Please use this identifier to cite or link to this item: http://hdl.handle.net/10889/8816
Title: Σχεδιασμός και ανάπτυξη αλγορίθμου συσταδοποίησης μεγάλης κλίμακας δεδομένων
Authors: Γούλας, Χαράλαμπος
Keywords: Μηχανική μάθηση
Ιεραρχική συσταδοποίηση
Δέντρα αποφάσεων
Νευρωνικά δίκτυα
Γενετικοί αλγόριθμοι
Υβριδικοί αλγόριθμοι
Keywords (translated): Machine learning
Hierarchical clustering
Decision trees
Neural networks
Genetic algorithms
Hybrid algorithms
Abstract: Υπό το φάσμα της νέας, ανερχόμενης κοινωνίας της πληροφορίας, η σύγκλιση των υπολογιστών με τις τηλεπικοινωνίες έχει οδηγήσει στην συνεχώς αυξανόμενη παραγωγή και αποθήκευση τεράστιου όγκου δεδομένων σχεδόν για οποιονδήποτε τομέα της ανθρώπινης ενασχόλησης. Αν, λοιπόν, τα δεδομένα αποτελούν τα καταγεγραμμένα γεγονότα της ανθρώπινης ενασχόλησης, οι πληροφορίες αποτελούν τους κανόνες, που τα διέπουν. Και η κοινωνία στηρίζεται και αναζητά διακαώς νέες πληροφορίες. Το μόνο που απομένει, είναι η ανακάλυψη τους. Ο τομέας, που ασχολείται με την συστηματική ανάλυση των δεδομένων με σκοπό την εξαγωγή χρήσιμης γνώσης ονομάζεται μηχανική μάθηση. Υπό αυτό, λοιπόν, το πρίσμα, η παρούσα διπλωματική πραγματεύεται την μηχανική μάθηση ως μια ελπίδα των επιστημόνων να αποσαφηνίσουν τις δομές που διέπουν τα δεδομένα και να ανακαλύψουν και να κατανοήσουν τους κανόνες, που “κινούν” τον φυσικό κόσμο. Αρχικά, πραγματοποιείται μια πρώτη περιγραφή της μηχανικής μάθησης ως ένα από τα βασικότερα δομικά στοιχεία της τεχνητής νοημοσύνης, παρουσιάζοντας ταυτόχρονα μια πληθώρα προβλημάτων, στα οποία μπορεί να βρει λύση, ενώ γίνεται και μια σύντομη ιστορική αναδρομή της πορείας και των κομβικών της σημείων. Ακολούθως, πραγματοποιείται μια όσο το δυνατόν πιο εμπεριστατωμένη περιγραφή, μέσω χρήσης εκτεταμένης βιβλιογραφίας, σχεδιαγραμμάτων και λειτουργικών παραδειγμάτων των βασικότερων κλάδων της, όπως είναι η επιβλεπόμενη μάθηση (δέντρα αποφάσεων, νευρωνικά δίκτυα), η μη-επιβλεπόμενη μάθηση (συσταδοποίηση δεδομένων), καθώς και πιο εξειδικευμένων μορφών της, όπως είναι η ημί-επιβλεπόμενη μηχανική μάθηση και οι γενετικοί αλγόριθμοι. Επιπρόσθετα, σχεδιάζεται και υλοποιείται ένας νέος πιθανοτικός αλγόριθμος συσταδοποίησης (clustering) δεδομένων, ο οποίος ουσιαστικά αποτελεί ένα υβρίδιο ενός ιεραρχικού αλγορίθμου ομαδοποίησης και ενός αλγορίθμου διαμέρισης. Ο αλγόριθμος δοκιμάστηκε σε ένα πλήθος διαφορετικών συνόλων, πετυχαίνοντας αρκετά ενθαρρυντικά αποτελέσματα, συγκριτικά με άλλους γνωστούς αλγορίθμους, όπως είναι ο k-means και ο single-linkage. Πιο συγκεκριμένα, ο αλγόριθμος κατασκευάζει συστάδες δεδομένων, με μεγαλύτερη ομοιογένεια κατά πλειοψηφία σε σχέση με τους παραπάνω, ενώ το σημαντικότερο πλεονέκτημά του είναι ότι δεν χρειάζεται κάποια αντίστοιχη παράμετρο k για να λειτουργήσει. Τέλος, γίνονται προτάσεις τόσο για περαιτέρω βελτίωση του παραπάνω αλγορίθμου, όσο και για την ανάπτυξη νέων τεχνικών και μεθόδων, εναρμονισμένων με τις σύγχρονες τάσεις της αγοράς και προσανατολισμένων προς τις απαιτητικές ανάγκες της νέας, αναδυόμενης κοινωνίας της πληροφορίας.
Abstract (translated): In the spectrum of a new and emerging information society, the convergence of computers and telecommunication has led to a continuously increasing production and storage of huge amounts of data for almost any field of human engagement. So, if the data are recorded facts of human involvement, then information are the rules that govern them. And society depends on and looking earnestly for new information. All that remains is their discovery. The field of computer science, which deals with the systematic analysis of data in order to extract useful information, is called machine learning. In this light, therefore, this thesis discusses the machine learning as a hope of scientists to elucidate the structures that govern the data and discover and understand the rules that "move" the natural world. Firstly, a general description of machine learning, as one of the main components of artificial intelligence, is discussed, while presenting a variety of problems that machine learning can find solutions, as well as a brief historical overview of its progress. Secondly, a more detailed description of machine learning is presented by using extensive literature, diagrams, drawings and working examples of its major research areas, as is the supervised learning (decision trees, neural networks), the unsupervised learning (clustering algorithms) and more specialized forms, as is the semi-supervised machine learning and genetic algorithms. In addition to the above, it is planned and implemented a new probabilistic clustering algorithm, which is a hybrid of a hierarchical clustering algorithm and a partitioning algorithm. The algorithm was tested on a plurality of different datasets, achieving sufficiently encouraging results, as compared to other known algorithms, such as k-means and single-linkage. More specifically, the algorithm constructs data blocks, with greater homogeneity by majority with respect to the above, while the most important advantage is that it needs no corresponding parameter k to operate. Finally, suggestions are made in order to further improve the above algorithm, as well as to develop new techniques and methods in keeping with the current market trends, oriented to the demanding needs of this new, emerging information society.
Appears in Collections:Τμήμα Μηχανικών Η/Υ και Πληροφορικής (ΜΔΕ)

Files in This Item:
File Description SizeFormat 
HCuRMD_Goulas_Charalampos.pdf5.54 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.