Engineering, in Biophysics, in Mathematical Physics and so on. Firsty, in Chapter 1, we cited some basic data, such as definitions of definitions of Bessel fynctions of the 1st and 2nd kind (both simple and Modified) and recurrence relations that they satisfy. In Chapter 2, we describe upper and lower bounds of different quotients of Modified Bessel functions of the 1st kind and reference to Turán type Inequalities of those functions. Moreover, we refer to the method that each recearcher based on in order to prove the required results. In Chapter 3, we have the same process but for Modified Bessel functons of the 2nd kind as well as reference to Turán type Inequalities for the corresponding functions.
Appears in Collections:Τμήμα Μαθηματικών (ΜΔΕ)

Files in This Item:
File Description SizeFormat 
Nimertis_Mauridis(math).pdf888.33 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.