Please use this identifier to cite or link to this item:
Title: Εκτίμηση των παραμέτρων στο μοντέλο της διπαραμετρικής εκθετικής κατανομής, υπό περιορισμό
Authors: Ραφτοπούλου, Χριστίνα
Issue Date: 2014-06-10
Keywords: Διπαραμετρική εκθετική κατανομή
Βέλτιστοι αναλλοίωτοι εκτιμητές
Μέσο τετραγωνικό σφάλμα
Κριτήριο Pitman
Συνάρτηση ζημίας Linex
Keywords (translated): Two-parameter exponential distribution
Best affine estimators
Mean square error (mse) criterion
Pitman Nearness criterion
LINEX loss
Abstract: Η παρούσα μεταπτυχιακή διατριβή εντάσσεται ερευνητικά στην περιοχή της Στατιστικής Θεωρίας Αποφάσεων και ειδικότερα στην εκτίμηση των παραμέτρων στο μοντέλο της διπαραμετρικής εκθετικής κατανομής με παράμετρο θέσης μ και παράμετρο κλίμακος σ. Θεωρούμε το πρόβλημα εκτίμησης των παραμέτρων κλίμακας μ και θέσης σ, όταν μ≤c, όπου c είναι μία γνωστή σταθερά. Αποδεικνύουμε ότι σε σχέση με το κριτήριο του Μέσου Τετραγωνικού Σφάλματος (ΜΤΣ), οι βέλτιστοι αναλλοίωτοι εκτιμητές των μ και σ, είναι μη αποδεκτοί όταν μ≤c, και προτείνουμε βελτιωμένους. Επίσης συγκρίνουμε του εκτιμητές αυτούς σε σχέση με το κριτήριο του Pitman. Επιπλέον, προτείνουμε εκτιμητές που είναι καλύτεροι από τους βέλτιστους αναλλοίωτους εκτιμητές, όταν μ≤c, ως προς την συνάρτηση ζημίας LINEX. Τέλος, η θεωρία που αναπτύσσεται εφαρμόζεται σε δύο ανεξάρτητα δείγματα προερχόμενα από εκθετική κατανομή.
Abstract (translated): The present master thesis deals with the estimation of the location parameter μ and the scale parameter σ of the two-parameter exponential distribution. We consider the problem of estimation of locasion parameter μ and the scale parameter σ, when it is known apriori that μ≤c, where c is a known constant. We establish that with respect to the mean square error (mse) criterion the best affine estimators of μ and σ in the absence of information μ≤c are inadmissible and we propose estimators which are better than these estimators. Also, we compare these estimators with respect to the Pitman Nearness criterion. We propose estimators which are better than the standard estimators in the unrestricted case with respect to the suitable choise of LINEX loss. Finally, the theory developed is applied to the problem of estimating the location and scale parameters of two exponential distributions when the location parameters are ordered.
Appears in Collections:Τμήμα Μαθηματικών (ΜΔΕ)

Files in This Item:
File Description SizeFormat 
ΔΙΠΛΩΜ ΒΙΒΛΙΟΘ.pdf491.77 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.