Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorΛυκοθανάσης, Σπυρίδων-
dc.contributor.authorΜητρούλιας, Αθανάσιος-
dc.contributor.otherMitroulias, Athanasios-
dc.description.abstractΣκοπός της παρούσας διπλωματικής εργασίας είναι η ταξινόμηση κλινικών περιπτώσεων κοιλιακών αλγών και συγκεκριμένα περιπτώσεων σκωληκοειδίτιδας σε παιδιά ηλικίας μέχρι 14 ετών μέσω ενός εργαλείου που υλοποιούμε. Βασικός λόγος για τη κατασκευή αυτού του εργαλείου αποτέλεσε η δυσκολία στη πρόβλεψη της ασθένειας από τους ειδικούς (κατά μέσο όρο γίνονται 20% - 30% αχρείαστες εγχειρήσεις), η συχνή σύγχυσή της με άλλες περιπτώσεις κοιλιακών αλγών ενώ το ποσοστό θνησιμότητας στα παιδιά με σκωληκοειδίτιδα ποικίλλει από 0,1% - 1%. Βασισμένοι σε ένα σύνολο δεδομένων από τη Παιδοχειρουργική Κλινική του Πανεπιστημιακού Νοσοκομείου της Αλεξανδρούπολης, διεξάγουμε αναζήτηση των καλύτερων παραμέτρων για τη κατασκευή μοντέλων ταξινομητών βασισμένων στις τρεις παρακάτω τεχνικές Υπολογιστικής Νοημοσύνης: α) τα Τεχνητά Νευρωνικά Δίκτυα, β) τις Μηχανές Διανυσμάτων Υποστήριξης και γ) τα Τυχαία Δάση. Χρησιμοποιώντας ένα σύνολο 14 κλινικών και εργαστηριακών παραγόντων, υλοποιούμε μοντέλα ταξινομητών. Η βασική ιδέα για την υλοποίηση τους είναι η αντιμετώπιση των παρακάτω προβλημάτων: : α) έχει το παιδί σκωληκοειδίτιδα ή όχι; β) Αν έχει σκωληκοειδίτιδα, ποιος τρόπος αντιμετώπισής της ενδείκνυται: χειρουργική επέμβαση ή συντηρητική αγωγή; Μετά την εύρεση των βέλτιστων μοντέλων από κάθε μία από τις μεθόδους Υπολογιστικής Νοημοσύνης που χρησιμοποιήθηκαν, υλοποιήθηκε ένα εργαλείο εύχρηστης διεπαφής χρήστη στο προγραμματιστικό περιβάλλον της Matlab 2012a το οποίο ευελπιστούμε ότι θα υποβοηθήσει τους ειδικούς στη λήψη απόφασης για τη πορεία ενός νεαρού ασθενούς που εισέρχεται στο νοσοκομείο παραπονούμενος για σκωληκοειδίτιδα. Το εργαλείο αυτό ελέγχθηκε με καινούργια πραγματικά κλινικά δεδομένα από το Καραμανδάνειο Νοσοκομείο Παίδων Πατρών και η απόδοσή του ήταν ενθαρρυντική.el
dc.relation.isformatofΗ ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.el
dc.subjectΥπολογιστική νοημοσύνηel
dc.subjectΙατρική πρόβλεψηel
dc.subjectΕργαλεία εύχρηστης διεπαφής χρήστηel
dc.subject.ddc616.340 028 5el
dc.titleΤαξινόμηση κλινικών περιπτώσεων κοιλιακών άλγων με υλοποίηση τεχνικών υπολογιστικής νοημοσύνηςel
dc.contributor.committeeΧατζηλυγερούδης, Ιωάννης-
dc.contributor.committeeΜαυρουδή, Σεφερίνα-
dc.description.translatedabstractThe purpose of this paper is the classification of clinical cases of abdominal pain and, to be more precise, the prediction of cases with acute appendicitis at children aged up to 14 years old through a tool that we implement. The main reasons for the construction of this tool are: a) the difficulty in the prediction of the appendicitis since the 20%-30% of the operations made from the experts for this disease are gratuitous, b) the frequent confusion that there is with other diseases that cause abdominal pain and c) the mortality rate at children with appendicitis varies from 0,1% to 1%. Based on a data set from the Department of the Child Surgery of the Hospital of the University of Alexandroupolis, we conduct a search of the best parameters for the construction of model classifiers based on the three following techniques of the Computational Intelligence: a) the Artificial Neural Networks, b) the Support Vector Machines and c) the Random Forests. The basic idea for the implementation of these models is, based on a sum of 14 clinical and laboratory factors, facing the following questions: a) if a child has appendicitis or not?, b) and if it does have appendicitis, which way should we follow to cure it: operational surgery or medication? After finding these best models, we implement a tool which is actually a Graphical User Interface of Matlab 2012a which we hope that will assist the experts in making the correct decision about a young patient that goes to the hospital complaining for appendicitis. This tool was tested on new real clinical data of patients of the Child Hospital of Patras and its performance was found really encouraging.el
dc.subject.alternativeComputational intelligenceel
dc.subject.alternativeClinical predictionel
dc.subject.alternativeGraphical user interfaceel
dc.degreeΜεταπτυχιακή Εργασίαel
Appears in Collections:Τμήμα Μαθηματικών (ΜΔΕ)

Files in This Item:
File Description SizeFormat 
Nimertis_Mitroulias(math).pdf2.17 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.