Please use this identifier to cite or link to this item:
Title: Μη καταστροφικός έλεγχος μεταλλικών κατασκευών με ψηφιακή επεξεργασία σημάτων ακουστικής εκπομπής
Other Titles: Non destructive testing of metal constructions with digital processing of acoustic emission signals
Authors: Καππάτος, Βασίλειος
Issue Date: 2007-10-26T09:21:28Z
Keywords: Μη καταστροφικός έλεγχος
Ακουστική εκπομπή
Εντοπισμός θέσης πηγής
Επιλογή παραμέτρων
Νευρωνικά δίκτυα
Keywords (translated): Non destructive testing
Acoustic emission
Source location
Features selection
Neural networks
Abstract: Στα πλαίσια της διατριβής, πραγματοποιήθηκε μελέτη και ανάλυση σημάτων πηγών ακουστικής εκπομπής, προτάθηκαν νέες ολοκληρωμένες μεθοδολογίες βασισμένες σε συμβατικές αλλά και προχωρημένες τεχνικές επεξεργασίας και ανάλυσης δεδομένων για την εξαγωγή εκείνων των χαρακτηριστικών που διαχωρίζουν τα σήματα ακουστικής εκπομπής από τον περιβάλλοντα θόρυβο. Εξετάσθηκαν ποια χαρακτηριστικά γνωρίσματα (παράμετροι) περιέχουν σημαντικό τμήμα της “πληροφορίας” έτσι ώστε στη συνέχεια χρησιμοποιώντας προχωρημένες μεθόδους αναγνώρισης προτύπων να επιτευχθεί ανίχνευση και χαρακτηρισμός ρωγμοειδών αστοχιών σε θορυβώδεις συνθήκες αλλά και σε σύνθετες κατασκευές. Συνοπτικά στην παρούσα διατριβή προτάθηκε και αξιολογήθηκε μια νέα μέθοδος για την εκτίμηση της βέλτιστης τοποθέτησης αισθητήρων. Προτάθηκαν δύο μέθοδοι για τον εντοπισμό θέσης πηγής ακουστικής εκπομπής. Πραγματοποιήθηκε για πρώτη φορά εξαγωγή ενενήντα παραμέτρων, εκ’ των οποίων οι εξήντα επτά προσδιορίστηκαν μετά από επεξεργασία του σήματος στο πεδίο του χρόνου ενώ οι υπόλοιπες είκοσι τρεις με επεξεργασία του σήματος στο πεδίο της συχνότητας. H μείωση του αριθμού των παραμέτρων, χωρίς όμως να μειώνεται ταυτόχρονα και η αξιοπιστία του ταξινομητή, αποτελεί ένα μεγάλος μέρος έρευνας που πραγματοποιήθηκε στα πλαίσια εκπόνησης της παρούσας διατριβής. Προτάθηκαν και αξιολογήθηκαν τέσσερις μέθοδοι επιλογής παραμέτρων. Για πρώτη φορά κατασκευάστηκαν και αξιολογήθηκαν ολοκληρωμένα συστήματα ανίχνευσης αστοχιών τα οποία έχουν την δυνατότητα να ανιχνεύουν τη δημιουργία ρωγμών λόγω καταπόνησης σε καιρικές συνθήκες βροχής. Στο τελευταίο μέρος της διατριβής κατασκευάστηκε και αξιολογήθηκε ένα καινοτόμο σύστημα χαρακτηρισμού ρωγμοειδών γεγονότων για τις ενισχύσεις πλοίων, υπό προσομοιωμένες συνθήκες λειτουργίας του πλοίου.
Abstract (translated): The present PhD thesis dealt with the following subjects: best sensors position, source location, features extraction and features selection, crack detection on raining conditions, crack characterization in ship structures. A new method, for the estimation of the best sensors position that used for accurate acoustic emission source location on empty spherical surfaces, is presented. Two acoustic emission source location methods are presented and evaluated. In this thesis, an extensive set of ninety features (forty-one novel features) are extracted from acoustic emission signals, sixty-seven in the time domain and twenty-three by processing the signal in the frequency domain. The features are estimated for two time-frames the first has 1msec duration (typically the signal does not contain all the reflections from the material edges) and the second has 32msec of the normalized signal, which is not separated by its reflections, in small structures. To achieve robust performance both in accuracy and computational complexity of any classification method, it is necessary to pick up the most relevant features. Four features selection methods are proposed and evaluated. In outside constructions (e.g bridges, tanks, ships etc) real-life noises reduce significantly the capability of location and characterization acoustic emission sources. Among the most important types of noise is the rain, producing signal similar to crack. A completed system of detection crack on condition of rain is estimated. An efficient system for automatic and real-time characterization of crack events using a robust set of features to monitor crack events in ship structures is presented. In normal operation of ship, real-life noises (e.g engines, sea waves, weather conditions etc) reduce significantly the capability of location and characterization of crack events.
Appears in Collections:Τμήμα Ηλεκτρολ. Μηχαν. και Τεχνολ. Υπολογ. (ΔΔ)

Files in This Item:
File Description SizeFormat 
PhD_Kappatos.pdf2.92 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.